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Abstract: Landmark discoveries in molecular oncology have provided a wide-angle overview of the
heterogenous and therapeutically challenging nature of cancer. The power of modern ‘omics’ tech-
nologies has enabled researchers to deeply and comprehensively characterize molecular mechanisms
underlying cellular functions. Interestingly, high-throughput technologies have opened new horizons
for the design and scientific fool-proof evaluation of the pharmacological properties of targeted
chemical compounds to tactfully control the activities of the oncogenic protein networks. Ground-
breaking discoveries have galvanized the expansion of the repertoire of available pharmacopoeia
to therapeutically target a myriad of deregulated oncogenic pathways. Natural product research
has undergone substantial broadening, and many of the drugs which constitute the backbone of
modern pharmaceuticals have been derived from the natural cornucopia. Baicalein has gradually
gained attention because of its unique ability to target different oncogenic signal transduction cas-
cades in various cancers. We have partitioned this review into different sub-sections to provide a
broader snapshot of the oncogenic pathways regulated by baicalein. In this review, we summarize
baicalein-mediated targeting of WNT/β-catenin, AKT/mTOR, JAK/STAT, MAPK, and NOTCH
pathways. We also critically analyze how baicalein regulates non-coding RNAs (microRNAs and
long non-coding RNAs) in different cancers. Finally, we conceptually interpret baicalein-mediated
inhibition of primary and secondary growths in xenografted mice.

Keywords: cancer; metastasis; cell signaling; natural products; baicalein

1. Introduction

Based on the insights gleaned from single-gene to genome-wide scales, it is becoming
apparent that cancer is a heterogeneous disease. What emerges is a highly complicated
and orchestrated network of receptors that form higher-order ligand–receptor complexes
for intracellular transmission of the signals [1,2]. Nonetheless, its mechanism of action
remained elusive, until a series of breakthroughs in the 1980s and 1990s cracked open the
mystery of extra-ordinary mechanistic insights related to a myriad of oncogenic signaling
cascades in different cancers [3,4].
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Natural products are rich sources of medicinally and pharmacologically important
bioactive chemicals [5–8]. Baicalein has a molecular weight of 270.24 g/mol. Baicalein
has been shown to improve disease severity by regulation of different disease-related
proteins [9–16]. Therefore, before a comprehensive and mechanistic analysis of baicalein-
mediated cancer chemopreventive properties, we present an overview of antibacterial,
antiviral, and oxidative-stress-modulating activities of baicalein.

Antibacterial Properties: The NorA efflux protein is frequently expressed in multidrug-
resistant (MDR) Staphylococcus aureus strains and is characterized as the main experimen-
tal model in the exploration for agents that efficiently inhibit active efflux mechanisms.
Baicalein caused a significant reversal of the ciprofloxacin resistance of MRSA by inhibition
of the NorA efflux pump [17].

Biofilms formed by Staphylococcus aureus remarkably enhanced resistance against
antibiotics by hindering the penetration of antibiotics. Importantly, baicalein inhibited
Staphylococcus-aureus-induced formation of the biofilms, destroyed biofilms, increased
vancomycin permeability, suppressed the production rates of staphylococcal enterotoxin A
and α-hemolysin, and inhibited quorum sensing systems [18].

Baicalein reduced the Pseudomonas-aeruginosa-induced secretion of the inflammatory
cytokines, particularly interleukin-1β, interleukin-6, interleukin-8, and TNFα. Furthermore,
baicalein suppressed Pseudomonas-aeruginosa-induced activation of the MAPK and NF-κB-
driven transduction cascades in co-cultured macrophages [19].

The CTX-M-type β-lactamases confer resistance to expanded-spectrum cephalosporins.
Baicalein and cefotaxime synergistically reduced the expression of CTX-M-1 [20].

Serotype 2 (SS2) of Streptococcus suis has been noted to cause severe health complica-
tions. Baicalein and ampicillin combinatorially reduced inflammation and pathological
damages such as high infiltration rates of inflammatory cells, alveolar interstitial congestion,
and edema in the brain and lung of mice intraperitoneally infected with SC19 [21]. There
are direct pieces of evidence which highlight nanoparticle-mediated delivery of baicalein
for effective antibacterial activity [22,23].

Antiviral Properties: Halogenated baicalein was found to be a promising antiviral
agent against SARS-CoV-2 main protease [24]. Baicalein and gallocatechin gallate inhibited
the activities of SARS-CoV-2 main protease and blocked replication of the virus. COVID-19
and sepsis have the ability to pathologically trigger cytokine storms. Levels of serum inflam-
matory factors interleukin-1α, TNFα, interleukin-4, and interleukin-10 in the model group
were increased significantly, while they were reduced considerably in mice treated with
gallocatechin gallate and baicalein [25]. Baicalein inhibited SARS-CoV-2 RNA-dependent
RNA polymerase and exhibited significant antiviral activities [26].

Oxidative stress: Intracerebral hemorrhage (ICH) is a critical and life-threatening
subtype of stroke. ICH animal models were established by injection of collagenase into the
right basal ganglia. Baicalein led to an increase in the levels of serum SOD and GSH-Px,
whereas neuronal apoptosis and pathological injuries of the brain tissues were greatly
mitigated. microR-106a-5p directly targeted PHLPP2 but overexpression of PHLPP2 caused
reversal of baicalein-mediated effects on ICH mice. Baicalein activated the NRF2/ARE
pathway by suppression of PHLPP2 expression [27].

Baicalein enhanced cellular antioxidant defensive capacities through significant reduc-
tion in the levels of ROS generation and the activation of the NRF2 transduction cascade,
thus protecting C6 cells from H2O2-induced damage of neurons [28]. Co-treatment with
H2O2 and baicalein completely suppressed the activation of the apoptotic pathway by
upregulation of NRF2 expression and reduction in the levels of ROS [29].

Baicalein led to the protection of cardiomyocytes against oxidative-stress-mediated
injuries through the NRF2/KEAP1 cascade. Baicalein effectively induced disassembly of
NRF2 and KEAP1. Consequently, NRF2 moved from the cytoplasm to the nucleus and
stimulated NRF2/heme oxygenase-1 contents [30].

Baicalein improved the mortality rates, degeneration of neurons, brain water contents,
and cerebral vasospasm in rat models of subarachnoid hemorrhage repeatedly injected
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with autologous blood. Baicalein also switched on the antioxidant mechanism by activating
the functions of SOD and catalase and decreased the levels of malondialdehyde [31].

Baicalein ameliorated myocardial ischemia through reduction in oxidative stress and
inflammation [32].

Baicalein improved brain injuries after intracerebral hemorrhage by inhibition of
ROS-NLRP3 inflammasomes [33]. Overall, baicalein has been demonstrated to improve
disease-associated pathological conditions [34–36].

After a brief description of additional medicinally significant properties of baicalein,
we now exclusively concentrate on the cancer chemopreventive features of baicalein. There
are some good reviews related to the cancer chemopreventive role of baicalein [37–41],
however, we extensively analyze baicalein-mediated regulation of oncogenic signaling
pathways. For the framework of the mini-review, we extensively browsed PubMed using
diverse keywords, particularly “baicalein and cancer”, “baicalein and metastasis”, and
“baicalein and signaling”.

In this mini-review, we summarize the regulation of WNT/β-catenin, AKT/mTOR,
matrix metalloproteinases, JAK/STAT, MAPK, and NOTCH pathways by baicalein in
different cancers. We also highlight the existing knowledge gaps in our understanding
related to recently available evidence regarding the role of baicalein in the regulation of non-
coding RNAs. Finally, we discuss pressing questions and important concepts that should
be the focus of future research related to the clinical translation of the pharmacological
properties of baicalein.

2. Regulation of WNT/β-Catenin Pathway

In the absence of signals, β-catenin becomes marked for degradation by a multi-
component “destruction complex” consisting of the scaffolding molecules axin, adenoma-
tous polyposis coli (APC), casein kinase (CK), glycogen synthase kinase-3 (GSK3), and
SCF (SKP1/Cullin/F-box)-β-TrCP E3-ubiquitin ligase [42,43]. Importantly, APC and axin
recruited β-catenin, and after sequential phosphorylations of specified amino acid residues
in the amino-terminal region, β-catenin is poly-ubiquitinated by β-TrCP and tagged for
degradation by the proteasomal machinery. Wnt signaling disrupted the functions of
destruction complexes, consequently resulting in the stabilization and transportation of
β-catenin to the nucleus for transcriptional regulation of target gene networks [44,45].

With the breakneck speed of advancements in various dimensions of evidence-based
medicine and modern pharmacology, different approaches for pharmaceutical targeting
of the Wnt/β-catenin cascade in cancers have already started the journey on the road to
clinical trials. Importantly, experimentally verified evidence has proven the benefits of
targeting of Wnt/β-catenin signaling in various human cancers, but it is still worthwhile
to further dissect the true potential of baicalein as a safe inhibitor of the Wnt/β-catenin
signaling pathway against a wide variety of cancers.

In this section, we summarize how baicalein-mediated targeting of WNT/β-catenin
inhibited cancer progression.

β-catenin transcriptionally repressed FOXA2. FOXA2 stimulated the expression of
lncRNA-NEF. LncRNA-NEF interacted physically with β-catenin and increased the binding
of GSK3β with β-catenin and facilitated phosphorylation and degradation of β-catenin by
proteasomal machinery (Figure 1) [46].

Baicalein not only reduced β-catenin but also restricted its nuclear accumulation.
The lncRNA-NEF level was found to be enhanced in baicalein-treated osteosarcoma cells.
LncRNA-NEF also inactivated the WNT/β-catenin cascade. Intraperitoneal injections of
baicalein hampered the progression of osteosarcoma in mice injected with MG63 cells into
the medullary cavities of the right tibia. Baicalein exerted tumor suppressive effects by
reducing the tumor burden in orthotopic intra-tibia tumor-bearing models [47].
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Figure 1. (A) Diagrammatic representation of WNT/β-catenin pathway. APC and axin recruited β-
catenin, and after sequential phosphorylations of specified amino acid residues in amino-terminal 
region, β-catenin is poly-ubiquitinated by β-TrCP and tagged for degradation by the proteasomal 
machinery. (B,C) β-catenin transcriptionally repressed FOXA2. FOXA2 stimulated the expression of 
lncRNA-NEF. LncRNA-NEF interacted physically with β-catenin and increased the binding of 
GSK3β with β-catenin and facilitated phosphorylation and degradation of β-catenin by proteasomal 
machinery. (D) Baicalein also promoted GSK-3β-mediated phosphorylation of β-catenin and subse-
quent degradation. (E) SNHG1 antagonized miR-3127-5p-mediated targeting of FZD4. 

SNHG1 antagonized miR-3127-5p-mediated targeting of FZD4 (Figure 1). Ectopic ex-
pression of SNHG1 remarkably increased Wnt/β-catenin signaling but inhibition of 
SNHG1 remarkably blocked Wnt/β-catenin target gene networks. Ectopic expression of 
SNHG1 antagonized baicalein-mediated inhibitory effects on Wnt/β-catenin signaling. 
Baicalein significantly impaired the growth of subcutaneous xenografts in mice inoculated 
with SNHG1-overexpressing HeLa cells [48]. 

GSK-3β-mediated phosphorylation makes β-catenin a recognizable target for ubiq-
uitylation and consequent proteasomal degradation, thus inhibiting nuclear accumulation 
of β-catenin (Figure 1). Baicalein stimulated miR-25 expression and reduced β-catenin lev-
els. Furthermore, GSK-3β level was reported to be enhanced in baicalein-treated cancer 
cells [49]. 

Baicalein and docetaxel combinatorially promoted degradation of β-catenin and in-
hibited nuclear import of β-catenin. Baicalein and docetaxel synergistically reduced tumor 
burden and tumor angiogenesis in mice subcutaneously xenografted with A549 cells [50]. 

CCND1 potentiated nuclear transportation of β-catenin and promoted the binding of 
β-catenin to promoter regions of NANOG, MMP2, and SOX2. Baicalein efficiently 

Figure 1. (A) Diagrammatic representation of WNT/β-catenin pathway. APC and axin recruited
β-catenin, and after sequential phosphorylations of specified amino acid residues in amino-terminal
region, β-catenin is poly-ubiquitinated by β-TrCP and tagged for degradation by the proteasomal
machinery. (B,C) β-catenin transcriptionally repressed FOXA2. FOXA2 stimulated the expression
of lncRNA-NEF. LncRNA-NEF interacted physically with β-catenin and increased the binding of
GSK3β with β-catenin and facilitated phosphorylation and degradation of β-catenin by proteaso-
mal machinery. (D) Baicalein also promoted GSK-3β-mediated phosphorylation of β-catenin and
subsequent degradation. (E) SNHG1 antagonized miR-3127-5p-mediated targeting of FZD4.

SNHG1 antagonized miR-3127-5p-mediated targeting of FZD4 (Figure 1). Ectopic
expression of SNHG1 remarkably increased Wnt/β-catenin signaling but inhibition of
SNHG1 remarkably blocked Wnt/β-catenin target gene networks. Ectopic expression of
SNHG1 antagonized baicalein-mediated inhibitory effects on Wnt/β-catenin signaling.
Baicalein significantly impaired the growth of subcutaneous xenografts in mice inoculated
with SNHG1-overexpressing HeLa cells [48].

GSK-3β-mediated phosphorylation makes β-catenin a recognizable target for ubiqui-
tylation and consequent proteasomal degradation, thus inhibiting nuclear accumulation
of β-catenin (Figure 1). Baicalein stimulated miR-25 expression and reduced β-catenin
levels. Furthermore, GSK-3β level was reported to be enhanced in baicalein-treated cancer
cells [49].
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Baicalein and docetaxel combinatorially promoted degradation of β-catenin and in-
hibited nuclear import of β-catenin. Baicalein and docetaxel synergistically reduced tumor
burden and tumor angiogenesis in mice subcutaneously xenografted with A549 cells [50].

CCND1 potentiated nuclear transportation of β-catenin and promoted the binding of
β-catenin to promoter regions of NANOG, MMP2, and SOX2. Baicalein efficiently inhibited
the loading of β-catenin to promoters of NANOG, MMP2, and SOX2. Baicalein suppressed
proliferation potential induced by overexpression of CCND1 in HeLa cells [51].

1,2-dimethylhydrazine dihydrochloride (DMH)- and dextran sodium sulfate (DSS)-
treated animals supplemented with ruthenium baicalein complexes remarkably enhanced
the expression of Bax, whereas expression levels of WNT and β-catenin were found to be
profoundly reduced [52].

WNT/β-catenin signals are transduced intracellularly, and β-catenin moves into the
nucleus and triggers TCF/LEF transcriptional factors, thus stimulating the transcription
of target genes, including c-myc, cyclin D1, and survivin [53]. Importantly, c-myc, cyclin
D1, survivin, and β-catenin were evidently suppressed in baicalein-treated 143B and
MG-63 osteosarcoma cells. Baicalein-mediated cancer-inhibitory effects were impaired in
osteosarcoma cells which exogenously expressed β-catenin. However, baicalein-induced
apoptotic effects were noted to be enhanced in β-catenin-silenced cells. Baicalein evidently
impaired the tumor growth rates of 143B xenografts in mice models [53].

Baicalein inhibited the proliferation capacities of Jurkat cells by downregulation of
β-catenin and its downstream targets [54].

Baicalein increased the apoptotic death of MG-63 cells by increasing the levels of axin,
adenomatous polyposis coli, GSK-3β, and CK. There was a notable decline in the levels of
β-catenin and c-Myc [55].

Overall, these clues of evidence inform us about the potent role of baicalein as a
WNT/β-catenin pathway inhibitor. Hopefully, better studies related to anticancer and
metastasis-inhibitory roles of baicalein in animal model studies will galvanize the translata-
bility of this product as a significant clinical agent.

In the upcoming section, we analyze how baicalein inhibited the AKT/mTOR pathway
for cancer inhibition.

3. Regulation of AKT/mTOR Pathway

The identification and development of small-molecule inhibitors of the pathway have
led to the acceleration of the availability of comprehensive crystal structures for complex
protein assemblies, the generation of synthetic drug-like compound libraries, and the
collection of natural products for high-throughput screening. AKT phosphorylates TSC2
(tuberous sclerosis complex 2) on different sites for the inhibition of the activity of GAP
(GTPase-activating protein) for RHEB (RAS homologue enriched in brain). Importantly,
GTP-loaded RHEB activates mTORC1 (mammalian TOR complex 1) [56,57]. However,
TSC1/TSC2-mediated hydrolysis of GTP to GDP switched RHEB from a functionally active
GTP-bound state to an inactive GDP-bound state and inhibited the functions of mTOR.
In addition, 4E-BP1 has a major role in translational repression. It inhibits cap-dependent
translation and subsequent assembly of the translation initiation complexes. Dissociation
of 4E-BP1 from eIF4E depends on the step-by-step phosphorylation of critical amino acids
by mTORC1 [58,59].

This section principally deals with the regulation of the AKT/mTOR cascade by
baicalein and how inactivation of this pathway leads to the inhibition of carcinogenesis
and metastasis.

The migratory and invasive potential of PC-3 and DU145 cells was inhibited by
baicalein. Treatment of DU145 and PC-3 cells with baicalein resulted in a marked suppres-
sion in the levels of p-AKT and p-mTOR [60].

Levels of mTOR were significantly reduced by the combinatorial treatments with
baicalein and docetaxel. Both drugs also inhibited activation of AKT in anaplastic thyroid
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cancer 8505c cells [61]. Collectively, baicalein reduced the invasive and metastasizing
potential of thyroid cancer cells.

mTORC1 inhibitors induced the expression of CD133 in cancer cells, enriched CD133+
cancer cells, and limited the efficacy of anti-cancer drugs. Temsirolimus (CCI-779), a novel
inhibitor of mTOR, induced CD133 in tumor-initiating stem-cell-like cells (TICs) as well as
Huh7 cells. Nevertheless, co-treatments with baicalein completely prevented this induction
and synergistically enhanced cytotoxicity in TICs. SAR1B knockdown sensitized TICs
to CCI-779 cytotoxicity. SAR1B loss phenocopied baicalein-mediated cytotoxic effects on
CCI-779-treated TICs. NSGTM mice transplanted with HCC tissues resected from a NASH
patient significantly prevented tumor growth by temsirolimus and baicalein [62].

Total flavonoid aglycones extracts (TFAE) obtained from Scutellaria baicalensis effi-
ciently inhibited tumor growth. TFAE was reconstituted with increasing concentrations of
baicalein, wogonin, and oroxylin-A. Importantly, reconstructed TFAE (reTFAE) in combi-
nation with TWIST silencing caused a marked increase in E-cadherin and simultaneous
reduction in the levels of the PI3K/AKT pathway and N-cadherin [63].

Levels of p-AKT, p-mTOR, NF-κB, and p-IκB were found to be downregulated signifi-
cantly in baicalein-treated MDA-MB-231 and MCF7 cells. Baicalein remarkably lowered
the level of p-AKT in tumor tissues of mice subcutaneously implanted with either MCF7 or
MDA-MB-231 cancer cells [64].

Baicalein in combination with cisplatin effectively reduced p-AKT and p-mTOR in
drug-resistant SGC-7901 cancer cells (Figure 2) [65]. Additionally, baicalein-mediated
inactivation of the AKT/mTOR pathway has also been demonstrated in cervical cancer
cells. Baicalein inactivated AKT and mTOR in cervical cancer cells through upregulation of
circular RNA (circHIAT1) and inhibition of miR-19a-3p [66]. Importantly, baicalein induced
shrinkage of the tumor mass in mice subcutaneously inoculated with circHIAT1-expressing
HeLa cells. However, baicalein-mediated tumor inhibition was partially reduced in mice
inoculated with circHIAT1-silenced HeLa cells [66].
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GTP-loaded RHEB activates mTORC1 (mammalian TOR complex 1). However, TSC1/TSC2-Figure 2. Diagrammatic representation of AKT/mTOR pathway. (A) AKT phosphorylates TSC2
and GTP-loaded RHEB activates mTORC1 (mammalian TOR complex 1). However, TSC1/TSC2-
mediated hydrolysis of GTP to GDP switched RHEB from a functionally active GTP-bound state to an
inactive GDP-bound state and inhibited the functions of mTOR. (B) DDIT4 has been documented to
block the activity of mTORC1 by activation of TSC1/2 complexes. (C,D) Baicalein inhibited mTORC1
(RAPTOR) and mTORC1-mediated phosphorylation of 4EBP1 and S6K.
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Baicalein reduced protein levels and phosphorylated forms of mTOR, p70S6K, and
4EBP1 in HeLa cells [67].

TSC1/TSC2 heterodimers, through a critical GAP (GTPase-activating protein) domain
located in TSC2, facilitated the hydrolysis of GTP to GDP and switched RHEB from an
active GTP-bound form to an inactive GDP-bound form and inhibited the functions of
mTOR. DDIT4 has been documented to block the activity of mTORC1 by activation of
TSC1/2 complexes. Inactivation of mTORC1 reduced the activation of downstream pro-
teins, including ribosomal S6 protein kinases (S6K1 and S6K2). These kinases classically
phosphorylated their downstream ribosomal S6 proteins. However, mTORC1 inactivation
led to inhibition of ribosomal S6 protein kinases and S6. DDIT4-mediated inactivation
of mTORC1 resulted in the repression of phosphorylation of S6K1 and downstream S6
(Figure 2). Intraperitoneal injections of baicalein induced tumor shrinkage in SCID-Bg mice
orthotopically implanted with MDA468 cancer cells. Moreover, levels of DDIT4 were found
to be enhanced in the tumor tissues [68].

Baicalein-mediated activation of AMPK switched on ULK1 and reduced the inhibitory
effects of mTOR on ULK1. mTOR interacted with ULK1 through RAPTOR and inactivated
ULK1 through phosphorylation at serine-757. Baicalein reduced the protein levels of
mTOR and RAPTOR in PC-3 cells [69]. Collectively, baicalein acted as a novel autophagy
inducer and operated through the activation of the AMPK/ULK1 pathway and inhibition
of mTORC1.

4. Regulation of Matrix Metalloproteinases

Baicalein considerably reduced the motility and invasiveness of B16F10 cells. Baicalein
reduced the activity and levels of MMP2 and MMP9. However, levels of tissue inhibitor of
metalloproteinase-1 and -2 were found to be increased concomitantly [70].

Baicalein significantly inhibited nuclear accumulation of NF-κB. Additionally, baicalein
also significantly suppressed the phosphorylation of IκBα. The p38-MAPK signaling path-
way is involved in NF-κB activation in ovarian cancer cells. Baicalein inhibited MMP2
expression and cell invasion by inhibition of the p38-MAPK-dependent pathway [71].

Baicalein inhibited TNF-α-induced activation of NF-κB and transcriptional regulation
of NF-κB-regulated target genes [72].

Flavonoid chemicals in Scutellaria baicalensis effectively inhibited nicotine-induced
lung-cancer-associated inflammation and metastasis. Baicalein, baicalin, and wogonin
reduced MMP2 and MMP9 levels [73].

Baicalein dramatically reduced the phosphorylated forms of MEK1 and ERK1/2.
Furthermore, overexpression of MEK1 led to a partial blockade of the metastasis-inhibitory
effects of baicalein. Moreover, combinatorial treatments with baicalein and ERK inhibitors
synergistically reduced MMP2, MMP9, and uPA and induced an increase in TIMP1 and
TIMP2 [74].

Baicalein dose-dependently suppressed the levels of MMP2 and MMP9 in glioma
cells [75]. Baicalein-mediated inhibitory effects on MMP2 and MMP9 have also been
reported in bladder cancer, hepatoma, and colorectal cancer [76–78].

Baicalein inhibited benzo(a)pyrene [B(a)P]-induced pulmonary carcinogenesis in ro-
dent models and reduced the levels of MMP2 and MMP9 [79].

5. Regulation of JAK/STAT Pathway

The STAT family of proteins is involved in signal transduction and regulation of
transcription. Janus kinase (JAK)-mediated phosphorylation of STAT proteins induced
activation of the signaling cascade [80–82]. In this section, we exclusively analyze how
STAT3 promoted carcinogenesis and how STA3 can be pharmaceutically exploited for
cancer inhibition.

Baicalin and baicalein-mediated suppression of PD-L1 was impaired in STAT3-
overexpressing SMMC-7721 and HepG2 cells. The number of CD8+ cells was apparently
higher in the tumor tissues from baicalin and baicalein-treated BALB/c mice. Furthermore,
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PD-L1 expression was significantly downregulated in the tumor tissues of the baicalin and
baicalein-treated xenografted mice [83].

Baicalein interfered with the activation of STAT3 in 4T1 cancer cells. Baicalein consid-
erably hampered the formation of pulmonary metastatic nodules in mice injected with 4T1
cancer cells (Figure 3) [84].
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Baicalein not only inhibited IL-6-mediated phosphorylation of JAK, STAT3, and
AKT, but also repressed STAT3-driven upregulation of BCL-XL in multiple myeloma cells
(Figure 3) [85].

miR-183 knockdown significantly reduced apoptotic cell death. Baicalein promoted
the radiosensitivity of Hela cells via inhibition of the JAK2/STAT3 signaling cascade [86].
Collectively, the use of tumor suppressor miRNA mimics will enhance the efficacy of
baicalein.

6. Regulation of MAPKs

Inhibition of MEK/ERK1/2 interfered with baicalein-triggered AMPKα phospho-
rylation. Inhibition of MEK/ERK1/2 and AMPK abrogated baicalein-induced increase
in the levels of FOXO3a and RUNX3. RUNX3 knockdown led to significant attenua-
tion of baicalein-induced protein expression of FOXO3a. Baicalein enhanced apoptosis
in RUNX3- and FOXO3a-expressing cancer cells. However, AMPK inhibition blocked
baicalein-induced caspase 3/7 activity [87].

Baicalein impaired growth rates of the tumor in BALB/c-nude mice inoculated subcu-
taneously with MG-63 cells. Importantly, p-ERK levels were found to be reduced in tumor
tissues of xenografted rodent models [88].

cAMP-mediated PKA activation regulated VASP (vasodilator-stimulated phosphopro-
tein) phosphorylation in platelets. VASP phosphorylation is associated with attenuation of
integrin αIIbβ3-driven downstream signaling and aggregation of the platelets. Integrin
αIIbβ3 binds to different arginine-glycine-aspartic-acid containing ligands, including von
Willebrand factor, fibronectin, fibrinogen, and fibrin. Pre-treatment with baicalein induced



Int. J. Mol. Sci. 2022, 23, 8377 9 of 18

phosphorylation of VASP. Agonist-mediated ERK2 and p38-MAPK phosphorylations were
suppressed remarkably by baicalein pre-treatments. Furthermore, baicalein potently inhib-
ited phosphorylation of AKT. Importantly, rat C6 glioma cells induced full activation of
the platelets. However, C6-cell-induced platelet aggregation was impaired by baicalein.
Baicalein also efficiently prevented platelet/tumor cell interactions [89].

7. Regulation of NOTCH Pathway

The NOTCH pathway has been reported to be centrally involved in cancer progres-
sion. Baicalein-mediated targeting of the NOTCH pathway resulted in the inhibition of
carcinogenesis.

Baicalein suppressed the proliferation of cervical cancer cells via NOTCH-1 and its
target genes HES-1 and HES-5 [90].

Baicalein downregulated NOTCH-1 and HES-1 in H1299 and A549 cells, which indi-
cated that baicalein suppressed the NOTCH signaling pathway [91].

Existing evidence is preliminary and future studies must converge on the testing of
baicalein in xenografted mice for better analysis of baicalein-mediated inhibitory effects on
the NOTCH pathway.

8. Regulation of Non-Coding RNAs

Discovery of non-coding RNAs (ncRNAs) has caused a paradigm shift in our un-
derstanding regarding the regulation of protein networks and cell signaling pathways in
different cancers. Experimental verifications and validations related to microRNAs, long
non-coding RNAs, and circular RNAs have led to exciting advancements in various facets
of molecular oncology [92–101].

Ezrin is a target gene of miR-183 (Figure 4). There was an evident increase in the
expression of miR-183 and simultaneous suppression of ezrin in baicalein-treated Saos-2
and MG-63 cells. Importantly, ezrin overexpression and miR-183 inhibition abolished
baicalein-mediated inhibitory effects on migration and invasion of Saos-2 and MG-63
cells [102].
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and inhibited carcinogenesis. (C) BDLNR physically associated with YBX1 and promoted its binding
to PIK3CA promoter and facilitated cancer progression.



Int. J. Mol. Sci. 2022, 23, 8377 10 of 18

Both baicalein treatments and overexpression of miR-3663-3p led to the downregu-
lation of SH3GL1 and inactivation of ERK1/2, EGFR, and NF-κB/p65 transduction cas-
cades. Tumors derived from miR-3663-3p-overexpressing Bel-7404 and SK-Hep-1 cells were
smaller in size. Furthermore, levels of p-NF-κB/p65, p-ERK, and p-EGFR were reported
to be profoundly reduced in the tumor tissues. Importantly, intraperitoneal injections of
baicalein induced tumor retrogression in mice subcutaneously xenografted with Bel-7404
or SK-Hep-1 cells [103].

PAX8-AS1-N antagonized miR-17-5p-mediated targeting of PTEN, ZBTB4 (Zinc finger
and BTB domain containing 4) and CDKN1A (Figure 4). PAX8-AS1-N knockdown pro-
moted growth of breast cancer xenografts and baicalein-mediated growth inhibition was
attenuated significantly by PAX8-AS1-N knockdown [104].

Baicalein downregulated miR-424-3p, upregulated PTEN and reduced the levels
of PI3K and p-AKT in H460 and A549 cells. PTEN is a tumor suppressor and inacti-
vates PI3K/AKT-driven signaling. PTEN has been reported to be directly targeted by
miR-424-3p. It was shown that miR-424-3p overexpression or PTEN silencing partially
weakened baicalein-mediated repressive effects on H460 and A549 cells [105].

BDLNR (baicalein downregulated long non-coding RNA) physically associated with
YBX1 and promoted its binding to the PIK3CA promoter and activated PIK3CA expres-
sion and the PI3K/AKT pathway (Figure 4). Baicalein-mediated tumor suppression was
significantly impaired in mice inoculated with BDLNR-overexpressing HeLa ells [106].

Keeping in view the fact that miRNAs and lncRNAs drive malignant phenotypes
from multiple perspectives, in this section, we focus on baicalein-mediated effects on
critical signaling cascades modulated by miRNAs and lncRNAs in cancers to demonstrate
an up-to-date understanding of this area of research.

9. Animal Models

HIF-1α is rapidly degraded by prolyl hydroxylase domain proteins (PHDs). These
are 2-oxoglutarate/iron-dependent dioxygenases and utilize molecular oxygen for hy-
droxylation of specified prolyl residues present within oxygen-dependent degradation
domains of α subunits. Insights gained from the functional analysis of von Hippel-Lindau
proteins (pVHL) have provided important information about regulation of client proteins.
Essentially, hydroxylated subunits of HIF-α are identified by pVHL for subsequent poly-
ubiquitination and degradation by proteasomal machineries. Baicalein caused a reduction
in HIF-1α levels by promoting its interactions with PHD2 and pVHL, enhanced ubiquitin
ligase-mediated degradation by proteasomal machinery, inhibition of nuclear transloca-
tion, binding to the hypoxia-response elements, and transcriptional activities of HIF-1α
(Figure 5). Additionally, baicalein enhanced tamoxifen sensitivity in MCF-7TR-derived
xenografts in NOD/SCID mice. Tamoxifen and baicalein combinatorially reduced the
levels of HIF-1α in tumor tissues [107].

During amino acid sufficiency, MAP4K3 is phosphorylated at serine-170 and activates
mTORC1. However, during restriction of amino acids, MAP4K3 interacts with PP2A and
undergoes dephosphorylation at serine-170, leading to inhibition of MAP4K3 and inac-
tivation of the mTORC1 signaling pathway. MAP4K3 is pivotal for phosphorylation of
mTORC1 downstream signaling proteins such as S6K1. MAP4K3 overexpression promoted
activation of S6K1 but MAP4K3 knockdown caused a reduction in size of the cells. MAP4K3
interacted with and phosphorylated TFEB (transcription factor EB) and caused cytoplas-
mic retention of TFEB, leading to autophagy inhibition. Baicalein effectively enhanced
proteasomal degradation of MAP4K3 in H1299 and A549 cancer cells. Baicalein-induced
degradation of MAP4K3 promoted nuclear translocation of TFEB. Phosphorylation of
TFEB facilitated the association between TFEB and 14-3-3 proteins, thereby inhibiting
nuclear accumulation of TFEB. Baicalein caused disassembly of TFEB/14-3-3 complexes
and promoted nuclear translocation of TFEB. MAP4K3 knockdown sufficiently mimicked
baicalein-induced autophagy. There was a notable shrinkage of H1299 xenografts in animal
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models. Moreover, MAP4K3 expression was found to be reduced in tumor tissues of
baicalein-treated xenografted animal models [108].
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High glucose concentrations promoted invasion of HepG2 cells. There was a signifi-
cant increase in HepG2 tumors in the diabetic rodent model as compared to the normal
mice. Essentially, HKDC1 antibodies and baicalin limited the rapid development of tumors
derived from HepG2 cells in diabetic mice. m6A of HKDC1 facilitated rapid develop-
ment of liver cancer induced by type 2 diabetes. The m6A writer complex contains the
core METTL3 (methyltransferase-like protein 3) and its adaptors. This multi-component
machinery is localized in the nucleus, and it adds m6A to mRNAs. Baicalin suppressed
type 2 diabetes and liver cancer development by reduction in the m6A level of HKDC1 by
repressing the levels of m6A-related gene, METTL3. There was a significant reduction in
the m6A (2854 site) levels of HKDC1 in METTL3-silenced cells [109].

SHH, SMO, and GLI-2 were downregulated in baicalein-treated pancreatic cancer
cells. Baicalein impaired tumor growth in BALB/c nude mice inoculated subcutaneously
with PANC-1 stem cells. Immunohistochemistry analysis indicated that tumor tissues
demonstrated significant downregulation of stem cell markers and lowered the levels of
SHH pathway receptors and effectors [110].

Pharmacologic targeting of HDACs induced differentiation, inhibited proliferation,
and induced apoptotic death in AML cells. Blockade of baicalein-induced degradation of
HDAC1 by proteasome inhibitors indicated that baicalein-induced HDAC1 degradation
by baicalein was dependent on the ubiquitin proteasome pathway. HSP90 (heat shock
protein-90) stabilized client oncogenic proteins. AML1-ETO, an oncogenic fusion protein,
recruited transcriptional repressor complexes including HDAC1 to repress AML1-regulated
target genes (Figure 5). Interactions between HSP90 and AML1-ETO were disrupted by
baicalein-induced acetylation on lysine residues of HSP90. Baicalein caused significant
reduction in the amount of huCD45+ cells in spleen and bone marrow of NOD/SCID mice
injected with either Kasumi-1 or ME-1 cells [111].
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Treatment with baicalein considerably increased the rate of survival of U87-inoculated
mice. Moreover, baicalein caused significant reduction in the water content of tumors
and ipsilateral cerebrums. Baicalein effectively suppressed the uptake of sucrose by U87
gliomas and findings provided clues that baicalein significantly reduced permeability
of U87 gliomas. The HIF1α/VEGF pathway played an important role in the edema in-
duced by gliomas. Treatment of tumor-bearing mice with baicalein suppressed HIF1α,
VEGF, and VEGFR2, indicating that baicalein suppressed the HIF1α/VEGF cascade in U87
gliomas [112].

Baicalein has been shown to chemically interact with TLR4. Importantly, baicalein
binding with TLR4 interrupted the binding of FITC-conjugated LPS and inhibited the
activities of TLR4, as evidenced by reduced phosphorylation of NF-κB-p65 and AKT in
cells challenged with LPS. Subsequently, inhibition of TLR4 activity remarkably reduced
the viability of colorectal cancer cells, which was abolished upon TLR4 overexpression.
Furthermore, TLR4 overexpression increased HIF1α and VEGF levels in colorectal cancer
cells, while TLR4 knockout led to significant reduction in their levels. TLR4 activation
led to an increase in the levels of HIF1α and VEGF, which were reversed by baicalein.
Importantly, baicalein substantially reduced NF-κB phosphorylation in the tumor tissues
of CRC-bearing xenograft mouse models [113].

The Src pathway is centrally involved in the expression of Id1 (inhibitor of differ-
entiation 1) and promotes carcinogenesis. Intragastrically administered baicalein caused
marked reduction in tumor nodules in mice orthotopically injected with A549 cells in
the left lung. Essentially, the lungs of tumor-bearing mice demonstrated higher levels of
Id1. Baicalein significantly reduced Src phosphorylation in tumor-bearing mice, and these
findings highlighted that baicalein inhibited Id1 in an Src-dependent manner [114].

SMYD2 knockdown inhibited proliferation and invasive potential of non-small-cell
lung cancer A549 and NCI-H1299 cells. There was an evident shrinkage in the mass of
transplanted tumors in mice inoculated with SMYD2 knockdown cancer cells. Moreover,
transplanted tumors in SMYD2 knockdown groups were smaller in size. Baicalein signifi-
cantly inhibited the levels of SMYD2 and RPS7 in NCI-H1299 and A549 cells. Likewise,
baicalein inhibited tumor growth and reduced the levels of SMYD2 and RPS7 in the tumor
tissues of xenografted mice [115].

TGFβ1 secretion mediated an increase in invasive and metastasizing abilities of MCF7
and MDA-MB-231 cancer cells when co-cultured with M2 macrophages. Essentially, the ad-
dition of anti-TGFβ1 neutralizing antibodies before co-culture caused reversal of invasion
abilities of MDA-MB-231 and MCF7 cancer cells. Levels of M2-specific markers (CD206)
were found to be reduced and levels of M1-specific markers CD86 were increased signif-
icantly after baicalein treatment. Data suggested that baicalein changed the phenotypes
of macrophages from M2 to M1. Baicalein reduced expression of M2-associated cytokines
(TGFβ1, interleukin-10) and enhanced M1-associated cytokines (interleukin-12, TNFα).
Co-culture with M2 macrophages significantly upregulated TGFβ1, N-cadherin, and vi-
mentin in MDA-MB-231 and MCF7 cancer cells. After co-culture with M2 macrophages,
MDA-MB-231 cancer cells potently promoted tumor growth and pulmonary metastasis.
However, baicalein induced phenotypic switching from M2 to M1 and significantly reduced
pulmonary metastatic nodules in tumor-bearing mice [116].

10. Concluding Remarks

It is exciting to note that cutting-edge research has provided rich and information-
dense pictures of protein signaling cascades which play fundamental roles in cancer onset,
progression, drug resistance, and loss of apoptosis. Hyperactive/underactive pathways,
presence or absence of important feedback mechanisms, and ectopic expression of proteins
play central roles in cancer progression. Nevertheless, even this level of understanding
may not be sufficient to realistically analyze the therapeutic targets within the context of
the cellular networks. Accordingly, it is essential to drill down deep into the intricacies
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of signaling deregulations to identify signaling molecules and pathways which fuel the
survival of cancer cells.

Excitingly, the interplay between inhibition and activation is a universal theme of
signal transduction cascades and is mirrored at every level and scale of hierarchically
organized protein networks. Therefore, feedback and feedforward loops are the linchpin
mechanisms which allow precise and critical control over entire pathways and enable the
cells to portray highly complicated modes of response.

In this mini-review, we focused on baicalein-mediated inhibitory effects on oncogenic
cell signaling cascades for inhibition of carcinogenesis and metastasis. However, there
are wide-ranging mechanisms which are unaddressed mainly in the context of the true
potential of the cancer-inhibitory role of baicalein. Future empirical studies must converge
on the identification of baicalein-mediated targeting of oncogenic pathways in different
cancers. The TGF/SMAD pathway has not been explored in detail to realistically assess
how baicalein regulated the TGF/SMAD pathway for cancer chemoprevention. Similarly,
SHH/GLI and Hippo pathways have not been comprehensively studied in cell lines and
animal models. Likewise, the TRAIL-mediated apoptotic pathway needs further research
for clinical trials. Baicalein-mediated upregulation of death receptors and/or activation of
the intrinsic apoptotic pathway will be helpful in the design and verification of combinato-
rial treatments consisting of baicalein and TRAIL-based therapeutics in xenografted mice.
Furthermore, baicalein-mediated effects on PDGFR- and VEGFR-induced intracellular
signaling need to be tested in different cancers. Another critical and key question regards
the identification of target non-coding RNAs of baicalein. LncRNAs and circular RNAs
have gained substantial limelight and are reported to be centrally involved in the regulation
of various steps of carcinogenesis. Therefore, identification of the most relevant tumor
suppressor and oncogenic non-coding RNAs will be useful in combination treatments
consisting of baicalein and tumor suppressor mimics or baicalein and oncogenic siRNAs.

An important key question now looms for the field of cancer drug discovery: which
proteins can be considered as the most plausible drug targets within a pathway so that
result-oriented therapeutic strategies can be rationally designed for proof-of-concept stud-
ies regarding the cancer chemopreventive role of baicalein with maximum efficacy and
minimum side effects to the patient?
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