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Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or
insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease
are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for
insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress
and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss
exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss
anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory
and chaperon effects of exercise-induced heat shock proteins are also reviewed.

1. Introduction

Diabetes is a chronic metabolic disorder that continues to
be a major worldwide epidemic. The prevalence of diabetes
has been growing rapidly from 135 million in 1995 to an
estimated 380 million in 2025 [1]. This also has consequences
on the management of diabetes related complications such as
cardiovascular disease, nephropathy, retinopathy, and ampu-
tations. Physical inactivity and obesity are increasingly rec-
ognized as modifiable behavioral risk factors for a wide range
of chronic diseases including diabetes mellitus. The advocacy
of exercise as an interventional strategy against obesity, and
related metabolic diseases gains added importance from the
realization that restriction of calories without exercise can
lower resting metabolic rate and prevent weight loss [2].
Indeed, several studies demonstrate that physical activity
and exercise alone have multiple metabolic benefits such as
improved insulin sensitivity, reduced glycated hemoglobin
(HbA1c), and increased peak oxygen consumption [3, 4].

Physical activity and exercise are defined somewhat dif-
ferently. Physical activity refers to “bodily movement pro-
duced by the contraction of skeletal muscle that requires

energy expenditure in excess of resting energy expenditure.”
It can include a broad range of occupational, leisure, and
daily activities [3]. Exercise is defined as “a subset of physical
activity which are planned, structured and performed repet-
itively to improve or maintain one or more components of
physical fitness” [5]. Exercise is classified by the type, inten-
sity, and duration of activity. Endurance exercise reflects pro-
longed and continuous periods of contractile activity (high
repetition) against low resistance whereas resistance exercise
(strength training) involves short periods of contractile activ-
ity (low repetition) against a high opposing resistance. On
the other hand, sprint exercise occurs during short periods of
maximal (intense) repetitive contractile activity where there
is a short period of exercise against a low resistance, such as
running a 100 m sprint race. However, sprint training can
also be performed against high resistance, which results in
a combination of resistance and endurance modalities—for
example, running with added weights. The terms physical
activity and exercise will be used interchangeably in this
paper.

Although there are clear benefits of exercise in diabetic
patients, a detailed understanding of the molecular basis
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underlying these improvements remains incomplete. An
increased understanding of the molecular basis for exercise-
induced metabolic effects is important in developing optimal
exercise interventions for primary and secondary prophy-
laxis.

2. Diabetes and Oxidative Stress

A number of complications arise as a consequence of macro-
and microvascular complications that result from diabetes;
these deficits have a central role in the tissue-damaging
effects of chronic hyperglycemia [6]. Since endothelial cells
(as well as renal mesangial and Schwann cells) are unable
to limit glucose transport as well as other cells do, they are
more vulnerable to the toxic effects of hyperglycemia. In
fact, from a cardiovascular medicine perspective, diabetes
can also be classified as a cardiovascular disease [7]. Several
studies have shown that diabetes mellitus (types I and
II) is accompanied by increased formation of free radicals
and decreased antioxidant capacity, leading to oxidative
damage of cell components [8]. There are multiple sources
of reactive oxygen species (ROSs) production in diabetes
including those of mitochondrial and nonmitochondrial
origins; ROS accelerates the four important molecular mech-
anisms involved in hyperglycemia-induced oxidative tissue
damage. These four pathways are activation of protein kinase
C (PKC), increased hexosamine pathway flux, increased
advanced glycation end product (AGE), and increased polyol
pathway flux [9].

Almost ten years have elapsed since Brownlee’s concept
of the central role of mitochondrial superoxide production
in the pathogenesis of diabetic complications [10]. Briefly,
he stated that increased intracellular glucose leads to an
abundance of electron donors generated during the Kreb’s
cycle, so driving the inner mitochondrial membrane poten-
tial upward—a state that is associated with mitochondrial
dysfunction and increased ROS production. This superoxide
production overwhelms the capacity of MnSOD to dismu-
tase superoxide to H2O2. These reactive oxygen and nitrogen
species trigger DNA single-strand breakage to induce a rapid
activation of poly (ADP-ribose) polymerase (PARP), which
in turn reduces the activity of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) to increase all the glycolytic inter-
mediates that are upstream of GAPDH (Figure 1). Increased
amounts of glyceraldehyde-3 phosphate directly activate
two of the four aforementioned pathways, it activates AGE
and PKC pathways because methylglyoxal, which is the
major intracellular AGE precursor, and diacylglycerol, which
activates PKC, are formed from glyceraldehyde-3 phosphate.
Another upstream metabolite, fructose-6 phosphate, and
also glucose, enter the hexosamine and polyol pathways,
respectively. An increase in the hexosamine pathway leads
to a greater production of UDP (uridine diphosphate) N-
acetylglucosamine, which often results in pathologic changes
in gene expression such as increased expression of transform-
ing growth factor β1 and plasminogen activator inhibitor-
1. Increases in the polyol pathway leads to a consumption
of NADPH, a cofactor that is required for the regeneration

of reduced glutathione. Activated PKC has a number of
effects on gene expression such as decreased expression
of eNOS and increased expressions of endothelin, vascular
endothelial growth factor, plasminogen activator inhibitor-
1, transforming growth factor-β, NAD(P)H oxidases, and
nuclear factor κB (NF-κB), these in turn activate many
proinflammatory genes in the vasculature. The activation
of the AGE pathway can damage cells by three mecha-
nisms: first, these compounds modify intracellular proteins,
especially those involved in gene transcription regulation;
second, these compound can diffuse to the extracellular
space and modify extracellular proteins such as laminin
and fibronectin to disturb signaling between the matrix and
the cells; a finally, these compounds modify blood proteins
such as albumin, causing them to bind to AGE receptors
on macrophages/mesangial cells and increase the production
of growth factors and proinflammatory cytokines [11]. The
production of ROS is reduced by using either an uncoupler of
oxidative phosphorylation or by the overexpression of either
uncoupling protein-1 or MnSOD, such that normalizing
the levels of mitochondrial ROS with any of these agents
will prevent glucose-induced activation of protein kinase
C, formation of advanced glycation end products, sorbitol
accumulation and NF-κB activation [12]. These findings
support the feasibility of targeting the triggering role of
mitochondrial superoxide production in hyperglycemia-
induced tissue damage.

Nonmitochondrial sources of ROS include: NAD(P)H
oxidase, xanthine oxidase, uncoupled eNOS, lipoxygenase,
cyclooxygenase, cytochrome P450 enzymes, and other hemo-
proteins [27]. The structure and function of NAD(P)H oxi-
dase was first described in neutrophils, where its superoxide
production causes bacterial destruction [28]. Later work
confirmed NAD(P)H oxidase production of ROS in vascular
smooth muscle [29], endothelial [30] and mesangial cells
[31], platelets [32], and other cell types [33, 34]. Activation
of NAD(P)H oxidase in phagocytic cells is very fast (seconds)
and a large burst of superoxide is produced, while activation
in nonphagocytic cells takes longer (minutes to hours) and
superoxide is produced continually at lower rates [29, 35].
Common stimulators of vascular NAD(P)H are angiotensin
II [36], thrombin [37], platelet-derived growth factor [38],
and tumor necrosis factor-α [39]. Inhibition of NADPH
oxidase-dependent production of ROS in diabetes by a
variety of PKC inhibitors suggests a regulatory role of PKC
in hyperglycemia induced NADPH oxidase activity [40]. In
keeping with this, PKC inhibitors decrease the expression
of NADPH oxidase in high glucose-treated endothelial cells
[30]. Superoxide production measured in arteries and veins
from diabetic and nondiabetic patients undergoing coronary
artery bypass surgery confirm an enhanced NAD(P)H oxi-
dase-mediated production of superoxide anions in diabetics,
an effect that is abrogated by chelerythrine, an inhibitor of
PKC [41].

Xanthine oxidase and xanthine dehydrogenase are col-
lectively referred to as xanthine oxidoreductase. While both
these enzymes catalyze the conversion of hypoxanthine to
xanthine and then to uric acid, xanthine oxidase reduces
oxygen as an electron acceptor while xanthine dehydrogenase
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Figure 1: Mitochondrial ROS overproduction accelerates four hyperglycemia-induced tissue damage pathways. Dihydroxyacetone phos-
phate (DHAP), glutamate (glu), glutamine (gln), glutamine fructose-6-phosphate amidotransferase (GAFT), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), poly (ADP-ribose) polymerase (PARP), and uridine diphosphate-N-acetylglucosamine (UDP-GLcNAc).

can reduce either oxygen or NAD+ [42]. Hydroxyl radicals,
hydrogen peroxide, and superoxide are byproducts of xan-
thine oxidase. Even though there is some controversy about
the presence of xanthine oxidase in normal endothelial cells
[43, 44], it has been identified as a source of oxidative stress
in the pathogenesis of atherosclerosis [45], ischemia-reper-
fusion [46], and diabetes mellitus [47, 48].

Nitric oxide is produced by inducible and constitutive
nitric oxide synthases (NOSs), enzyme systems that incor-
porate oxygen into L-arginine. Constitutive eNOS contains
reductase and oxygenase domains that are connected by a
calmodulin-binding region and requires five cofactor groups
(flavin adenine dinucleotide (FAD), flavin mononucleotide
(FMN), heme, BH4, and Ca++-calmodulin) for activation. If
eNOS lacks its substrate L-arginine or one of its cofactors, the
enzyme will produce superoxide instead of nitric oxide and
this is referred to as the uncoupled state of NOS. Further-
more, NO can react with superoxide to form peroxynitrite
which in turn oxidizes BH4 and causes further uncoupling of
NO formation [27].

Lipoxygenases are responsible for the conversion of ara-
chidonic acid to leukotrienes and hydroxyeicosatetraenoic
acids (HETEs) and lipoxins. They are classified according to
their ability to insert molecular oxygen at the correspond-
ing carbon position of arachidonic acid to 5-, 8-, 12-, or
15-lipoxygenase [49]. Reactive radicals, which are normally
enzyme bound, are produced during the enzymatic reac-
tions, but in some instances can also be released and at-
tached to surrounding molecules. Lipoxygenase products,
especially 12(S)-HETE and 15(S)-HETE, are involved in the
pathogenesis of several diseases including diabetes where
they have proatherogenic effects and mediate the actions of
growth factors and proinflammatory cytokines [50, 51].

Cyclooxygenase (COX) enzymes catalyze the synthesis of
various prostaglandins. The constitutive isoform COX1 is
important under normal physiological conditions, while the
inducible isoform COX2 is poorly expressed normally but
increased dramatically during the inflammatory processes.
These isoforms work in a coordinated fashion to help the
body cope with diverse conditions. For example, COX2
expression is induced by proinflammatory cytokines through
NADPH oxidase stimulation and ROS production. Elevated
levels of glucose induce endothelium-derived vasoconstric-
tor prostanoids [52], suggesting a role for COX2 in diabetic
vasculopathies. In addition, there is a significant correlation
between plasma levels of hemoglobin A1C and ligands of
AGE receptors [53]. Further evidence supporting a role for
oxidative stress in the induction of COX expression is that
the expression of COX enzymes is normalized by glycemic
control [53], and also by inhibition of oxidative phosphory-
lation, protein kinase C, NFκB [54], or by mutation of
the NFκB binding elements at the COX2 promoter site
[55].

The cytochrome P450 monooxygenases are a large cate-
gory of enzymes involved in the metabolism and detoxifi-
cation of endogenous and exogenous materials. Dioxygen
compounds, which decompose and release superoxide and
hydrogen peroxide, are byproducts of this process [56, 57].
Diabetes affects these different isoforms of the cytochrome
P450 system; for example, there is an increased expression
of CYP2E1 in type 1 and 2 diabetic [58, 59] and ob/ob mice
[60], and also in STZ-induced diabetic rats [61]. The upreg-
ulation of hepatic CYP4A10 and CYP4A14 isoforms in ob/ob
mice is thought to alleviate diabetes-induced hyperlipidemia
since these enzymes are involved in fatty acid metabolism
[62].
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3. Exercise and Antioxidant Capacity

Cells have evolved highly complex enzymatic and nonenzy-
matic antioxidant systems which work synergistically, and in
combination with each other, to protect the body against
free radical-induced damage. The most efficient enzymatic
antioxidants involve glutathione peroxidase, catalase, super-
oxide dismutase, heme oxygenase-1 (HO-1), NAD(P)H qui-
none oxidoreductase-1 (NQO-1), and thioredoxin [63].
Non-enzymatic antioxidants include vitamins E and C, thiol
antioxidants (glutathione, thioredoxin) [64]. These antioxi-
dants are capable of combining with reactive oxidants to
produce other less reactive species. SOD promotes the dis-
mutation of the superoxide radical to form hydrogen per-
oxide (H2O2) and oxygen. Glutathione peroxidase (GPx)
uses reduced glutathione (GSH) as a reducing equivalent
to reduce H2O2 to form oxidized glutathione and water.
Catalase converts H2O2 to water and oxygen. Further, GSH
can remove selected oxygen radicals directly and assist in
the recycling of vitamins C and E. The newly identified
peroxiredoxin family is also a group of peroxidases that cata-
lyze the reduction of H2O2 and so far at least six isoforms
have been identified in mammalian cells [65]. Among
them, peroxiredoxin III is synthesized with a mitochondrial
targeting sequence (as is MnSOD) so that when it is trans-
ferred to mitochondria, its targeting residues are cleaved
during maturation. Some studies suggest that peroxiredoxin
III is a critical regulator of mitochondrial H2O2 concen-
trations, which promotes apoptosis in cooperation with
other mediators of apoptotic signaling [66]. The specific
localization of peroxiredoxin III within the mitochondria
is thought to provide a primary line of defense against
H2O2 produced by the mitochondrial respiratory chain
[67].

Exercise training results in an upregulation of antioxidant
defense mechanisms in various tissues, presumably due to
increased levels of oxidative stress that occurs during exercise.
Low/moderate amounts of ROS produced during regular
skeletal muscle work are a part of “hormesis”, which describes
the generally favorable biological responses to low exposures
to toxins and other stressors. A pollutant or toxin showing
hormesis has opposite effects in small versus large doses.
Hormesis is characterized by stimulation at low doses and
inhibition at higher doses, resulting in an inverted U-shaped
dose response effect [68]. For example, exercise-induced in-
creased production of ROS can be beneficial by evoking
specific adaptations, such as increased antioxidant/oxidative
damage repairing enzyme activity, increased resistance to
oxidative stress and lower levels of oxidative damage. On the
other hand, excessive production of ROS is usually associated
with detrimental effects.

Boosting of intrinsic antioxidant potential and reduction
in lipid peroxidation occurs in healthy elderly men after
habitual physical activity [69]. Physiological levels of shear
stress increases the expression of Cu/Zn SOD in human
aortic endothelial cells [70], while endurance training mainly
induces Mn-SOD expression [71]. In our experiments with
db/db mice, we observed a specific down-regulation of

aortic Mn-SOD following diabetes. Low-intensity exercise
increased Cu/Zn-SOD protein production, whereas moder-
ate intensity exercise increased Mn-SOD [72]. Additional
work is needed to clarify the importance and physiological
roles of this preferential upregulation in SODs by exercise in
diabetes.

A critical role has recently been described for a transcri-
ption factor “nuclear factor erythroid 2-related fatcor 2
(Nrf2)” against oxidative stress in health and during diabetes.
Normally, Nrf2 is located in the cytoplasm and kept dormant
by a cytoplasmic repressor named Kelch-like ECH-associated
protein 1 (Keap1). A variety of activators, including oxidative
free radicals, release and translocate Nrf2 into the nucleus
where it regulates the expression of antioxidant enzymes
such as NQO-1, glutathione s-transferase, glutathione per-
oxidase, and HO-1 [63] (Figure 2). Diminished Nrf2 activity
contributes to increased oxidative stress and mitochon-
drial dysfunction in the vasculature leading to endothelial
dysfunction, insulin resistance, and abnormal angiogenesis
as observed in diabetics [73]. HO-1, which is mainly
induced through the Nrf2-keap1 signaling pathway (also
known as heat shock protein 32), is the inducible isoform
of heme oxygenase that catalyzes the NADPH-dependent
decomposition of heme to carbon monoxide (CO), ferrous
iron, and biliverdin [74]. Three isoforms of HO have been
identified: both HO-2 and HO-3 are 33-kDa isoforms that
are expressed constitutively [75]. The important role of
HO-1 in the antioxidant defense system arises from an
induction of ferritin synthesis that diminishes the cellular
pool of free iron [76] and also from the enhancement of
bilirubin levels, which are potent antioxidants [77]. Carbon
monoxide activates soluble guanylate cyclase, a key enzyme
in cell signaling that leads to vasodilation, relaxation of
smooth muscle, and thrombocyte disaggregation. Carbon
monoxide also affects cellular metabolism and counteracts
pro-inflammatory cytokine cascades [75]. HO-1 has been
widely recognized as a sensitive and reliable marker of
oxidative stress [78]. Niess et al. [79] demonstrated increased
cytoplasmic expression of HO-1 in human leukocytes
of endurance-trained male subjects after a half-marathon
run. Additionally, they determined cytoplasmic HO-1 in
a control group of untrained men at rest and showed
a higher expression of HO-1 compared to the athletes.
They concluded that the down regulation of the base-
line expression of HO-1 in athletes reflects an adaptation
mechanism to regular exercise training [79]. The direct
effect of exercise on Nrf2 expression has received much less
attention except for a report that exercise increases nuclear
levels of Nrf2 in the proximal renal tubules of old rats
[80].

The effects of exercise on myocardial antioxidant enzyme
activities have been widely investigated. It is generally
believed that even short-term endurance exercise training
results in rapid increases in myocardial Mn-SOD activity,
which greatly impacts ischemic/reperfusion injury [81–83].
Exercise also increases glutathione peroxidase activity in the
liver, kidney, and heart [84] as well as in skeletal muscle [85].
Exercise, and hence changes in fluid shear stress, activates
vascular NADPH oxidase and P22phox expression [86]. It is
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Figure 2: Exercise-induced ROS activates Nrf2, which then translocates into the nucleus to increase the expression of antioxidant enzymes.
Antioxidant response element (ARE), carbon monoxide (CO), Glutathione peroxidase (GPx), Glutathione S-transferase (GST), Heme oxy-
genase-1 (HO-1), Kelch-like ECH-associated protein 1 (Keap1), NAD(P)H quinone oxidoreductase-1 (NQO-1), and nuclear factor erythroid
2-related factor 2 (Nrf2).

likely that p22phox affects NADPH oxidase in response to
shear stress, which may in turn regulate the amount of vas-
cular antioxidant enzyme gene expression levels [87].

4. Diabetes, Inflammation, and
Anti-Inflammatory Effect of Exercise

Inflammation has a prominent role in the pathogenesis of
several cardiovascular diseases. Atherosclerosis is an infla-
mmatory disease that is mediated by monocyte derived
macrophages which accumulate in arterial plaques and be-
come activated to release cytokines that cause tissue damage
[88]. Atherosclerotic plaques in type II diabetic patients

have increased inflammatory properties and worse cardio-
vascular outcomes than plaques observed in non-diabetic
subjects [89]. We reported that systemic inflammation pre-
cedes either hyperglycemia or oxidative stress in db/db mice
[90]. As evidence accumulates favoring the role of inflam-
mation during the different phases of atherosclerosis, it
is likely that markers of inflammation such as high-sen-
sitivity C-reactive protein (hs-CRP) may be increasingly used
to provide additional insights on the biological status of
atherosclerotic lesions. Several studies have shown that CRP
and proinflammatory cytokines, including interleukin-6 (IL-
6) and tumor necrosis-α (TNF-α), are elevated in type II
diabetic patients [89, 91]. CRP is considered to be an inde-
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pendent predictor of cardiovascular events and of the out-
come of acute coronary syndromes [92]. Diabetic patients
can be grouped as being at low, intermediate, and high risk
for cardiovascular disease based on their levels of hs-CRP
[93]. Besides its role as a marker of systemic inflammation
and a predictor of cardiovascular risk, CRP and other inflam-
matory cytokines also directly trigger vascular dysfunction
[94], possibly via altering calcium channel expression and
activity [95], upregulation of Rho-kinase expression and
function [96], increasing the production of ROS [97],
and/or enhancing cyclooxygenase expression [98]. In turn,
cyclooxygenase enzymes cause vascular hypercontractility by
increasing the synthesis of constrictor prostanoid(s) [99,
100] and excessive formation of ROS [101]. Cyclooxygenase
inhibitors alleviate the augmented contractile responses in
several animal models of diabetes [102–106]. These findings
may partially explain the inconsistent and mostly disappoint-
ing results with antioxidant use in diabetic patients [64],
since inflammation rather than oxidative stress may be the
principle contributor to diabetic vascular dysfunction. In
agreement with this concept is the finding that endothelial
function improves in type 2 diabetic patients treated with
rosiglitazone, an agent that reduces inflammation but not
oxidative stress [107].

Exercise produces a short-term inflammatory response
that is accompanied by leukocytosis, increases in oxidative
stress, and plasma levels of CRP. This pro-inflammatory
response is followed by a long term anti-inflammatory
effect [108]. Regular exercise reduces CRP, IL-6, and TNF-
α levels and also increases anti-inflammatory substances
such as IL-4 and IL-10 [109, 110]. In healthy young adults,
a 12-week, high-intensity aerobic training program down
regulates cytokine release from monocytes [110]. In fact,
even leisure time physical activity (e.g., walking, jogging, or
running, etc.) reduces hs-CRP concentration in a graded
manner [111]. Table 1 summarizes the findings of clinical
studies on the effects of exercise on anti-inflammatory and
antioxidant markers in diabetic patients.

5. Myokines as Anti-Inflammatory Agents

Pedersen and colleagues [112–116] suggest that just as
adipose tissue is recognized as an endocrine organ, skeletal
muscle should also be considered as an endocrine tissue.
The term “myokines” was later coined for cytokines and
other peptides that are produced, expressed, and released by
muscle fibers. The list of myokines includes IL-6, IL-8, IL-
15, brain-derived neurotrophic factor, leukemia inhibitory
factor plus fibroblast growth factor-21, and follistatin like-
1 [113]. They are released from working muscles into the
circulation where they exert their effects on other organs in
a hormone-like fashion. Myokines are thought to mediate
the beneficial effects of exercise and may also have a role in
the protection against diseases associated with low-grade in-
flammation such as atherosclerosis, type II diabetes, or the
metabolic syndrome.

IL-6 is the first cytokine released into the circulation
during exercise and its levels increase in an exponential

fashion in response to exercise (99). IL-6 mRNA is upreg-
ulated in contracting skeletal muscle [117] and the tran-
scriptional rate of the IL-6 gene is also markedly enhanced
by exercise [118]. IL-6 acts as both a proinflammatory and
anti-inflammatory cytokine. When secreted by T cells and
macrophages, IL-6 stimulates immune responses and boosts
inflammatory reactions, while muscle-produced IL-6 exerts
anti-inflammatory effects through its inhibitory effects on
TNF-α and IL-1β, and activation of IL-1ra and IL-10 [115].
Exercise-induced increases in plasma IL-6 correlate with the
muscle mass involved in exercise activity and also with the
mode, duration, and especially intensity of exercise [119].
Exercise also confers protection against TNF-induced insulin
resistance [120]. In addition, Starkie et al. reported that
infusion of recombinant human IL-6 (rhIL-6) into human
subjects simulated the exercise induced IL-6 response in the
prevention of endotoxin-induced increase in plasma TNF-
α [121]. Exercise can also suppress TNF-α production by
an IL-6 independent pathway, as demonstrated by Keller
et al. who reported only modest decreases in plasma TNF-
α after exercise in IL-6 knockout mice [122]. Exercise
induced increases in epinephrine levels can also blunt the
TNF-α response [123]. In addition, Petersen et al. showed
that IL-6 enhances lipid turnover and stimulates lipolysis
as well as fat oxidation via activation of AMP-activated
protein kinase [124]. Consistent with this, Wallenius et al.
demonstrated that IL-6 deficient mice (IL6−/−) develop
mature onset obesity and have disturbed carbohydrate and
lipid metabolism that is partly reversed by IL-6 replacement.
Other data indicates that centrally acting IL-6 exerts an
antiobesity effect in rodents [125]. The lipolytic effect of IL-
6 on fat metabolism was confirmed in two clinical studies
of healthy and diabetic subjects [124, 126]. Visceral fat
is potentially a cause of low-grade systemic inflammation,
which in turn leads to insulin resistance, type II diabetes,
and atherosclerosis [113]. During exercise, IL-6 also increases
hepatic glucose production. Glucose ingestion during exer-
cise reduces IL-6 production by muscles, suggesting that
IL-6 is released due to of the reduction in glycogen levels
during endurance exercise and the consequent adrenergic
stimulation of IL-6 gene transcription via protein kinase A
activation [127].

6. Heat Shock Proteins

There is widespread clinical interest in the role of heat
shock proteins (HSPs) in a number of human diseases,
including diabetes. The heat shock response is a common
cellular reaction to external stimuli such as ischemia [128],
hypoxia [129], acidosis [130], oxidative stress [131], protein
degradation [132], increased intracellular calcium [133],
and energy depletion [134]. Therefore, the terms “stress
proteins” and “cellular stress response” reflect the array
of stressors known to initiate HSP expression [135]. Heat
shock proteins are grouped into six major families based
on their molecular weight and related functions, that is,
110 kDa HSPs, 90 kDa HSPs, 70 kDa HSPs, 60 kDa HSPs,
40 kDa HSPs, and small HSPs such as HSP27, αB-crystallin,
and ubiquitin. Some HSPs are constitutively expressed in
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Table 1: Summary of clinical studies on the anti-inflammatory and antioxidant effects of exercise in diabetic patients reported during the
last 10 years.

Reference Patient characteristics Exercise duration Measured parameters Outcome

[13]
14 T2D versus 12 healthy
subjects

18 weeks

(i) Ability of HDL subfractions
to inhibit LDL oxidation in vitro.
(ii) Serum PON activity.
(iii) Total antioxidant status.
(iv) Plasma lipid peroxidation.

(i) Exercise improved the
antioxidant role of HDL and
reduced plasma lipid peroxidation
in diabetic subjects.

[14]
50 T2D versus 20 age matched
controls

Single bout (exercise
cycle ergometer test)

(i) TG, TC, LDL, oxLDL, SOD,
GSH-Px, PAI.

(i) Exercise increased oxLDL and
SOD in both groups; GSH-Px was
increased only in diabetic patients.

[15] 13 diabetic men

3 weeks combination
of high-fiber, low-fat
diet plus aerobic
exercise

(i) Serum lipids, glucose, insulin,
8-iso-PGF2α, CRP, sICAM-1,
sE-selectin
(ii) in vitro measurement of NO,
superoxide, and H2O2

(iii) Serum-induced monocyte
adhesion, ICAM-1, VCAM-1,
MCP-1 in cultured endothelial
cells.

(i) Reduction in TC, LDL, FSG,
insulin, 8-iso-PGF2α, CRP,
sICAM-1, sE-selectin, serum
stimulated monocyte adhesion,
cellular ICAM-1 and VCAM-1,
superoxide and H2O2 and increase
in NO production.

[16]

134 T2D divided into 3 groups
(i) 43, aerobic training plus
using fitness center
(ii) 44 aerobic training only
(iii) 16 controls

12 months
(i) Urinary 8-OHdG
(ii) serum glycated albumin, TC,
HDL, TG, HbA1c.

(i) Urinary 8-OHdG decrease after
12 months in the exercise groups.

[17]
16 T2D with diet restriction
and 13 T2D with diet
restriction and exercise

12 weeks

(i) MDA, 24 h urinary
nitrate/nitrite, FMD
(ii) BW, waist circumference, BP,
HbA1c, glucose, insulin
resistance, lipid profile.

(i) Both interventions reduced BW,
waist circumference, BP, HbA1c,
glucose, insulin resistance, lipids
and MDA, and increased urinary
nitrite/nitrate ratio
(ii) No change in FMD.

[18]

(i) 77 T2D in yoga group
(ii) 77 T2D in conventional
exercise group
(iii) 77 T2D as controls

6 months
(i) FBS, TC, TG, LDL, VLDL,
HDL, MDA, POX, PLA2, SOD,
catalase activity.

(i) Significant reductions in FBS,
TC, VLDL, MDA
(ii) SOD increased.
(iii) No significant changes in PLA2
and catalase activity.

[19]

(i) 56 T2D in t’ ai chi chuan
(TCE) group
(ii) 48 conventional exercise
group (CE)

12 weeks
(i) HbA1c, lipid profile, MDA,
CRP
(ii) BW, BMI.

(i) BMI, serum lipids, MDA, and
CRP significant improved in TCE
group. HbA1c did not decrease.
(ii) No improvement in BMI, lipids,
and oxidative stress profiles in the
CE group.

[20]

(i) 12 sedentary nondiabetes
subjects (ND)
(ii) 12 sedentary T2D (T2S)
(iii) 9 physically active
(T2DA)

Single bout of intense
exercise (>85%
VO2max)

(i) FBS, HbA1c, body fat percent,
lipid profile
(ii) TBARS, GSH.

(i) T2DS had higher FBS, HbA1c,
and body fat percent than T2SA.
(ii) T2DA had higher VO2max spent
more time on treadmill, lower Hb
and BP compared with ND and
T2DS.
(iii) TBARS in T2DS were higher
than T2DA.
(iv) GSH was similar among
groups.

[21] 11 T2D 10 weeks

(i) Muscle strength, Wmax,
VO2max, MUOX, IMCL and
IMCG, systemic inflammatory
markers and primary diabetic
outcome measures plus daily
exogenous insulin requirements
(EIRs).

(i) Muscle strength and Wmax
increased.
(ii) Mean arterial BP and EIR, FBG
and nonesterified fatty acids
declined.
(iii) No changes in VO2max, MUOX,
IMCL or IMCG, HbA1c,
adiponectin, TNF-α, and
cholesterol.



8 Experimental Diabetes Research

Table 1: Continued.

Reference Patient characteristics Exercise duration Measured parameters Outcome

[22]

20 T2D (sedentary control, A)
20 T2D (low intensity aerobic
exercise, B)
20 T2D (high intensity aerobic
exercise, C)
22 T2D (aerobic and
resistance exercise, D)

12 months

HbA1c, FBS, TG, TC, HDL,
hs-CRP, IL-1β, IL-4, IL-6, IL-10,
TNF-α, IFN-γ, leptin, resistin,
adiponectin VO2max.

(i) Significant decrease of hs-CRP in
groups C and D.
(ii) leptin, resistin, IL-6 decreased
in groups C&D, while adiponectin
increased.
(iii) IL-1β, TNF-α, IFN-γ decreased
in group D, whereas
anti-inflammatory IL-4 & 10 levels
declined.

[23]
406 T2D out of 522
participants from the Finnish
Diabetes Prevention Study

1 year CRP and IL-6 levels.

(i) Increases in fiberintake and
moderate to vigorous leisure time
physicalactivity (LTPA), but not
total LTPA, predicted decreases
inCRP and/or IL-6.

[24]
15 T2D (control)
15 T2D (10000 steps/day)

6 weeks

(i) Anthropometric measures
plus, HbA1c, FBS, insulin, lipid
profile, fructosamine, total
radical antioxidant parameter,
PAI-1, homocysteine and
lipoprotein(a).

(i) HDL and resting energy
expenditure increased while PAI-1
levels decreased in the active group.

[25]
25 T2D (exercise group)
25 T2D (control group)

16 weeks

(i) Anthropometric measures
and insulin resistance, MMP-2,
TIMP-1, lipid profile, HbA1c,
fibrinogen, hsCRP, VO2max, VT.

(i) Systolic and mean BP, LDL,
HbA1c, fibrinogen, hsCRP, MMP-9
and MMP-9 to TIMP-1 ratio
decreased in exercise group while
VO2max, VT and plasma TIMP-2
levels increased.

[26]

60 patients with IGTT:
24 in exercise training group
20 in rosiglitazone group
16 in control group

12 months
(i) Genotyping of the 174G/C
IL-6 variant.
(ii) CRP and IL-6 measurements.

(i) Improved peak VO2max,
decreases in BMI, WHR, HbA1c,
plasma glucose and insulin, 2-h
OGTT glucose level IL-6 and
hsCRP in exercise group.

Abbreviations: 8-OHdg: 8-hydroxy-2′-deoxyguanosine, BMI: body mass index, BP: blood pressure, BW: body weight, CRP: C reactive protein, FBS: fasting
blood sugar, FMD: flow mediated dilatation, GSH: glutathione, GSH-Px: glutathione peroxidase, HbA1c: hemoglobin A1c, HDL: high density lipoproteins,
ICAM-1: intracellular adhesion molecule-1, IFN: interferon, IL: interleukin, IMCG: intramyocellular glycogen, IMCL: intramyocellular lipid, LDL: low den-
sity lipoprotein, MCP-1: monocyte chemotactic protein-1, MDA: malondialdehyde, MMPs: matrix metalloproteinases, MUOX: muscle oxidative capacity,
oxLDL: oxidized low density lipoproteins, PAI: plasminogen activator inhibitor, PLA2: phospholipase A2, PON: paraoxonase, POX: protein oxidation, sICAM:
soluble intracellular adhesion molecule, SOD: superoxide dismutase, T2D: type II diabetes, TBARS: thiobarbituric acid substances, TC: total cholesterol, TG:
triglyceride, TIMPs: tissue inhibitor of metalloproteinases, VCAM-1: vascular cell adhesion molecule-1, VLDL: very low density lipoprotein, VO2max: whole
body peak oxygen uptake, VT: ventilatory threshold, and Wmax: maximal workload capacity.

cells (e.g., HSP90, HSP70), while other HSPs are rapidly and
highly inducible in response to stress (e.g., HSP70, HSP27)
[136, 137]. Several important cytoprotective functions have
been attributed to these proteins including (a) folding of pro-
teins in various intracellular compartments, (b) maintenance
of structural proteins, (c) refolding of misfolded proteins,
(d) translocation of proteins across membranes into various
cellular compartments, (e) prevention of protein aggrega-
tion, (f) degradation of unstable proteins, and (g) apoptosis
[137]. An increased content of HSPs promotes cellular recov-
ery by binding with misfolded and unfolded proteins and
promoting the refolding of these proteins when cellular
conditions improve [138]. Thus, an important role for the
increased expression of HSPs is to function as molecular
chaperones, having the features of a feedback system that
reacts to increased misfolded proteins by elevating the
synthesis of the chaperones that helps in the refolding
process [139]. HSPs also have roles as antioxidants and

in the inhibition of apoptosis and inflammation [140].
Levels of HSP72 mRNA in skeletal muscle decrease in
patients with type II diabetes and this may be related with
insulin resistance [141–143]. Studies in animals show that
heat shock therapy, regardless of the way used to achieve
HSP elevation (transgenic overexpression or pharmacologic
means to overexpress HSP72 protein expression), protects
against diet- or obesity-induced hyperglycemia, hyperinsu-
linemia, glucose intolerance, and insulin resistance [144].
Suggested mechanisms for the reduction of HSPs in dia-
betes include the following: insulin has regulatory roles in
both the initiation and elongation phases of translation
by altering the phosphorylation of eukaryotic translation
initiation factors and eukaryotic elongation factors, therefore
its impaired or deficient secretion in diabetes may be one
explanation for attenuated (stress) protein synthesis [142].
Suppression of heat shock transcription factor-1 (HSF-1)
via upregulation of glycogen synthase kinase, an enzyme
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originally described as a regulator of glycogen metabolism
[143]. The reduced HSF-1 and HSP levels in diabetes could
result from decreased membrane fluidity and compromised
membrane integrity. Vigh et al. considered how the physical
state of the membrane could affect gene expression and,
hence, responses to stress: they proposed that alterations in
plasma membrane microdomains are well suited for sensing
stress and retailoring the expression of the various classes
of HSPs [145]. Some pathological conditions, including
diabetes, which are associated with membrane defects, can
be improved with insulin therapy [146].

Prolonged exercise of sufficiently high intensity creates
physiological stresses and disturbs cellular homeostasis, lead-
ing to induction of cellular adaptation mechanisms. There
is an increased HSP70 mRNA concentration after just 4 min
of a single bout of exercise at anaerobic threshold in human
subjects [44]. In another study in humans, Walsh et al.
[147] demonstrated increased HSP72 mRNA expression in
skeletal muscles 2 hours after exercise and increased serum
HSP72 protein. The increase in serum HSP72 preceded any
increase in HSP72 gene or protein expression in contracting
muscle, suggesting that HSP72 was released from other tis-
sues or organs, suggesting a systemic role for the protein.
Although increased muscular HSP transcription occurs
during exercise, immediately after exercise or several hours
after it, a brisk increase in protein content is only detectable
after 1-2 days following the exercise stress [139].

7. Activation of HSPs in Skeletal Muscles

The redox-signaling pathway is the main mechanism for in-
duction of the stress response during endurance exercise.
Thus, Fischer et al. [148] reported that a combination of
vitamin C and E for 28 days prevented increases in muscle
HSP27 mRNA expression as well as circulating levels of
HSP72 protein. This finding is supported by data from other
investigators who also reported that the increased HSP70
content in human skeletal muscle following exercise was
abolished by antioxidant therapy [149, 150]. Antioxidant
therapy scavenges exercise induced ROS, thereby abolishing
transcriptional activity of the HSP gene [139]. It is also likely
that antioxidants increase baseline muscle HSP70 content, so
explaining the diminished response during stress [149, 150].
In addition to aerobic exercise protocols, several studies have
used resistance exercise and downhill running protocols to
study HSP expression in human muscle [151, 152]. These
protocols are considered more damaging since they induce
overt structural and mechanical damage to the muscles.
Increases in HSP27, HSP70, and αB-crystallin have also been
reported in these studies. It is difficult to compare the results
of these studies with those using nondamaging exercise
protocols, since data from damaging exercise protocols
are complicated by inflammatory responses; for example,
phagocyte cells, which infiltrate 2-3 days after damaging
exercise, contain relatively high levels of HSP, and neu-
trophils are also sources of superoxide that can induce HSP
production.

8. Antiapoptotic and Anti-Inflammatory
Effects of HSPs

The HSP70 family is the most abundant HSP and mostly
includes the constitutive cytosolic HSP73 and the stress-
induced cytosolic HSP72. In addition to their chaperone
functions, some beneficial effects are attributed to their anti-
apoptotic and anti-inflammatory effects. Apoptosis, the pro-
cess of programmed cell death that occurs in multicel-lular
organisms, can originate either extracellularly (by acti-vation
of specific death receptors) or intracellularly [153]. Mito-
chondria play an important role in the regulation of apop-
tosis. They contain several proapoptotic proteins such as
cytochrome C, apoptosis inducing factor (AIF), and second
mitochondria-derived activator of caspases (SMACs). These
factors are released from the mitochondria following the
formation of a pore in the mitochondrial membrane called
the permeability transition pore, or PTP. These pores are
thought to result from apoptotic signals such as cell stress,
free radical damage, or growth factor deprivation [154].
Once cytochrome C is released, it binds with apoptotic
protease activating factor-1 (Apaf-1) and ATP, which then
bind to procaspase-9 to create a protein complex known as an
apoptosome. The apoptosome cleaves the procaspase to its
active form of caspase-9, which in turn activates the effector
caspase-3. Upon release of SMAC, it binds to inhibitor of
apoptosis proteins (IAPs) and deactivates them, preventing
the IAPs from arresting the apoptotic process and therefore
allowing apoptosis to continue. IAPs normally suppress the
activity of caspases, which carry out the degradation of the
cell. When AIF is released from mitochondria, translocates
to the nucleus, where apoptosis occurs in the absence of
caspase activation (caspase-independent pathways) [155].
Mitochondrial release of cytochrome C and AIF can be anta-
gonized by bcl-2. The bcl-2 proteins are a family of proteins
involved in the response to apoptosis. Some of these proteins
(such as bcl-2 and bcl-XL) are anti-apoptotic, while others
(such as Bad, Bax, or Bid) are pro-apoptotic. The sensitivity
of cells to apoptotic stimuli depends on the balance of pro-
and antiapoptotic bcl-2 proteins [156].

HSP70 affects the apoptosis death cascade at different
levels. It can inhibit caspase activation by interfering with
Apaf-1 and prevent the recruitment of procaspase-9 to the
apoptosome [157, 158]. HSP70 also increases Bcl-2 expres-
sion and inhibits cytochrome C release; it also binds and
sequesters AIF [159, 160]. Overexpression of HSP70 in lym-
phoid tumor cell lines appears to inhibit apoptosis by block-
ing caspase activation and activity [161]. The anti-apo-ptotic
effects of HSP70 have been studied in brain tissue, where
mice overexpressing HSP70 had decreased infarct sizes, im-
proved neurological deficits, fewer apoptotic cells, and re-
duced DNA laddering after middle cerebral artery occlusion
[162, 163].

As an anti-inflammatory molecule, HSP70 decreases the
release of inflammatory mediators in different models of in-
flammation [164–166]. It has been suggested that HSP70 in-
teracts with NF-κB to exert this anti-inflammatory effect.
NF-κB is a ubiquitous transcription factor that plays an
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essential role in inflammatory responses to a variety of
signals, immune function, endothelial cell activation, and the
control of cell growth [167–169]. NF-κB is normally located
in the cytoplasm in an inactive form by virtue of binding
to a family of inhibitor of NF-κB (IκB) proteins. Upon cell
stimulation by a wide variety of stimuli, signal responsive
IKKα and –β (TNF-a-inducible IkB kinase complex also
known as IKK-1 and IKK-2) are activated, which results in
the phosphorylation of IκB and its proteasomal degradation.
IκB degradation liberates NF-κB, allowing it to translocate to
the nucleus and induce gene expression. Induction of HSP72
in vitro (by heat shock or HSP72 overexpression) regulates
the expression of inflammatory genes such as TNF-α, IL-
1, IL-12, IL-10, and IL-18 [165, 166, 170–172]. Ran et al.
[173] showed that HSP70 can, in fact, directly interact with
IKK-γ and prevent IκB phosphorylation. Chronic activation
of IKK occurs in diabetic patients and it has been shown
that the reduced IKK activity of the NF-κB pathway prevents
the development of insulin resistance in vitro and in vivo
[174, 175]. High-fat, high-carbohydrate meals cause a greater
and more prolonged oxidative stress and NF-κB activation in
obese subjects [176]. Therefore, it can be concluded that IKK
and NF-κB activation are among the most important nega-
tive regulators in the development of type II diabetes that are
opposed by HSPs.

Another mechanism for the anti-inflammatory effects
of HSP72 involves inhibition of high-mobility group box 1
(HMGB1) release. HMGB1 is a pro-inflammatory nuclear
protein that mediates responses to infection, injury, and in-
flammation [177]. It is secreted by activated macrophages
in response to exogenous and endogenous inflammatory
stimuli (such as endotoxin, TNF-α, IL-1, IFN-γ, and hydro-
gen peroxide) and is released passively by necrotic and
damaged cells [178]. Upon its release, HMGB1 binds to cell
surface receptors including the receptors for AGEs, toll-
like receptor 2 (TLR2), and TLR4. AGEs receptors are ex-
pressed on endothelial and smooth muscle cells, monocytes/
macrophages, neurons, and in several malignant and trans-
formed cells [179]. Fiuza et al. [180] showed that HMGB1
stimulates human endothelial cells to increase the expression
of intercellular and vascular adhesion molecules (ICAM-1
and VCAM-1), AGEs receptors as well as proinflammatory
cytokine (TNF-α) and chemokines (IL-8 and monocyte
chemotactic protein-1). This proinflammatory phenotype is
mediated in part by early TNF-α secretion and involves the
activation of stress mitogen activated protein kinase (MAPK)
pathways and the transcription factor NF-κB [180]. MAPKs
and the NF-κB/IκB pathway play important roles in in-
flammation because of the rapidity and extent of activation
of transcription of NF-κB [181]. High circulating levels
of HMGB1 occur in type I and type II diabetic patients
[182, 183]. In an animal model, hyperglycemia induced by
infusion of glucose also elevates serum levels of HMGB1
[184]. Other important actions of HSP in the inflammatory
response include HSPs reduce LPS-induced HMGB1 release
from macrophage cultures [185]; HSP72 negatively regulates
oxidative stress-induced HMGB1 cytoplasmic transloca-
tion and release [186] and HSP72 overexpression inhibits
HMGB1-induced cytokine (TNF-α, IL-1β) expression and

release via inhibition of the MAPKs and NF-κB pathways
[187].

9. Summary

The key roles of inflammation and oxidative stress in the
pathogenesis and progression of diabetes are well accepted
and their biomarkers are being increasingly used in the man-
agement and risk assessment of diabetic patients. There are
multiple sources of ROS production in diabetes including
those of mitochondrial and non-mitochondrial origins; in-
creased production of ROS and a concomitant decline of
antioxidant defense mechanisms leads to damage of cellu-lar
organelles and enzymes and development of insulin resist-
ance. Emerging evidence suggests that exercise activates the
expression of cellular anti-oxidant systems and there is evi-
dence to suggest that Nrf2 plays a critical role in this regard.
Exercise produces a short-term pro-inflammatory response
that is followed by a long-term anti-inflammatory effect.
Regular exercise is associated with lower levels of CRP, IL-
6 and TNF-α and, simultaneously, with increases in anti-
inflammatory substances such as IL-4 and IL-10. The health-
beneficial effects of exercise-induced myokines and heat
shock protein and their proposed mechanisms are gaining
increased recognition.
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