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The mouse superior colliculus (SC) is a laminar midbrain structure involved in processing
and transforming multimodal sensory stimuli into ethologically relevant behaviors such
as escape, defense, and orienting movements. The SC is unique in that the sensory
(visual, auditory, and somatosensory) and motor maps are overlaid. In the mouse, the SC
receives inputs from more retinal ganglion cells than any other visual area. This makes
the mouse SC an ideal model system for understanding how visual signals processed by
retinal circuits are used to mediate visually guided behaviors. This Perspective provides
an overview of the current understanding of visual motor transformations operated by
the mouse SC and discusses the challenges to be overcome when investigating the
input–output relationships in single collicular cell types.

Keywords: superior colliculus, visual processing, sensorimotor transformation, retinal ganglion cell, functional
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INTRODUCTION

The superior colliculus (SC) is an evolutionarily conserved brain region found in mammals,
homologous to the tectum in non-mammalian vertebrate species. It receives retinotopically
organized synaptic inputs from retinal ganglion cells and reconstructs the spatial structure of the
visual image (Cang and Feldheim, 2013; Cang et al., 2018). Historically, the SC has been studied
in order to understand two different biological problems. The first is the mechanisms governing
how topographic axonal projections from the chick and mouse retinas become established. These
rely on axon guidance molecules (Frisén et al., 1998; Feldheim et al., 2000; Sweeney et al., 2015; Ito
and Feldheim, 2018) and on spontaneous retinal waves (Chandrasekaran, 2005; Liu et al., 2014;
Ito and Feldheim, 2018). However, until recently, the diversity of presynaptic retinal ganglion
cell types (Kong et al., 2005; Völgyi et al., 2009; Sümbül et al., 2014; Baden et al., 2016) and
postsynaptic collicular cell types (Mooney et al., 1988b; Gale and Murphy, 2014; Shang et al., 2015)
has seldom been related to the organization of the retino-collicular projection (McIlwain, 1978;
Hong et al., 2011; Joesch et al., 2016; Reinhard et al., 2018). The second problem concerns the
neural mechanisms underlying saccadic eye movements in non-human primates (Schiller et al.,
1980, 1979; Campos et al., 2006; Basso and May, 2017).

In rodents, the SC has also been used for studying innate behaviors related to avoidance or
orientation (Sahibzada et al., 1986; Dean et al., 1988, 1989). These output behaviors are of great
ecological value: the detection of (and consequent escape from) a predator, or effective localization

Frontiers in Neural Circuits | www.frontiersin.org 1 July 2018 | Volume 12 | Article 59

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2018.00059
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncir.2018.00059
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2018.00059&domain=pdf&date_stamp=2018-07-24
https://www.frontiersin.org/articles/10.3389/fncir.2018.00059/full
http://loop.frontiersin.org/people/560829/overview
http://loop.frontiersin.org/people/360391/overview
https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-12-00059 July 21, 2018 Time: 15:44 # 2

Oliveira and Yonehara Visual Motor Transformation in the Superior Colliculus

and orientation adjustments to catch prey, can determine
survival. Although these SC functions were uncovered several
decades ago, it was not until recently that the physiological
and behavioral roles of each collicular cell type began to be
investigated (Gale and Murphy, 2014; Shang et al., 2015, 2018;
Wei et al., 2015).

In the coming years, we expect we will determine a unified
understanding of the function of the mouse SC at many levels:
from gene function, cell types, and circuits to behavior. This
Perspective aims to discuss the advantages of using the mouse SC
as a model system for investigating the contribution of individual
visual channels to visually guided behaviors, and proposes future
research directions.

FUNCTIONAL ORGANIZATION OF THE
SUPERFICIAL LAYERS OF THE MOUSE
SUPERIOR COLLICULUS

The SC can be subdivided in the visuosensory and the motor
layers. The latter consists of the intermediate and deeper layers.
The superficial layers are visuosensory and include (from the
surface): the stratum zonale (SZ), the stratum griseum superficiale
(SGS), and the stratum opticum (SO; May, 2006; Ito and
Feldheim, 2018).

In the mouse, the superficial layers of the SC (sSC) are the
major retino-recipient structure in the brain, receiving input
from ca. 90% of retinal ganglion cells (Ellis et al., 2016), and from
the striate and extrastriate visual cortex (Wang and Burkhalter,
2013).

Visual responses to the appearance, disappearance, or
movement of a stimulus were first detected in the mouse
sSC several decades ago (Dräger and Hubel, 1975a,b). Later,
single-unit extracellular recordings from the sSC in anesthetized
mice during visual stimulation revealed several types of
visual responses, including ON/OFF responses to flashing spot
stimuli and orientation-selective (OS) responses. Interestingly,
there were no changes in OS responses following a V1
lesion or dark-rearing-mediated visual deprivation (Wang
et al., 2010), suggesting that collicular OS responses might
either emerge de novo in the SC or be inherited from
the retina. In addition, in vivo two-photon calcium imaging
recordings identified direction-selective (DS) neurons in the
most superficial lamina of the SC, the density of which
declines with increasing distance from the surface of the SC
(Inayat et al., 2015). Recently, it has been reported that DS
responses in the sSC are inherited from the retina (Shi et al.,
2017).

THE SC AS A MODEL SYSTEM FOR
VISUAL PROCESSING

Visual processing begins in the retina, where ca. 40 types
of ganglion cells have been identified (Baden et al., 2016).
Evidence from zebrafish (Robles et al., 2014) and mice (Ellis
et al., 2016) indicates that there is massive divergence and

convergence of axonal projections from retinal ganglion cell
types to the brain. In other words, many ganglion cells project
to multiple brain targets using collaterals (Ellis et al., 2016;
Huang et al., 2017), and single brain centers receive inputs
from multiple retinal ganglion cell types (Ellis et al., 2016;
Reinhard et al., 2018). However, it is not yet understood how
different ganglion cell types contribute to animal behavior,
except for a few specialized cell types such as melanopsin-
positive ganglion cells (Chen et al., 2011; Schmidt et al.,
2011) or ON DS cells (Yonehara et al., 2009; Dhande et al.,
2013).

The retina can be viewed as a parallel assemblage of
small circuit modules represented by approximately 40
mosaics of retinal ganglion cells. Is the SC also functionally
organized in parallel modules, operating the same computation
throughout the SC? Recently, a column-like organization of
OS cells was identified in the mouse SC where all angles and
positions are not covered uniformly in the sSC. Feinberg
and Meister (2015) revealed large patches containing OS
cells with similar tuning. Ahmadlou and Heimel (2015)
reported that neurons in the same column tend to prefer the
same orientation, which is parallel to the concentric circle
around the center of the visual field; this spatial organization
could allow SC neurons to best respond to an expanding
and receding optic flow. Another example of non-uniform
coverage is the clustered distribution of the axon terminals
of a transient OFF alpha ganglion cell type (Huberman
et al., 2008) and an ON–OFF DS ganglion cell type (Rivlin-
Etzion et al., 2011) along the surface of the SC, failing to
cover all retinotopic locations on the SC. Investigating the
synaptic and circuit mechanisms underlying the tuning to
the expanding and receding optic flow in the sSC could
reveal the key principles governing retino-collicular visual
processing.

THE SC MEDIATES TRACTABLE
BEHAVIORS

The rodent SC has commonly been associated with three
types of output: escape/freezing defense-like behaviors, orienting
movements, and autonomic responses. Defense-like behaviors
consist of movements directed away from aversive stimuli,
whereas orienting movements are generally directed toward
attractive stimuli (Dean et al., 1989). Autonomic responses
include marked changes in heart rate and blood pressure, and
cortical arousal in response to visual emergencies (Redgrave and
Dean, 1985; Keay et al., 1988).

Investigations into avoidance behaviors after visual
stimulation have demonstrated that mice freeze and/or escape
in response to a looming stimulus in the upper visual field, but
not in the lower visual field, thereby suggesting that behavioral
decisions are made based on the location of the stimulus within
the visual field (Yilmaz and Meister, 2013; DeFranceschi et al.,
2016). Follow-up studies have revealed that the sSC play a role in
this behavior (Shang et al., 2015, 2018; Wei et al., 2015; Huang
et al., 2017).
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Orienting movements performed by the mouse are also being
investigated. Mice exposed to crickets exhibit robust prey capture
behavior and this behavior relies on vision (Hoy et al., 2016).
While it has not yet been confirmed that the SC has a role
in prey capture behavior in the mouse, undercutting the SC
in the hamster impaired the pursuit of crickets (Finlay et al.,
1980). Similarly, the SC has been shown to be involved in prey
capture in other vertebrates (Ewert, 1974; Semmelhack et al.,
2014).

THE SC AS A MODEL SYSTEM FOR
SENSORIMOTOR TRANSFORMATION

The SC processes both aversive and appetitive visual stimuli,
generating motor output responses related to avoidance and
orientation, but the exact contributions of different retinal
ganglion cell types to these visual motor transformations are not
yet understood.

It has been suggested that one type of OFF ganglion cell in
the retina is approach sensitive, as it responds to expanding,
but not receding, black spots (Münch et al., 2009). Another
population of ganglion cells, characterized as having the smallest
and densest receptive fields, is thought to serve as an alarm
neuron for overhead predators (Zhang Y. et al., 2012). How
these approach or alarm retinal signals are processed by the sSC
circuitry and transmitted to downstream premotor areas remains
unknown.

Interestingly, stimulating the medial SC evokes avoidance
or defense reactions in rodents, whereas stimulating the lateral
SC elicits orienting or approach responses (Sahibzada et al.,
1986; Dean et al., 1988). Because the medial and lateral
SCs analyze the upper and lower visual field, respectively,
these findings echo the behavioral observations that looming
stimuli evoke escape/freeze behaviors only when presented from
above.

Neurons in the sSC project to the intermediate (iSC)
and deep layers (dSC) of the SC (Mooney et al., 1988a).
Projections from deeper layers to the nuclei of the brainstem
can be either contralateral (from the lateral regions of
the SC) or ipsilateral (from medial regions; Bickford
and Hall, 1989). Consequently, contralateral projections
tend to mediate orienting behaviors, while ipsilateral
projections tend to mediate avoidance behaviors (Redgrave
et al., 1996a,b; Comoli et al., 2012). In line with these
findings, stimulating the cuneiform nucleus (Cn) and the
parabigeminal nucleus (PbG), two of the main targets of
ipsilateral descending projections (Redgrave et al., 1987),
evokes escape/freezing behaviors in rodents (Parker and
Sinnamon, 1983; Mitchell et al., 1988; Shang et al., 2015;
Caggiano et al., 2018). Furthermore, the Cn receives
projections from the medial part of the SC, a region
representing the upper visual field (Westby et al., 1990).
Future research should examine how distinct dSC output
cells collect information from retinal ganglion cell types via
sSC neurons to extract salient features from the visual scene
(Figure 1).

Together, these reports suggest that visual pathways dedicated
to survival-related behaviors are hard-wired by segregated
neuronal projections, possibly by intrinsic genetic mechanisms.

GENETIC LABELING OF SC CELL TYPES
IN MICE

To understand the circuit mechanisms underlying visual
processing and sensorimotor transformation, cell type-based
studies are crucial, as they make it possible to link light responses,
connectivity, behavior, and gene expression (Figure 1). As with
zebrafish (Robles et al., 2011), gaining genetic access to cell types
in the mouse SC will be critical for untangling the functional
connectivity of neuronal circuits in the SC.

To date, four distinct cell types have been identified in the
mouse sSC: narrow-field, wide-field, horizontal, and stellate
cells. It has been suggested that a group of small cells at
the border of the SZ, with dendrites extending toward the
upper SGS, make up a fifth cell type, the marginal cells (May,
2006). However, attempts to characterize the electrophysiological
properties of this cell type have failed to distinguish it from
stellate cells (Gale and Murphy, 2014). Nonetheless, a population
of DS cells with compact receptive fields, containing both
excitatory and inhibitory neurons, has been found in the
superficial SGS: these could be marginal cells (Inayat et al.,
2015).

Narrow-field cells are labeled with Cre recombinase in the
transgenic mouse Grp-KH288-Cre (Gerfen et al., 2013; Gale
and Murphy, 2014). They are small, with thick dendrites
extending dorsally toward the SC surface and ventrally toward
the SC deeper layers. They have small receptive fields, respond
to slowly moving stimuli and are DS (Gale and Murphy,
2014). Narrow-field cells project to the deeper layers of the
SC and to the PbG (Figure 1). Given their projection pattern
and their physiological responses, it is tempting to speculate
that these cells could be involved in signaling the location
of salient visual inputs to the iSC and therefore shifting
the gaze toward a target, and/or in avoidance responses
mediated by the SC–PbG–amygdala pathway (Shang et al.,
2015).

Wide-field cells are labeled with Cre recombinase in the
transgenic mouse Ntsr1-GN209-Cre (Gerfen et al., 2013; Gale
and Murphy, 2014). These cells display dendrites extending
diagonally to the surface of the SC and forming a large field. They
respond best to slowly moving stimuli and can be DS and/or OS.
These cells project to the lateral posterior nucleus of the thalamus
(LP; Figure 1; Gale and Murphy, 2014), which makes them a
good candidate to mediate avoidance behaviors via the pathway
connecting the SC–LP–amygdala (Wei et al., 2015).

Horizontal cells are labeled with Cre recombinase in the
transgenic mouse line GAD2-Cre (Gerfen et al., 2013; Gale and
Murphy, 2014). These cells have large receptive fields, respond
best to either large stationary or fast-moving visual stimuli, and
are rarely DS. They provide inhibitory input to both the dorsal
and ventral lateral geniculate nucleus of the thalamus (LGN) and
to the PbG (Figure 1; Gale and Murphy, 2014).
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FIGURE 1 | Overview of the sSC cell types (Gale and Murphy, 2014; Inayat et al., 2015; Shang et al., 2015, 2018), potential inputs from retinal ganglion cell types
(Sanes and Masland, 2015), relevant output brain targets, and behavioral roles. Note that the identity of the retinal ganglion cells projecting to each collicular cell type
remains unknown. Abbreviations: DSGCs, direction-selective ganglion cells; αRGCs, alpha retinal ganglion cells; J-RGCs, JAM-B-expressing OFF retinal ganglion
cells; PV+, parvalbumin-positive neurons; dSC, deep layers of the superior colliculus; PbG, parabigeminal nucleus; LP, lateral posterior nucleus of the thalamus;
sSC, superficial layers of the superior colliculus; LGN, lateral geniculate nucleus of the thalamus; Cn, cuneiform nucleus; MLR, mesencephalic locomotor region.

Stellate cells have multiple dendrites with no clear orientation
and have small receptive fields. They respond best to small
visual stimuli and project to both the PbG and LGN
(Figure 1; Gale and Murphy, 2014, 2018). These cells are
labelled in the transgenic mouse line Rorb-Cre, but horizontal
and narrow-field cells are also labelled in this mouse line
(Gale and Murphy, 2018), thereby hindering the investigation
of the specific role of stellate cells in innate visual motor
behavior.

The transgenic mouse line PV-ires-Cre labels cells in the
SGS and SO known to project to the amygdala via the
PbG and to mediate escape and freezing behavior (Figure 1;
Shang et al., 2015, 2018). Recently, it has been shown that a
subpopulation of parvalbumin-positive (PV+) cells located in
the SO projects to the LP and specifically mediates freezing
behavior (Figure 1; Shang et al., 2018). Even though it was
demonstrated that the PV+ neurons in these studies were
glutamatergic (Shang et al., 2015, 2018), PV+ cells in the
SC form a distinct mixed population of glutamatergic and

GABAergic neurons with heterogeneous morphological and
electrophysiological properties (Villalobos et al., 2018). While
the morphological analysis described by Shang et al. (2015)
suggests that these neurons might be narrow-field cells, a
new report demonstrated that PV+ neurons in the sSC
also include stellate and horizontal cells (Villalobos et al.,
2018). The diversity encountered among PV+ neurons could
indicate that these neurons serve multiple circuit and behavioral
functions.

FUTURE DIRECTIONS AND
CHALLENGES: VISUAL MOTOR
TRANSFORMATION AT THE LEVEL OF A
SINGLE CELL TYPE

A plethora of new molecular, genetic, and imaging tools that has
become available in recent years now means that visual motor
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transformations can be dissected at the single-cell type level.
These tools make it possible to identify the locus of synapses
within specific neuronal circuits mediating visual motor
integration; this information will enable molecular and activity-
dependent mechanisms underlying the circuit assembly to be
studied.

Advances in mouse genetics have provided most of the
essential tools for exploring the role of single cell types in
visual motor behavior. Multiple mouse lines are now available,
expressing Cre recombinase in specific cell types of particular
brain regions (Taniguchi et al., 2011; Gerfen et al., 2013).
However, a systematic approach for identifying and labeling
SC cell types has rarely been applied (Byun et al., 2016).
An unbiased method for characterizing cell types based on
gene expression pattern, such as dropSeq (Klein et al., 2015;
Macosko et al., 2015), could be used to identify cell types
based on specific molecular markers. These could, then, be
exploited to create transgenic mice in which a single cell
type is labeled with Cre recombinase. Other approaches for
targeting individual cell types could be selecting AAVs with
tropism and/or a promoter for selective neuronal populations
(Dimidschstein et al., 2016), or nanobodies that are reconstituted
only when presented with a specific antigen (Tang et al.,
2013).

Having a valuable collection of mouse lines with labeled SC
cell types will provide excellent opportunities for linking their
activity and connectivity. It will then be possible to examine
how the convergence of ganglion cell types is organized at
the level of brain targets’ single cell types (Figure 1; Rompani
et al., 2017) by combining trans-synaptic tracing with modified
viral tracers expressing activity sensors and two-photon imaging
(Yonehara et al., 2013; Wertz et al., 2015; Zingg et al.,
2017).

Another unanswered question is how retinal signals processed
by the sSC circuitry are transmitted to downstream premotor
areas (Figure 1). Recent work has examined a similar
problem using retrograde rabies virus-based trans-synaptic
circuit tracing, and determined the combinations of neuronal
pathways originating from retinal ganglion cell types projecting
to two brain centers that mediate avoidance responses via
the sSC (Reinhard et al., 2018). Follow-up experiments using
specific inactivation and activation of the involved retinal
ganglion cell types will be fundamental to understanding
the contribution of each ganglion cell type to visual motor
transformations.

Next, it will be imperative to examine how the retino-
collicular connectivity that underlies visual processing
operated by individual genetically labeled SC cell types is
established by genetic- and activity-dependent mechanisms.
The genetic mechanisms can be analyzed by testing the
effect of gene knockdown in genetically labelled presynaptic
ganglion cell types or postsynaptic sSC cell types, using
conditional knockout mice or adeno-associated virus- or
electroporation-mediated cell type-specific delivery of RNAi
or CRISPR/Cas9 constructs. The contribution of activity-
dependent mechanisms can be addressed by transiently

activating or suppressing presynaptic or postsynaptic activity
in a cell type- and developmental-specific manner, using
optogenetic and chemogenetic tools (Zhang J. et al.,
2012).

Finally, understanding to what extent the mechanistic
insights obtained from the mouse SC are conserved across
different animal species will be fundamental. Such work will
deepen our understanding of how the species-specific functional
organization of the SC is built to meet ethological requirements.

CONCLUSION

Here, we propose the mouse SC as an outstanding model
for investigating sensorimotor transformation at the single-cell
level. First, the laminar organization of the mouse (May, 2006)
facilitates the identification of individual cell types. Second,
the mouse is a genetically tractable animal and individual
cell types can be labelled with DNA recombinase (Gerfen
et al., 2013; Gale and Murphy, 2014), enabling manipulation
and monitoring of specific collicular cell types. Third, the
sSC receives monosynaptic inputs from retinal ganglion cells
(Ellis et al., 2016) and is located relatively superficially, being
accessible for imaging with two-photon microscopy (Ahmadlou
and Heimel, 2015; Feinberg and Meister, 2015). Fourth, in
the mouse, ca. 90% of the retinal ganglion cells project to
the SC. Fifth, several behavioral paradigms are available for
probing visual motor transformations processed by the SC
(Shang et al., 2015; Wei et al., 2015). Last, breeding mice is
faster, cheaper, and easier than breeding non-human primates,
making the mouse a readily available tool to the wider scientific
community. For these reasons, we expect the mouse SC to
become heavily studied in the next years as a valuable system for
examining cell type-based mechanisms underlying visual motor
processing.
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