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Highlights Impact and Implications

� Epigenetic dysregulation is prevalent in HCC,

accompanied by de novo enhancers.

� Differential enhancers and the associated gene
expression changes are heterogeneous.

� Differential enhancer genes included cellular pro-
liferation and foetal liver markers.

� Patients with tumour-activated gain-in-tumour
enhancer genes showed worse prognosis.
https://doi.org/10.1016/j.jhepr.2023.100715
Lifestyle and environmental-related exposures are the
important risk factors of hepatocellular carcinoma (HCC),
suggesting that tumour-associated epigenetic dysregula-
tions may significantly underpin HCC. We profiled tumour
tissues and their matched normal from 30 patients with
early-stage HCC to study the dysregulated epigenetic
changes associated with HCC. By also analysing the patients’
RNA-seq and clinical data, we found the signature genes –

with epigenetic and transcriptomic dysregulation – associ-
ated with worse prognosis. Our findings suggest that
systemic approaches are needed to consider the surrounding
cellular environmental and epigenetic changes in HCC
tumours.
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Background & Aims: Lifestyle and environmental-related exposures are important risk factors for hepatocellular carcinoma
(HCC), suggesting that epigenetic dysregulation significantly underpins HCC. We profiled 30 surgically resected tumours and
the matched adjacent normal tissues to understand the aberrant epigenetic events associated with HCC.
Methods: We identified tumour differential enhancers and the associated genes by analysing H3K27 acetylation (H3K27ac)
chromatin immunoprecipitation sequencing (ChIP-seq) and Hi-C/HiChIP data from the resected tumour samples of 30 pa-
tients with early-stage HCC. This epigenome dataset was analysed with previously reported genome and transcriptome data
of the overlapping group of patients from the same cohort. We performed patient-specific differential expression testing
using multiregion sequencing data to identify genes that undergo both enhancer and gene expression changes. Based on the
genes selected, we identified two patient groups and performed a recurrence-free survival analysis.
Results: We observed large-scale changes in the enhancer distribution between HCC tumours and the adjacent normal
samples. Many of the gain-in-tumour enhancers showed corresponding upregulation of the associated genes and vice versa,
but much of the enhancer and gene expression changes were patient-specific. A subset of the upregulated genes was activated
in a subgroup of patients’ tumours. Recurrence-free survival analysis revealed that the patients with a more robust upre-
gulation of those genes showed a worse prognosis.
Conclusions: We report the genomic enhancer signature associated with differential prognosis in HCC. Findings that cohere
with oncofoetal reprogramming in HCC were underpinned by genome-wide enhancer rewiring. Our results present the
epigenetic changes in HCC that offer the rational selection of epigenetic-driven gene targets for therapeutic intervention or
disease prognostication in HCC.
Impact and Implications: Lifestyle and environmental-related exposures are the important risk factors of hepatocellular
carcinoma (HCC), suggesting that tumour-associated epigenetic dysregulations may significantly underpin HCC. We profiled
tumour tissues and their matched normal from 30 patients with early-stage HCC to study the dysregulated epigenetic changes
associated with HCC. By also analysing the patients’ RNA-seq and clinical data, we found the signature genes –with epigenetic
and transcriptomic dysregulation – associated with worse prognosis. Our findings suggest that systemic approaches are
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needed to consider the surrounding cellular environmental and epigenetic changes in HCC tumours.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
The cancer genome has revealed important insights, as evident
from the widely accessed cancer genome databases, including
The Cancer Genome Atlas (TCGA; http://tcga-data.nci.nih.gov/)
and the International Cancer Genome Consortium (https://dcc.
icgc.org/). The key driver mutations have thus far been identi-
fied for different types of cancer.1 In addition to genomic dis-
ruptions, epigenetic dysregulation is also a key to tumorigenesis,
with early efforts primarily focusing on DNA methylation.2 Other
genome-wide techniques of chromatin immunoprecipitation
sequencing (ChIP-seq) and Hi-C now elaborate on enhancer
dysregulation and reveal new insights on distinct cancer-type
specific enhancer patterns.3

Hepatocellular carcinoma (HCC) is the most common form of
primary liver cancer and the third leading cause of cancer death
worldwide in 2020.4 Well-known risk factors include chronic
infection with HBV or HCV, aflatoxin-contaminated foods, heavy
alcohol consumption, and type 2 diabetes.5 However, major risk
factors for liver cancer appear to be shifting, given a declining
prevalence of HBV or HCV and a corresponding increase in the
prevalence of excess body weight and diabetes as risk factors for
HCC in many countries.6 The latter factors support the view that
epigenetic dysregulation may significantly underpin HCC and,
thus, the importance of studying the epigenome profiles.

Changes in histone marks and gene expression in liver cancer
cells have been previously described in vitro.7 Immunohisto-
chemical analysis of H3K27 modifications – acetylation or
methylation – in HCC showed variability and also a correlation to
the degree of cellular de-differentiation and disease prognosis.8

However, the enhancer landscape using H3K27 acetylation
(H3K27ac) ChIP-seq and Hi-C has never been assessed using
human samples from patients with HCC. Among the different
regulatory elements and histone marks, active enhancers
marked by H3K27ac are highly cell type and cell state depen-
dent.9,10 Therefore, to investigate the individuality and hetero-
geneity of HCC-related enhancers, we profiled H3K27ac using
HCC liver tissues from 30 patients and mapped distal interacting
genes by chromatin loop analysis from contemporaneous Hi-C
profiles. By correlating the epigenomes of HCC samples to their
corresponding genomes and transcriptomes, we analysed the
functional and clinical implications of the dysregulated en-
hancers. A set of signature genes with correlated epigenetic
changes proved useful in stratifying patient prognosis.
Patients and methods
Patient recruitment, sample preparation, and sequencing
Thirty patients were recruited from three local hospitals (Na-
tional Cancer Centre Singapore, Singapore General Hospital, and
National University Hospital) collaborating under the auspices of
the Asia-Pacific Hepatocellular Carcinoma trial group.11 The in-
clusion and exclusion criteria used during the patient recruit-
ment are shown in Table S10. This included 12 patients enrolled
in the Translational and Clinical Research (TCR) Flagship Pro-
gramme: Precision Medicine in Liver Cancer across an Asia-
pacific NETwork (PLANet; NCT03267641), funded by the
Singapore National Medical Research Council. This study has
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been approved by Singhealth Centralised Institutional Review
Board (2016/2626 and 2018/2112). Informed consent was taken
from each patient before enrolment. These patients had under-
gone liver resection, and grid sampling with multiregion sam-
pling was performed on the tumours as previously described.11,12

RNA-sequencing (RNA-seq) libraries were prepared for
sequencing and processed using the method and pipeline
described previously.11 ChIP-seq was performed as previously
described,13 whereas Hi-C and HiChIP were performed using the
Arima Hi-C Protocol described in the Arima Hi-C Kit (material
part number: A410110; document part number: A160162 v00)
(Arima Genomics, Carlsbad, United States). The details of the li-
brary preparation are provided in Supplementary methods 1.0.

Sources of data from previously published work
Of the 90 patients who contributed transcriptome data, the
genome and transcriptome data of 44 patients have been pre-
viously reported by Zhai et al.12. The rest of the transcriptome
and clinical data were reported by Jeon et al.14. The median time
to follow-up was 839 days.

H3K27ac ChIP-seq data processing
The reads in ChIP-seq data were first trimmed off the adapter
and index sequences using BBDuk from BBTools (DOE Joint
Genome Institute, Berkeley, United States).15 Read alignment and
index generation were done using Bowtie216 and Samtools.17

Duplicated reads and unmapped reads were removed using
Sambamba.18 DeepTools bamCoverage19 was used to generate
bigwig files for visualisation, and bedtools bamtobed was used to
generate BED (Browser Extensible Data) files.

Hi-C/HiChIP data processing
Hi-C and H3K27ac HiChIP libraries were analysed using the
Juicer pipeline.20 Loops were called with HiCCUPS at 10-kB res-
olution. Contact domains were called at 50-kB resolution, and
differential topologically associated domains (TADs) were ana-
lysed using TADCompare.21

Enhancer state calling and annotation
ChromHMM22 was used to annotate the genome with a signifi-
cant H3K27ac signal (‘enhancer locus’) for each sample (see
Supplementary methods 2.0 for the details).

Differential enhancer testing
DESeq223 was used to identify enhancer loci with significant
differences in H3K27ac ChIP-seq coverage between the tumour
and adjacent normal (adj.normal) samples (Supplementary
methods 3.0). An adjusted p value less than 0.05 and the abso-
lute value of log2 fold change greater than 1 were used to
identify differential enhancers.

Promoter–enhancer association
We filtered enhancer loci based on either (1) the enhancer locus
overlaps with the promoter region (‘promoter enhancer’), or (2)
any of its interacting locus based on detected chromatin loops
overlaps with the promoter region (‘distal enhancer’). The
promoter regions were inferred from the known transcription
2vol. 5 j 100715
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start site loci (downloaded from University of California Santa
Cruz (UCSC) genome browser Table Browser24 for all known
genes in hg38) to 500 bp upstream. For the first category, we
used bedtools intersect to identify enhancer loci occurring
directly at the promoters. For the second category, we merged
all loops called from Hi-C and HiChIP data in BEDPE, and
intersected first with the enhancer loci BED and then again with
the promoter regions using bedtools pairToBed. The transcript
ID assigned to each promoter locus was used to map the gene to
the enhancer.
Visualisation of ChIP-seq and Hi-C data
Normalised ChIP-seq signal with the respective input control
was obtained using deepTools bamCompare.19 The sushi pack-
age25 in R (R Foundation for Statistical Computing, Vienna,
Austria) was used to plot coverage and chromatin loops. Com-
putematrix and plotHeatmap from deepTools were used to
generate ChIP-seq heatmaps. For visualisation, the heatmaps
were limited to those enhancer loci with a width below 10 kbp.
The midpoint of each enhancer locus was taken and extended by
5 kbp upstream and downstream for heatmap generation.

Pie charts in Fig. 1A were generated using the ChIPseeker
package in R.26
Single-cell RNA-sequencing analysis
Processed single-cell RNA-sequencing (scRNA-seq) data were
obtained from Sharma et al.27. We first filtered cells in clusters
identified as hepatocytes and endothelial cells. We binarised the
normalised expression counts by fitting a bimodal distribution.
We followed the previously published work for the overall
methodology for bimodal gene detection.28 Diptest29 was used to
test for unimodality using Hartigan’s dip test, and mixtools30 was
used to fit the multimodal distribution. For each gene, the
binarising threshold was determined by the expression value
where the minimum point of density occurs. For each patient, we
then calculated the percentage of cells expressing the gene of
interest based on the binarised gene expression counts.
DNA binding motif analysis at differential enhancer loci
We performed DNA binding motif analysis at differential
enhancer loci using the findMotifsGenome function in HOMER,31

with the consensus enhancer loci as the background loci and
with the following parameters: ‘-size 800 -preparse -bg -now-
eight’. The hTFtarget database was used to infer the target genes
corresponding to the motif.32
DNA mutation hotspot detection at differential enhancer loci
The non-coding module of MutEnricher33 was used with default
parameters.
Patient stratification using per-patient differential expression
values
Log fold-change matrix is obtained from per-patient analysis and
simplified into a categorical matrix with three values, namely -1,
0, or 1, representing the downregulation, no change, or upre-
gulation of the gene in the tumour samples compared with the
patient’s normal samples, respectively. Co-clustering of this
categorical matrix is performed using the blockcluster R package,
which stratifies the patients into two patient clusters.
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Analysis of TCGA-LIHC RNA-seq dataset
The Cancer Genome Atlas Liver Hepatocellular Carcinoma
(TCGA-LIHC) data were downloaded from the cBioportal.34 The
data were filtered with patient criteria, and co-clustering was
performed using the blockcluster package (Supplementary
methods 4.0).

Recurrence-free survival analysis
Recurrence-free survival analysis is performed using the survival
and survminer R packages.35 All p values are obtained using the
Tarone–Ware test. Disease-free survival analysis was done using
recurrence-free survival days in our dataset, whereas
progression-free interval days were used for the TCGA dataset, as
recommended by TCGA guidelines.
Results
Multi-omics data collection from patients with early
resectable HCC
We performed epigenome profiling for genomic enhancers using
H3K27ac ChIP-seq and mapped gene-enhancer interactions us-
ing Hi-C or H3K27ac HiChIP on tumour and adj.normal tissues of
30 surgically resected HCC patients. The patients were part of a
larger cohort whose genome and transcriptome data were pre-
viously published,11,12,14 together with scRNA-seq data.27 Overall,
we used bulk RNA-seq and clinical data from 90 patients, of
which 14 had scRNA-seq data and 30 had epigenome profiles. An
overview of the multi-omics data collected and the overlap of
patient groups between different profiling subsets are summar-
ised in the schematic diagram in Fig. 2A and Table S1.

Differential enhancer loci are prevalent in HCC tumours
We first constructed a set of consensus enhancer loci for HCC
tumours (Fig. 2B). The chromatin state with the highest emission
probability of 0.935 for H3K27ac signal (state E5) was chosen as
the enhancer chromatin state (Fig. 2C). H3K27ac ChIP-seq signals
were then quantified at each locus. The quantified count matrix
was then used for differential enhancer testing (see Patients and
methods). We identified 1,650 gain-in-tumour enhancer loci that
showed a stronger H3K27ac signal in the tumour, compared with
adj.normal samples (adjusted p <0.05; log2 fold change >1).
Similarly, 1,415 lost-in-tumour enhancer loci were identified
(log2 fold change <-1). Fig. 2E shows H3K27ac coverage at dif-
ferential enhancers for a subset of samples (combined profiles in
Fig. 2D; a heatmap for the other enhancer landscape in Fig. S1).
About 23.4% (717/3,065) of the differential enhancer loci over-
lapped with H3K27ac chromatin states of the normal liver by the
ROADMAP epigenomics project.36,37 The largest overlap was
with the Weak Enhancer state (Table S2), indicating the emer-
gence of HCC-specific and patient-specific enhancer loci present
in our dataset. Loci for gain-in-tumour and lost-in-tumour en-
hancers are listed in Table S3 and S4, respectively.

Differential enhancers overlapped with various genomic
elements
Overall, the consensus enhancer loci showed similar proportion
of overlap to gene promoters (23.23%) and to distal intergenic
regions (24.76%) (Fig. 1A). Gain-in-tumour enhancers, however,
showed larger overlap to distal intergenic loci, whereas lost-in-
tumour enhancers occurred more at the gene promoters.
Hence, gained H3K27ac marks accumulated more at distal
3vol. 5 j 100715
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enhancer loci, whereas lost H3K27ac were localised to promoter
enhancer loci, indicating enhancer rearrangement in HCC.

Based on Hi-C and H3K27ac HiChIP data, gene–enhancer as-
sociation was inferred by either (1) the direct occurrence of
JHEP Reports 2023
enhancers at a gene promoter or (2) distal enhancers in contact
with a gene promoter, assuming that any changes at a distal
enhancer would also affect the promoter in contact with the
enhancer locus. There were more distal enhancers than promoter
4vol. 5 j 100715



enhancers, and strikingly, many promoter enhancers were in
loop contact with other promoters (Fig. 1B).

Changes at the gain-in-tumour enhancers were more
prominent than those at the lost-in-tumour enhancers
The H3K27ac coverage heatmap showed that adj.normal
H3K27ac enrichment was faint for gain-in-tumour enhancers,
whereas tumour H3K27ac enrichment for lost-in-tumour en-
hancers was clearly visible (Fig. 2E). The presence of de novo
enhancer loci at gain-in-tumour enhancers was further sup-
ported by the frequency of unique enhancers observed in tumour
tissues (tall bar at the zero column in Fig. 1C, top). By contrast,
only a very small number of enhancers were uniquely detected
in adj.normal tissues (Fig. 1C, bottom). Moreover, more chro-
matin loops were detected across tumour samples (97,255 pairs)
than across 28,116 pairs in adj.normal. A higher number of
detected loops in tumour samples also suggested the creation of
de novo loops in HCC tumours. Altogether, these results indicate
that H3K27ac mark changes are more prominent at gain-in-
tumour enhancers with the creation of de novo enhancers and
loops.

Few mutation hotspots existed under differential enhancers,
and they were highly patient-specific
To investigate whether somatic mutations underlie changes in
tumour H3K27ac enrichment, we looked for these at the dif-
ferential enhancer loci. Whole genome sequencing data of the
30 patients in the epigenome cohort were used in this analysis.
Among all gain-in-tumour enhancers, only �20% (346 of 1,650)
were enriched with 450 unique mutation hotspots. Similarly,
for lost-in-tumour enhancers, �18% (256 of 1,415) were
enriched with 323 unique mutation hotspots (Fig. S3). How-
ever, even though the identified mutation hotspots presented a
strong statistical base from MutEnricher,33 most of them were
detected uniquely in only one or two patients, and many
branch mutations occurred uniquely in only subsets of tumour
sectors for some patients (Fig. 1E and Fig. S2B). The high degree
of individuality in the enhancers in HCC was also consistent
with the high number of patient-specific tumour enhancers
(Fig. 1C, bottom). One exception was the somatic mutation
detected under a gain-in-tumour enhancer that overlapped
with the TERT promoter enhancer (chr5:1,295,113, G>A)
(Fig. 1F), which appeared to be the only true mutation hotspot
under a differential enhancer. Even though the enhancer locus
overlaps with the TERT promoter, the somatic mutation locus is
upstream of the promoter. This enhancer also showed a
significantly higher level of H3K27ac in tumour samples, and
many of our patients did not harbour the known TERT activa-
tion mutation. Altogether, our observations suggest genetic
mutations are not the main drivers of genome-wide enhancer
changes in HCC.

Tumour samples showed variable H3K27ac signal at the
differential enhancers
We found that K-means clustering (based on H3K27ac signals at
gain-in-tumour enhancers) separated the samples into at least
three groups (Fig. 3C). Any more than the cluster size of 3
resulted in group samples containing one or two patients only.
The three ‘enhancer clusters’ (eClusters) A, B, and C showed
increasing H3K27ac signals at gain-in-tumour enhancers and,
conversely, decreasing H3K27ac signals at lost-in-tumour en-
hancers (Fig. 3D). The heatmap of H3K27ac signals at gain-in-
JHEP Reports 2023
tumour and lost-in-tumour enhancers, which grouped by
eCluster, showed homogenous H3K27ac signals from adj.normal
samples, whereas tumour samples showed highly variable
H3K27ac signals (Fig. 3A and B). Adj.normal samples from all
patients formed the majority of samples in eCluster A. A few
tumour samples that showed highly similar H3K27ac pattern to
adj.normal samples were also clustered to eCluster A. We also
noticed that patients in eCluster C, the more divergent group
with H3K27ac signal distinctly different from adj.normal,
showed a higher degree of de-differentiation, a higher rate of
disease recurrence (Fig. 3E), and shortened time to recurrence
(Fig. 3F).

Enhancers in HCC showed high degree of interindividual
variations
Among the detected chromatin loops in tumour samples, only
0.06% (60 of 97,255) were shared between all samples, whereas
many of the loops were uniquely detected in only one sample
(75.0%, 72,960 of 97,255). We also compared TAD boundaries
between adj.normal and tumour samples from two patients.
Interpatient comparisons showed high TAD boundary differ-
ences compared with intrapatient comparisons (Fig. 1D). Tumour
samples from different patients showed greater TAD boundary
differences than adj.normal samples, indicating a higher degree
of divergence created by tumorigenesis.

Notably, a similar observation was made for enhancer het-
erogeneity. We have performed H3K27ac ChIP-seq on at least
two tumour sectors for 12 of 30 patients. Three patients who had
tumour sectors assigned to different eClusters showed intra-
tumour heterogeneity (Fig. 3E). Among the 12 patients, six pa-
tients had three tumour sectors sequenced. For these six
patients, we compared the enhancer loci detected in each sample
to the merged consensus enhancer loci. This validated that many
consensus enhancer loci were not detected in any of the six
patients’ tumour samples, again indicating a high degree of
interindividual heterogeneity (Fig. S2).

Genes associated with differential enhancers indicated
variable levels of de-differentiation and cellular proliferation
By associating enhancers to gene promoters with chromatin
loops from Hi-C and HiChIP data, we identified 1,300 genes
associated with gain-in-tumour enhancers and 1,360 genes
associated with lost-in-tumour enhancers. There were many
single gene promoter to multiple enhancer associations, and vice
versa. Differential gene expression analysis was performed be-
tween tumour and adj.normal samples using the bulk RNA-seq
data available from the same group of 29 patients. Although
stronger H3K27ac signals in tumours did not always translate to
a stronger expression of the associated gene, many gain-in-
tumour enhancer-associated genes were indeed upregulated in
tumour samples as compared with adj.normal samples (Fig. 3H).
A similar observation was made for lost-in-tumour enhancer-
associated genes. Enhancer changes therefore broadly correlated
with transcriptional changes and motivated us to analyse the
gene set more closely.

Many differential enhancer-associated genes encoded for
transcription factors (TFs) (Fig. S5) may explain the genome-
wide rearrangement of enhancers. Noticeably, more lost-in-
tumour enhancer-associated genes overlapped with cell differ-
entiation marker genes could indirectly support the process of
de-differentiation in HCC. This observation was consistent with
the enrichment of the HNF4A binding motif underlying gain-in-
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Multi-omics/multi-region
profiling

H3K27ac
ChIP-seq
HiC/HiChIP

Bulk RNA-seq

scRNA-seq

T1 T2 T3N
Adj. normal Tumour

Clinical profiles
at the time of surgery

Recurrence
follow-up

Viral status
AFP

Edmondson
grade

Tumour stage
Diabetes

...

Clinical profiling Chromatin
state calling

&
Filtering by

posterior probability

Quantification of 
ChIP-seq readout 

at each enhancer window

Union of 
enhancer windows

Merged
enhancer windows

within 600 bp E1 E2 E3 E4

Genome segmented into 200 bp windows
Patient1 N

Patient2 N
Patient3 N

Patient2 T
Patient3 T

Patient1 T

E1 10 8 9 1 0 1

6 18 5 0 0 0

12 14 6 13 7 14

2 0 3 22 11 18

E2
E3

E4

P1_N P2_N P3_N P2_T P3_TP1_TEmission parameters Transition parameters

St
at

e
(e

m
is

si
on

 o
rd

er
)

Mark

St
at

e 
fro

m
(e

m
is

si
on

 o
rd

er
)

State to
(emission order)

Probability

0 1

-1

Gain_in_tumour
enhancer loci

Lost_in_tumour
enhancer loci

Gene distance (bp)Gene distance (bp)
-5.0 Enh 5.0 Kb

0

1

-5.0 Enh 5.0 Kb

0

-1

1

N

T

Gain_in_tumour_enhancers

Lost_in_tumour_enhancers −2 −1 0 1 2

H3K27ac coverage
-5.0 Enh5.0 Kb
Gene distance

(bp)

−1
0
1

H
EP

27
6_

N

B0
08

_N

B0
11

_N

B0
12

_N

B0
14

_N

H
EP

26
4_

N

C
00

1_
N

C
00

2_
N

B0
08

_T
1

B0
08

_T
2

B0
08

_T
3

H
EP

26
4_

T1

H
EP

27
6_

T2

B0
11

_T

B0
12

_T

B0
14

_T

C
00

2_
T1

C
00

2_
T2

C
00

1_
T

Samples Enhancers
Adj. normal

Tumour

A B

C

D

E

Fig. 2. Differential enhancers in HCC tumours. (A) Schematic diagram of the overall project design. (B) Schematic diagram of how differential enhancers were
identified (see Patients and methods). (C) Emission and transition probability matrix from ChromHMM. (D) H3K27ac signal profiles at the gained and lost en-
hancers. Red, normal; blue, tumour. (E) Heatmap of H3K27ac signal from adj.normal and tumour samples at differential enhancers, normalised to the respective
control samples. Heatmaps are centred at the midpoint of each enhancer and extended upstream and downstream by 5 kb. Gained-in-tumour (top) and lost-in-
tumour (bottom) enhancer regions are shown. The same heatmaps for all samples can be found in Fig. S1. adj.normal, adjacent normal; AFP, alpha-foetoprotein;
ChIP-seq, chromatin immunoprecipitation sequencing; H3K27ac, H3K27 acetylation; HCC, hepatocellular carcinoma; RNA-seq, RNA sequencing; scRNA-seq,
single-cell RNA sequencing.

Research article

6JHEP Reports 2023 vol. 5 j 100715



tumour enhancers (Fig. S4), as HNF4A is a known marker for
hepatic progenitor cells.38 Gain-in-tumour enhancer-associated
genes showed strong enrichment for cell proliferation and
regulation of metabolic and biosynthetic processes (Fig. 3G, top).
Lost-in-tumour enhancer-associated genes were mainly those of
signal transduction, biological adhesion, and epithelial–
mesenchymal transition processes (Fig. 3G, middle and bot-
tom). Notably, the patients whose tumour samples were
assigned to eCluster C, which showed the most divergent
enhancer pattern from adj.normal, had the poorly differentiated
Edmondson grade 3 tumour, and all showed the shortest time to
recurrence, compared with the patients whose tumours
belonged to eCluster A or B (Fig. 3E and F).
Both enhancer patterns and expression of the associated
genes were heterogeneous between patients
Many associated genes showed overall expression changes
concordant with the enhancer changes (Fig. 3H). However, given
the interindividual variability of H3K27ac signals at differential
enhancer loci, we hypothesised that transcriptional changes of
associated genes might also be patient-specific. We performed
per-patient differential expression analysis by following the
approach taken by Jeon et al.14 In this approach, the multiregion
tumour samples were treated as biological replicates to perform
differential expression testing between each patient’s tumour
sectors and the matched adj.normal. Among the 30 patients with
epigenome profiling, we selected 25 patients who had adj.nor-
mal tissue and at least two tumour sectors sequenced for RNA-
seq. We assigned three categories, namely -1, 0, and +1, to
denote downregulation, no change, and upregulation of the gene
in each patient’s tumour, respectively. Fig. 3I shows the cat-
egorised expression changes in differential enhancer-associated
genes for all 25 patients. Overall, differential expression results
from conventional analysis (Fig. 3H) and that of the patient-
specific analysis (Fig. 3I) were broadly similar. The patient-
specific analysis, however, provided granularity and informa-
tion for each patient on whether a specific gene was dysregu-
lated in the patient’s tumour tissue. We then used the
categorised differential expression values for patient stratifica-
tion in the larger group of 90 patients.

Two examples of genes – SOX4 and GPC3 – in Fig. 4 exemplify
the variability and patient specificity in enhancer patterns and
gene expression changes. For SOX4, many enhancers linked by
chromatin loops were unique to tumour tissues (Fig. 4A, bottom).
Only one SOX4 distal enhancer showed a significant H3K27ac
increase, and notably, the H3K27ac signal was highly variable
between patients (Fig. 4C). For some patients (e.g. C001 and
B011), H3K27ac was barely detectable, whereas in one patient
(HEP262), there was markedly increased enrichment in tumour
tissues. This is thus an example of a highly variable enhancer
locus that exhibited a high degree of patient-specific heteroge-
neity. The variability was also seen in SOX4 gene expression.
Patient-specific differential expression analyses revealed SOX4 to
be upregulated in a subset of the 90 patients, where some of
them even showed SOX4 downregulation in their tumour tissues
(Fig. 4E). By contrast, GPC3 is an example of a gene with more
consistent dysregulation across patients. GPC3 promoter and
distal enhancers showed significant and consistent H3K27ac in
tumour samples (Fig. 4B) across all patients (Fig. 4D). GPC3 was
JHEP Reports 2023
also upregulated consistently in a larger group of patients
(Fig. 4F).
Genes associated with the gain-in-tumour enhancers show
strong overlap with foetal liver expressed genes
Gene set enrichment analysis39 showed a striking overlap be-
tween the gain-in-tumour enhancer-associated genes and
marker genes for specific cell types (pancreas ductal cells, foetal
liver hepatoblasts, and epithelial cell adhesion molecule
(EpCAM)-positive bile duct cells) (Fig. 5A). Linear regression
analysis showed that some genes, such as GPC3, MSI1, PEG10, and
ELOVL2, also showed a strong positive correlation to serum
alpha-foetoprotein (AFP) levels in corresponding patients
(Fig. 5D and Fig. S7). By contrast, other genes, such as UGT2B7
and PROX1, showed a negative correlation. The correlation was
present only in tumour tissues, whereas gene expression across
adj.normal tissues was largely unchanged. Variable gene
expression in tumours may be partly associated with the extent
of foetal-like transformation taking place in the liver.

Among all the gain-in-tumour enhancer-associated genes, we
looked at 46 foetal liver hepatoblast markers (Table S5). Gain-in-
tumour enhancers associated with these 46 genes indeed
showed increased H3K27ac enrichment in tumour tissues,
especially those in eCluster C (Fig. 5B). Because these genes with
corresponding enhancer changes were the hallmark genes for
foetal liver, and some showed significant correlation to serum
AFP levels, we termed this gene set as ‘epigenetic oncofoetal
genes’. We hypothesise that when HCC cells are de-differentiated
through the emergence of cancer stem cells or hepatic progen-
itor cells, ‘epigenetic oncofoetal genes’ are upregulated, whereas
they are not normally expressed in a non-diseased liver. This
hypothesis also concords with the preceding observation of
HNF4 binding motif enrichment at gain-in-tumour enhancer loci.
Moreover, gain-in-tumour enhancer-associated genes were
related to processes of proliferation and de-differentiation.

We explored whether H3K27ac and corresponding gene
expression variability in tumour tissues was caused by a differing
proportion of poorly differentiated cells or hepatic progenitor
cells. scRNA-seq of 14 patients were analysed for the expression
of the epigenetic oncofoetal genes, as well as SOX4 and HNF4A.
From the scRNA-seq, we focused on cells identified as either
endothelial cells or hepatocytes. We fitted a mixture model to
select genes that showed bimodal expression and used gene-
specific thresholds to binarise the gene expression values. The
proportion of cells expressing a gene of interest was then
calculated by taking the ratio of cells expressing the gene to the
total number of cells. Using hierarchical clustering, we clustered
the samples that comprised one adult non-diseased liver tissue,
two foetal liver tissues, and adj.normal and tumour tissues from
14 patients with HCC based on the proportion of the cells
expressing the epigenetic oncofoetal genes (Fig. 5C). Clustering
revealed two groups of samples, one that was non-diseased
liver-like and the other foetal liver-like. All but one adj.normal
sample was grouped into the non-diseased liver-like group, so
we termed the first group as ‘adj.normal-like’. Many adj.normal-
like liver tissues showed a low proportion of cells expressing
epigenetic oncofoetal genes. The other group, by contrast,
showed a distinctly higher proportion of cells expressing these
epigenetic oncofoetal genes. Genes such as GPC3 and PEG10were
7vol. 5 j 100715
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expressed in the majority of cells in both foetal-liver tissues, and
also in some patient tumours. In Sharma et al.,27 the authors in
fact selected P8 and P15 patient tumour tissues for validation
and showed experimentally that these tumours exhibited
oncofoetal reprogramming of endothelial cells together with an
immune escape from the surrounding T cells. In our analysis
here, both P8 and P15 patient tumours (P8_Tumor and P15_Tu-
mor, respectively) clustered with foetal liver tissues (Fig. 5C). We,
therefore, termed the second group as ‘oncofoetal-like’. This
subgroup of tumours showed a high number of cells expressing
epigenetic oncofoetal genes, with a similar expression pattern to
that of foetal-liver tissues. The number of cells expressing SOX4
was variable across all tissues, but HNF4A was markedly positive
in many cells from the oncofoetal-like liver tissues. It is also
noteworthy to mention that Domcke et al.40 also reported that
the genomic loci with chromatin accessibility specific to the
foetal hepatoblast cells were enriched with the HNF4A motif.
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Altogether, our integrated analysis with scRNA-seq highlights
that epigenetic oncofoetal genes are indeed associated with HCC
tumours that are foetal liver-like, with characteristics of onco-
foetal reprogramming.

Gain-in-tumour enhancer-associated genes that were patient
subgroup-activated showed prognostic value
The patient-specific differential expression analyses revealed
that tumour-related genes were dysregulated to varying degrees
in different patients. Some genes, possibly related to common
cancer pathways, were shared in a large group of patients,
whereas other genes were dysregulated only in a small subgroup
of patients. Our earlier work, which investigated this observation
in more detail, had shown that such subgroup-activated genes
were clinically relevant.14 As the list of signature genes that we
identified based on enhancer changes harboured many prolif-
eration, de-differentiation, and oncofoetal reprogramming-
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related genes, we hypothesised that subgroup-activated genes
among them must present a strong correlation to recurrence. We
hence applied these genes to patient stratification and disease-
free survival analysis.

Given the earlier observations of the genes relating to de-
differentiation and developing foetal-like characteristics, we
hypothesised that the differential activation pattern of some of
the gain-in-tumour enhancer-associated genes might be
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associated with different rates of HCC recurrence. We obtained
the categorised expression changes matrix for 90 patients from
their multisector bulk RNA-seq data and selected the differential
enhancer-associated genes (Fig. S6A). These genes varied from
being upregulated in just a few patients to more commonly
across the patients (Fig. S6B). With the focus on gain-in-tumour
enhancer-associated genes, we filtered out genes that were
upregulated in only a small group of patients, as these may be
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related to individual patient characteristics, rather than a shared
tumour profile. We finally narrowed the gain-in-tumour
enhancer-associated genes down to 185 genes that were upre-
gulated in at least 30% of patients. The categorised expression
changes matrix showed that even though these genes were
upregulated in many patient tumours, some genes still showed
downregulation in some patients (Fig. 6A, top, and Fig. S6A). We
JHEP Reports 2023
used co-clustering and identified two groups of patients
(‘pClusters’) – PC0 and PC1 – based on the categorised expression
changes matrix of the 197 genes (Fig. 6A and Table S7). PC1
patients showed more gene upregulation in their tumour tissues
than in their adj.normal tissues. The recurrence-free survival
analysis revealed that PC1 patients showed a significantly worse
prognosis with a shorter time to recurrence (Fig. 6B). Median
11vol. 5 j 100715



Table 1. Clinicopathological table for patient clusters PC0 and PC1.

PC0 PC1 p value

N 45 45
Sex

Female 6 10 0.396
Male 39 35

Race
Chinese 28 28 0.319
Filipino 5 1
Indian 1 2
Indonesian 0 2
Malay 3 2
Thai 3 7
Others 5 3

Drinker
No 22 22 0.498
Yes 15 11
Unknown 8 12

Child–Pugh
A 44 45 1.000
B 1 0

Diabetes
N 26 29 0.662
Y 19 16

Tumour multiplicity
N 37 35 0.802
Y 8 10

Fibrosis stage
0 13 10 0.048*
1 1 6
2 2 9
3 11 6
4 13 13

Microvascular invasion
No 29 25 0.508
Yes 16 20

Edmondson grade
1 7 2 0.266
2 24 22
3 13 19
4 1 2

Steatosis category
0 20 28 0.021*
1 15 13
2 6 0

Vital status
Alive 35 34 1.000
Dead 10 11

Hepatitis B status
0 22 10 0.017*
B 23 35

Hepatitis C status
0 41 42 1.000
C 4 3

Tumour stage
1 23 22 0.493
2 17 14
3 5 9

Tumour diameter (cm) 6.51 ± 4.12 6.46 ± 4.55 0.971
Albumin (g/L) 41.39 ± 4.54 40.91 ± 3.38 0.383
Bilirubin (lmol/L) 13.6 ± 4.96 13.23 ± 5.43 0.674
Aspartate aminotransferase (U/L) 47.26 ± 33.15 53.64 ± 49.89 0.264
Alanine aminotransferase (U/L) 47.14 ± 51.02 37.31 ± 25.11 0.692
Alkaline phosphatase (U/L) 107.65 ± 62.38 123.09 ± 111.07 0.383
Prothrombin time (s) 11.1 ± 1.09 11.41 ± 1.27 0.240
Platelets (×109) 223.59 ± 75.83 239.22 ± 79.59 0.208
alpha-foetoprotein (ng/ml) 516.7 ± 1,554.74 4,658.25 ± 13,205.04 0.096

Full clinical variables are included in Table S6.
*Level of significance: p <0.05 (Chi-square test and Wilcoxon test).
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time to recurrence was 1,107 days for PC0 patients and 659 days
for PC1 patients. Comparing clinical parameters of PC0 and PC1
patients showed significant differences in the degrees of fibrosis
and steatosis and hepatitis B status (Table 1). The PC1 group
consisted of more patients with chronic hepatitis B infection,
whereas the PC0 group showed more patients with high levels of
steatosis (Fig. 6C). Our earlier observation showed that patients
with high Edmondson grade have high H3K27ac intensity at
gain-in-tumour enhancers in their tumour tissues. Even though
the Edmondson grade was not significantly different between
PC0 and PC1 (Table 1), a cumulative incidence plot between
patient cluster and Edmondson grades showed that PC1 patients
had a higher rate of recurrence, regardless of the Edmondson
grade (Fig. 6D). This suggests that detectable molecular charac-
teristics stratify those with higher recurrence rate, regardless of
their histological assessment of cellular de-differentiation. This
observation may be especially valuable for patients with
Edmondson grades 1 and 2, even though they are usually
considered to have low recurrence risk in current clinical
practice.

To identify differences in patient tumour tissue profiles, we
compared tumour tissues between PC0 and PC1 patients through
differential expression testing of their RNA-seq data. Many
upregulated genes included hallmark genes of glycolysis, MYC
targets, and cell cycle-related genes (Fig. S8A). PC1 patient tu-
mours also highly expressed genes related to liver cancer
metastasis and subgroups of HCC with stem cell characteristics.
Downregulated genes in PC1 patient tumour tissues included
those related to the regulation of the immune system process,
defence response, interferon-gamma response, and biological
adhesion (Fig. S8B). Genes related to glucose metabolisms and
cell cycles, such as G6PD and CDK1 were upregulated in PC1
patients, whereas genes related to immune response (IFNG and
CXCL6) were downregulated (Fig. 6E). The results indicate that
our signature genes were indeed able to identify patient sub-
groups with more proliferative tumour tissues and greater po-
tential to metastasize, possibly with suppressed immune
response and metabolic processes.

Further studies are required to investigate the molecular
mechanism behind epigenetic dysregulation and HCC. One
possible mechanism, however, could involve the differential
recruitment of TFs. For the TFs with motifs enriched in gain-in-
tumour enhancers (Fig. S4), we studied the expression level
changes of the predicted target genes in each pClusters (PC0 and
PC1) (Table S9). More patients in PC1 showed upregulated target
genes than those in PC0, indicating that the TFs may be the
connection between the enhancer dysregulation and the
downstream transcriptional changes, with clinical relevance in
prognosis.

The epigenetic oncofoetal genes identify patients with a more
aggressive HCC subtype
We compared our 185-gene panel used in patient stratification to
previously reported genes related to the HCC subtypes of
different prognoses from Hoshida et al.41 None of the positive
survival genes from Hoshida et al.,41 and only one poor survival
gene, ELOVL2, were found in our 185 genes. Despite the minimal
overlap between the gene lists, the expression changes in the
pattern of survival genes from Hoshida et al.41 were in broad
agreement for our two identified patient clusters, PC0 and PC1
(Fig. S9). Many positive survival genes were downregulated
across PC1 tumour tissues. The expression changes of poor
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survival genes were less distinguished between the two patient
clusters. Importantly, we again noted that expression changes
were variable and patient-specific.

To compare our tumour subtypes to previously reported
subtypes by Boyault et al.42 and Hoshida et al.,43 we tabulated the
somatic mutation and gene expression features of the tumours in
each patient group (Table S8). Upregulated genes in PC1 tu-
mours, which showed a worse prognosis, showed enrichment of
the BOYAULT_LIVER_CANCER_SUBCLASS_G3_UP gene set
(Fig. S8A). PC1 tumours also showed a higher percentage of TP53
mutations (Table S8), which was one of the mutational features
of the G2 and G3 subclasses by Boyault et al.42. Boyault et al.42

had indeed reported that the G3 subclass showed the worst
prognosis, even though the difference did not reach statistical
significance. It shows that the subtypes we discovered may have
a more selective prognostic value. About the Hoshida’s sub-
types,43 we believe PC1 tumours correspond to the S2 subtype
described by Hoshida et al.,43 which was highlighted with a high
AFP level, poor differentiation, and poor survival. Similarly, PC1
tumours showed association to EPCAM-positive cells (Fig. 5A), a
high level of proliferation (Fig. 3G, top), a high level of serum AFP
(Fig. 5D), and upregulation of MYC, PI3K-AKT, and E2F1 targets
(Fig. S8A). All of them correspond to the features of the S2
subtype described by Hoshida et al.43 Altogether, we believe our
185-gene panel has a higher specificity in identifying more
aggressive HCC subtypes, and our findings show that the dys-
regulation of these genes is associated with the epigenetic
changes that happen in the liver.

Finally, we validated our 185-gene panel using the TCGA-LIHC
dataset by stratifying patients with HCC into clinically relevant
groups. As the TCGA-LIHC dataset does not have similar multi-
region sampling data that were used in our stratification, we
stratified TCGA patients based on tumour-normal differences
calculated using the average expression values among the
normal samples. Our gene panel separated TCGA-LIHC patients
into two clusters, cluster A and cluster B, consisting of 100 and
224 patients, respectively (Fig. 6F). From the normalised gene
expression heatmap (Fig. 6G), a set of genes showed noticeably
higher expression in cluster A patients than in cluster B patients.
The top six differentially expressed genes are GPC3, ACSL4,
PEG10, PRAP1, AKR1C2, and AKR1C3 (Fig. S10). The progression-
free survival analysis between the two patient clusters showed
that indeed the patients in cluster A (higher upregulation)
showed worse prognosis than the patients in cluster B (Fig. 6G),
similar to our earlier results (Fig. 6B). The results show that our
gene panel has the selection power for stratifying patients into
differential prognosis groups, as proven in both our dataset and
the TCGA-LIHC dataset.
Discussion
Our systematic epigenome analysis of HCC reveals a highly var-
iable enhancer distribution in HCC that is important and, to a
large degree, patient-specific. Functional analysis of genes asso-
ciated with differential enhancers and the clinical profile of pa-
tients with different enhancer signals showed that the different
extent of cellular proliferation and de-differentiation of tumour
cells appear to be key factors contributing to the heterogeneity.

There was minimal overlap between somatic mutation hot-
spots and differential enhancer loci, indicating that genetic
perturbation appears not to be the main driver of HCC enhancer
dysregulation. The potential cause for H3K27ac landscape
13vol. 5 j 100715
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changes may instead be metabolic changes in the tumour
microenvironment. Our results showed that some of the most
striking differences between PC0 and PC1 patients were the
hallmarks of glycolysis and PI3K–AKT–MTOR signalling genes.
These may reflect the Warburg effect in HCC tissues to varying
degrees among patients. A shift in glucose metabolism has been
reported in HCC,44 and it is expected to influence the acetyl-CoA
abundance in the surrounding environment, in turn affecting
histone acetylation.45 Further studies are required to assess this
possibility.

Oncofoetal reprogramming of endothelial cells in HCC and
the emergence of foetal-liver-like characteristics in the tumour
microenvironment of HCC tissues have been described in detail
by Sharma et al.27. We confirmed a set of epigenetic-driven
oncofoetal genes, which were expressed by a higher propor-
tion of cells in oncofoetal-like tissues, indicating that the
development of foetal-liver-like features in some HCC liver tis-
sues is likely accompanied by the de novo (gain-in-tumour)
enhancers. As the epigenetic oncofoetal genes are gain-in-
tumour enhancer-associated genes known to foetal liver hep-
atoblast markers, our findings are concordant with the re-
emergence of foetal liver marker genes in some patients with
HCC together with underpinning enhancer rewiring. Further-
more, we have shown that some of the epigenetic oncofoetal
JHEP Reports 2023
genes were informative in identifying patient groups with dif-
ferential prognosis.

Altogether, we present an integrative overview of the epi-
genomic and transcriptomic dysregulation in HCC, with an
emphasis on patient-dependent heterogeneity with direct clin-
ical relevance. Before developing HCC, patients often show pro-
gressive stages of various chronic liver diseases. Recent studies
suggest that the liver undergoes dynamic and aberrant epige-
netic changes accompanying metabolic changes.46 Given the
progressive nature of liver diseases before tumorigenesis, studies
such as Jühling et al.47 suggest the potential effectiveness of
epigenetic drugs such as bromodomain inhibitors in chemopre-
vention. Our findings add to an ongoing approach that presents a
paradigm shift in cancer research, from the convention of iden-
tifying specific targets for intervention to more systemic ap-
proaches that consider the tumour and the surrounding cellular
environment in developing treatment strategies. For widespread
and systemic genome-wide dysregulation, epigenetic therapies
that can target genome-wide loci could be beneficial. Indeed, a
panel of genes appears to undergo coherent epigenetic and
transcriptional dysregulation in a subgroup of patients with HCC.
Understanding the variability and developing methods to iden-
tify patient groups with different epigenomes will be important
for the potential application of personalised cancer therapeutics.
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