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Cardiovascular disease, a leading cause of mortality in developed countries, is mainly caused by atherosclerosis, a chronic
inflammatory disease. Macrophages, which differentiate from monocytes that are recruited from the blood, account for the
majority of leukocytes in atherosclerotic plaques. Apoptosis and the suppressed clearance of apoptotic macrophages (efferocytosis)
are associated with vulnerable plaques that are prone to rupture, leading to thrombosis. Based on the central functions
of macrophages in atherogenesis, cytokines, chemokines, enzymes, or microRNAs related to or produced by macrophages
have become important clinical prognostic or diagnostic biomarkers. This paper discusses the impact of monocyte-derived
macrophages in early atherogenesis and advanced disease. The role and possible future development of macrophage inflammatory

biomarkers are also described.

1. Introduction

Cardiovascular disease (CVD) is the leading cause of mortal-
ity in developed countries and is likely to attain this status
worldwide, accounting for 16.7 million deaths each year
[1, 2]. Coronary artery disease (CAD) and cerebrovascular
disease are the most common forms of CVD, whose underly-
ing pathological feature is atherosclerosis. Atherosclerosis is
a slowly progressing chronic disease of large and medium-
sized arteries which is characterised by the formation of
atherosclerotic plaques consisting of necrotic cores, calcified
regions, accumulated modified lipids, migrated smooth
muscle cells (SMCs), foam cells, endothelial cells (ECs), and
leukocytes [3].

Since the term arteriosclerosis was first introduced by
Jean Lobstein in 1829 [4], it has long been believed that
atherosclerosis involved the merely passive accumulation of
cholesterol in arterial walls. In the 1970s, the response-
to-injury model was described [5]. Today, the picture
of atherosclerosis is much more complex as it has been
considered a chronic inflammatory disease, involving both
the innate and adaptive immune systems, which modulate

the initiation and progression of the lesions, and potentially
devastating thrombotic complications [6]. Understanding
the principles of the inflammatory processes is important for
deciphering the complex processes involved in atheroscle-
rosis progression. Atherosclerotic plaques are characterised
by an accumulation of lipids in arterial walls together
with infiltration of immunocytes. The degree of influx of
inflammatory cells to atherosclerotic lesions is determined
based on monocyte recruitment, macrophage egress, and the
balance of proliferation, survival, and apoptosis within the
arterial walls [7].

Macrophages are the first inflammatory cells to invade
atherosclerotic lesions, and they are the main component
of atherosclerotic plaques [8]. Inflammatory cytokines pro-
duced by macrophages stimulate the generation of endothe-
lial adhesion molecules, proteases, and other mediators,
which may enter systemic circulation in soluble forms
[9]. Cytokines as inflammatory biomarkers, independent of
cholesterol and regulators of blood pressure, could yield
more information on different aspects of pathogenesis of
atherosclerosis [10]. This paper discusses the central roles of
macrophages in every stage of atherosclerosis, focusing on


mailto:ymuragak@wakayama-med.ac.jp

\& \) Monocyte
¢ ©
apoB Lgs\
_—
VN

\\ LFA-1, /
ICAM-1,
;‘ CAM-1
P-selecnr&‘ \ ﬁ

¢ apoB-LPs
o

.’ ' \ \\\‘

Entry

M-CSF

Mediators of Inflammation

Vascular lumen

® no

oxI.DL Apoptosis Intima

[ s \
| JL}Q ) \\\\,&
]

s N I
T cells \ P s : 31
() Dendritic cell Cytokines =4 ]
\ &) Macrophage Foam cell |
\ Efferocytosis
\—/ — —
\—’/ < .

Early lesions

Vascular smooth muscle cells

FiGure 1: The roles of M1 and M2 macrophages. Ly6C high monocytes differentiate into M1 type, classically activated macrophages that
affect proteolysis and produce antibacterial products. Ly6C low monocytes differentiate into M2 type, alternatively activated macrophages
that are involved in wound repair and tissue remodelling. M1 and M2 cells secrete different cytokines that function in efferocytosis and the

formation of foam cells.

the role of inflammatory biomarkers in predicting primary
cardiovascular events related to macrophages.

2. Initiation and Early Progression of
Atherosclerosis

2.1. Recruitment and Entry of Monocytes to Arterial Walls.
Monocytes originate from bone marrow-derived progenitor
cells and do not proliferate in the blood [11]; their functions
under homeostatic conditions remain unclear. The mecha-
nisms of monocyte homing to healthy aortas are not well
defined; more is known about monocyte recruitment into
aortas during atherogenesis [12]. During the pathogenesis
of atherosclerosis, blood monocytes infiltrate from blood
to the intima and subintima [13], a process which is
activated by subendothelial accumulation of apolipoprotein
B-containing lipoproteins (apoB-LPs) [14]. Summoned by
chemokinesis, monocytes roll over and become tethered to
endothelial cells overlying retained apoB-LPs through inter-
actions between monocyte P-selectin glycoprotein ligand-1
(PSGL-1) and endothelial selectins [14]. E-selectin overlaps
with P-selectin to support rolling [15]. After monocytes roll
on the inflamed aortic endothelium, they use lymphocyte
function-associated antigen-1 (LFA-1), very late antigen-
4 (VLA-4) and their respective endothelial cell ligands,
including vascular cell adhesion molecule (VCAM-1) and
intercellular adhesion molecule-1 (ICAM-1), to slow rolling
and form tighter adhesions [16]. Finally, firm adhesion is

followed by entry of monocytes into the subendothelial space
(diapedesis) [17] (Figure 1).

In mice, monocytes can be identified from other cir-
culating cells by the differential expression of chemokine
C-C motif receptors 2 (CCR2), chemokine C-X3-C motif
receptor 1 (CX3CR1), and Ly6C antigen, which is mono-
cyte/macrophage cell differentiation antigen regulated by
interferon gamma [11]. Apolipoprotein E—/— (Apoe—/-)
mice, a model system for atherosclerosis, are prone to
develop atherosclerosis because they have high levels of
the atherogenic lipoprotein known as remnant lipopro-
tein [18]. Ly6CMshCCR2*CX3CR1*Y monocytes, which
are precursors of inflammatory macrophages, have been
observed to adhere to activated endothelium in Apoe—/—
mice [19]. In contrast, little is known about how a lack
of apoE affects inflammatory Ly6C!©"CCR2~CX3CR1"igh
monocytes [20]. These studies suggest that there is persistent
recruitment of inflammatory monocytes into established
atherosclerotic lesions (Figure 2). These studies described
above are limited in mice and it may be difficult to interpret
human macrophage subsets, but two major subsets of human
macrophages can be defined: CD14"8"CD16'°% macrophages
typically represent 85% ~ 95% monocytes in healthy
individuals; CD14°"CD16M#" macrophages are comprised
in the remains [21]. The role of each subset in human
atherosclerosis remains unknown.

2.2. Monocyte Differentiation into M1 and M2 Subsets
of Macrophages. Driven by macrophage colony-stimulating
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FI1GURE 2: Signalling pathways in a macrophage involved in atherosclerosis. Pro- and anti-inflammatory factors act on macrophages, leading
to activation of downstream scavenger receptors (SRs)/toll-like receptors (TLRs)-NF-«B signalling, endoplasmic reticulum (ER) stress and

efflux of cholesterol via ABCA and ABCG transporters.

factor (M-CSF) and other differentiation factors, monocytes
differentiate into two major types of macrophages and/or
dendritic cells [22, 23]. M1 and M2 macrophages play
opposite roles during inflammation, although both are
present in atherosclerotic lesions. M1 macrophages, which
are differentiated from Ly6CMsh monocytes and promote
inflammation, are classically activated by lipopolysaccharide
in the presence of IFN-y, leading to the production of high
levels of IL-2, IL-23, IL-6, IL-1, and TNF-«a. In contrast,
activated M2 macrophages, which are differentiated from
Ly6C°" monocytes and promote resolution inflammation,
differentiate in the presence of IL-4, IL-13, IL-1, or vitamin
D3 and tend to produce a large amount of IL-10 and express
scavenger receptors, mannose receptors, and arginase [24]
(Figure 2). Recently, there has been a great deal of interest
in macrophage heterogeneity in atherosclerotic lesions, par-
ticularly regarding the roles of M1 versus M2 macrophages.
There is evidence that an imbalance in the ratio of classically
activated M1 and alternatively activated M2 macrophages
in advanced atherosclerosis impair resolution in vitro [25],
but a clear picture has not yet emerged from these studies
[23]. Most of the hypotheses in this area have been driven
by in vitro studies exploring gene expression patterns and
functional attributes of monocytes or macrophages subjected
to various treatments, including growth factors, cytokines
derived from helper T cells [26], the transcription factors
peroxisome proliferators-activated receptors (PPARs) y [27],
and the bioactive lipid sphingosine-1-phosphate [28]. How-
ever, there is a significant difference between in vitro and
in vivo results, which makes atherogenesis more complex.
Future projects should focus on the characterisation of
macrophage heterogeneity with respect to differential expres-
sion of specific molecular biomarkers that have functional

significance for atherogenesis [29]. Additional attention
should be paid to the roles of cytokines in controlling
monocytes that differentiate into dendritic cells (DCs) rather
than macrophages.

2.3. Important Receptors and Transporters for Cholesterol
Loading and Efflux in the Toll-Like Receptors of Macrophages.
In the innate immune system, toll-like receptors (TLRs)
are the primary receptors that recognise highly conserved
structural motifs of pathogens [30]. Under hyperlipidemic
conditions, TLRs likely participate in the regulation of
atherosclerosis. The activation of TLRs induces the pro-
duction of proinflammatory cytokines and nitric oxide in
macrophages and the induction of DC maturation, leading
to the upregulation of costimulatory molecules, such as
CD80 and CD86. In addition, TLR1, TLR2, TLR4, and TLR6
are expressed in atherosclerotic lesions. A large number
of pathogen-associated molecules can activate TLRs. Heat-
shock proteins (hsp60) [31] and oxidised (ox) LDL [32]
mediate at least a part of their effects within atherosclerotic
plaques through TLR4 binding. TLR2, expressed on cells
that do not derive from bone marrow, appears to promote
atherogenesis in mice [33]. Interestingly, Sun et al. showed
that free cholesterol (FC) accumulation in the endosomal
compartment increases the inflammatory response in a TLR-
dependent fashion, and TLR3 is the predominant receptor
involved in this process [34] (Figure 3).

2.4. Scavenger Receptors. Macrophage scavenger receptors
(SRs) are found to bind and internalise modified forms
of LDL through mechanisms that are not inhibited by
cellular cholesterol content, and they are likely responsible
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FiGure 3: The fate of macrophages in an early lesion of atherosclerosis. The accumulation of apolipoprotein B-lipoproteins (apoB-LPs) in
the matrix beneath the endothelial cell layer leads to the recruitment of monocytes. The cells differentiating into macrophages undergo foam
cell formation, leading to apoptosis. Because efferocytosis works efficiently, this lesion does not develop necrotic core. The resolution of the

inflammation results in decreased plaque progression.

for macrophage cholesterol accumulation [35]. SR class A
(SR-AI and AII), expressed on the surface of macrophages,
account for the uptake of acetylated LDL in the majority of
macrophages, but macrophages preferentially bind oxLDL,
recognising the modified apoB components of the particles
[36]. Interestingly, SR-As expression is increased in animals
with low atherosclerotic responses, suggesting that this path-
way is protective. Furthermore, overexpressing a secreted
form of the extracellular domain of human SR-A resulted
in a 20% reduction in monocyte/macrophage adherence to
endothelial cells in atherosclerotic lesions in Ldlr—/— mice
[37]. Thus, the use of such decoy SRs may prove beneficial
for retarding the development of early atherosclerotic lesions
(Figure 3).

Other studies indicate that SR class B CD36 plays a major
role in the clearance of oxLDL, contributing 60% to 70%
of cholesterol ester accumulation in macrophages exposed
to LDL oxidised by Cu*? and myeloperoxidase/peroxynitrite
[38, 39]. CD36 activates signalling via TLR2 and TLR6 in
response to lipoteichoic acid and diacylated macrophage-
activity lipopeptide 2 [40, 41]. In addition, a newly described
TLR heterodimer of TLR4/6 has been shown to cooperate
with CD36 in activating NF-xB in response to oxLDL [42]
(Figure 3).

SR-BI and SR-BII share 30% sequence homology with
CD36 and both can bind modified forms of LDL as well as
native HDL, LDL, and VLDL [43] (Figure 3). These receptors
have a major impact on lipoprotein metabolism through two
mechanisms: (1) SR-BI mediates cholesterol transfer to HDL,
and (2) SR-BI facilitates selective delivery of lipoproteins
from HDL to steroidogenic tissues for excretion into bile

and feces in the liver [35]. Although the antiatherogenic
effects of SR-BI have been largely attributed to mediation of
cholesterol ester uptake in the liver, this receptor is highly
expressed on foam cells in human and mouse atherosclerotic
lesions, where it may influence lesion development by
affecting both the uptake of lipoproteins and the efflux of
cholesterol to HDL [44]. The other class D SRs, CD68, and its
murine homolog macrosialin are predominantly expressed
in late endosomes and lysosomes of macrophages and may
play a role in endolysosomal processing for oxLDL [45]
(Figure 3).

2.5. ATP-Binding Cassette Transporters, Subset A and G
(ABCA and ABCG). Free cholesterol released from lyso-
somes and rehydrolysed cholesteryl ester droplets can also
traffic to the plasma membrane and thus be available for
efflux out of the cells [46]. Cholesterol efflux is thought to be
a major process involved in plaque regression when hyperc-
holesterolemia is reversed. The mechanisms and exact route
of cholesterol transport to the plasma membrane are not
fully known, although Golgi-to-plasma membrane vesicular
transport may be involved [47]. Once at the plasma mem-
brane, cholesterol is transferred to the outer leaflet, where
it is removed from cells by ABCA1- and ABCG1l-mediated
transport to apolipoprotein Al and HDL, respectively, or by
“passive diffusion” to cholesterol-poor HDL [48]. As pre-
dicted, genetic deficiencies of ABCA or ABCG could account
for enhanced inflammation in atherosclerosis, especially after
treatment with TLR ligands [49] and result in foam cell
formation and further acceleration of atherosclerosis [50].
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Extensive work in vitro and in vivo has focused on how
sterol-regulated transcription factors, liver X receptors LXRa
and LXRb (LXR), induce ABCA1 and ABCG1 and promote
regression of foam cell lesions through this and other
mechanisms [51]. Free cholesterol (FC) within macrophages
has recently been proposed as an initiator of a proinflam-
matory signalling response in developing atherosclerotic
lesions [52]. Oxysterols, from FC phagocytosis, are LXR
agonists and increase reverse cholesterol transport (RCT)
from macrophages by increasing expression of macrophage
apolipoprotein E (apo E) and the cholesterol efflux trans-
porters ABCA1 and ABCGI. This is likely an important
part of the mechanism for LXR-dependent protection from
atherosclerosis because these effects are not observed in LXR
knockout mice [53]. Because accumulation of FC within
macrophages at sites of atherosclerotic lesions converts them
into foam cells [54] by stimulating RCT, LXR reduces
foam cell formation and lesion cholesterol content directly
(Figure 3). As a therapeutic strategy to promote lesion regres-
sion, investigators have attempted to enhance macrophage
cholesterol efflux by increasing HDL or HDL-like particles or
by increasing ABC transporters [48]. Though no drugs have
yet been approved for this purpose, this approach continues
to be a major focus of cardiovascular drug discovery.

2.6. Apoptosis of Macrophages in Early Atherosclerotic Lesion.
The mechanism and role of macrophage apoptosis in early
lesions are still not well understood. It is difficult to detect
macrophage apoptosis in early lesions because apoptotic
cells are rapidly cleared by the adjacent macrophages
through phagocytosis (known as efferocytosis), which will
be described later in the section of advanced progression
in atherosclerosis (Figure 1). Several studies determined the
effect of apoptosis on the progression of atherosclerosis.
Ldlr—/— mice develop high levels of LDL when placed on a
high-fat diet, because their hepatocytes lack LDL receptors
and thus cannot efficiently eliminate the atherogenic LDL
particles from the blood [55]. In Ldlr—/— mice in which bone
marrow derived cells, including regional macrophages, are
deficient of the proapoptotic protein Bax, the aortic lesions
showed decreased macrophages apoptosis. Additionally,
these lesions were larger and more macrophage-rich [56].
Conversely, Ldlr—/— mice, which lack the prosurvival protein
AIM, showed an increase in apoptosis of early regional
macrophages and developed smaller atherosclerotic lesions
[57]. Thus, the apoptosis of the early regional macrophages
is associated with lesion size and plaque progression. Defi-
ciency of phospholipase Cf33 resulted in enhanced sensitivity
of newly recruited macrophages to oxLDL-induced apoptosis
in early lesions, accompanied by a concomitant decrease in
atherosclerosis [58]. Because knocking out phospholipase
CB3 does not appear to change the mouse phenotype,
this may be an attractive target to modulate macrophage
apoptosis.

3. Advanced Progression in Atherosclerosis

Macrophages in advanced atherosclerosis contribute to the
plaque morphology, thinning the fibrous cap, and necrotic

core, which can lead to increased pro-inflammatory re-
sponses and further apoptotic signals for SMCs, ECs, and
leukocytes within the plaques [59]. The vulnerable plaque is
prone to rupture and induction of thrombosis. In autopsy
specimens containing atherosclerotic lesions, rupture sites
were responsible for the acute vascular events [60]. The
rupture sites, which are located on the shoulder of raised
lesions, are almost always in the areas close to plaques’
necrotic cores, and are associated with the thinning of fibrous
caps. One of the most important questions in atherosclerosis
is how macrophages contribute to this advancement in
plaque progression (Figure 4).

Macrophages decrease intimal myofibroblast-like SMCs
and degradation of collagens [61] (Figure 4). In vitro data
show that macrophages can trigger apoptosis of SMCs by
activating the Fas apoptotic pathway and secreting proapop-
totic TNFa and nitric oxide [62]. Macrophages may also
decrease collagen synthesis in intimal SMCs through the
secretion of macrophage-derived matrix metalloproteinases
(MMPs) to decrease collagen synthesis [63]. MMPs may also
be involved in thinning of the fibrous cap. In a study that
attempted to look directly at plaque disruption, macrophage
overexpression of MMP-9 had little effect on Apoe—/— mice
due to a lack of MMP activation in plaques, but the over-
expression of a constitutively active mutant form of MMP-9
resulted in plaque fissures [64]. Further details about TNFa
and MMPs are discussed below in the biomarkers section.

3.1. Plaque Necrosis and Macrophage Death in Advanced
Atherosclerotic Lesions. Plaque necrosis contributes to in-
flammation, thrombosis, plaque breakdown, and physical
stress on the fibrous cap [65]. Necrotic cores arise from the
combination of apoptosis of macrophages and the phago-
cytic clearance of the apoptotic cells in advanced plaques
[18]. There is emerging evidence that SR-A plays different
roles in early and advanced atherosclerotic lesions. As we
described previously, SR-A has the protective function in
early lesions. However, in advanced atherosclerotic lesions,
in which macrophage cell death leads to necrotic core forma-
tion and plaque destabilisation, SR-A may have important
roles in both the induction of apoptosis and clearance
of these dying cells. In hypercholesterolemia, macrophage
pathways for metabolising modified lipoproteins are thought
to be overwhelmed, leading to a toxic accumulation of free
cholesterol in the cells that result in the endoplasmic reticular
stress. In this setting, the engagement of SR-A pathways
by modified lipoproteins or fucoidan triggers apoptotic
cell death, indicating that the SR-A signalling contributes
to macrophage death and necrotic core formation [66].
However, this proatherosclerotic role is also balanced by the
ability of SR-A to recognise and clear apoptotic cells in a
nonphlogistic manner. These additional functions of SR-A
must be considered when proposing therapies to inhibit this
pathway. Longer-term studies of SR-A manipulation will be
required to determine the impact of this receptor at later
stages of atherosclerosis.

A number of processes in advanced lesions may trigger
macrophage death, and it is almost certain that a combi-
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FiGurek 4: Cellular interactions with macrophages in an advanced lesion. Foam cells accumulate in the intima and undergo apoptosis that
is triggered by cytokines. Efferocytes do not function properly, and apoptotic cells secondarily become necrotic cells, contributing to the
formation of a necrotic core. Necrosis of macrophages and SMCs decrease collagen synthesis to diminish the collagen content of the fibrous

cap, triggering rupture and thrombosis.

nation of factors and processes plays a role in vivo. A
potential role for these processes is supported primarily
by studies with cultured macrophages. The endoplasmic
reticulum (ER) stress, primarily established by Tabas labo-
ratory, may lead significantly to macrophage apoptosis and
generation of necrotic core [67]. The high levels of ER
stresses, such as intracellular oxysterols, lead to activate the
unfolded protein response (UPR) pathway, which increases
the expression of a proapoptotic protein, called CEBP-
homologous protein (CHOP) [68]. The elevation of CHOP
can trigger macrophage apoptosis by several mechanisms,
but recent work shows a specific apoptotic mechanism
involving calcium channel activity in the ER lumen [69].
Most importantly, a deficiency of CHOP in the models of
advanced atherosclerosis suppresses advanced lesions due to
macrophage apoptosis and plaque necrosis. Calcium released
from the ER can trigger apoptosis through excess uptake into
mitochondria that activates calcium/calmodulin-dependent
protein kinase II (CaMKII), which, in turn, promotes
cell apoptosis by activating both Fas death receptor and
mitochondrial membrane permeabilization [69]. Another
system may provide subtle ER stress, in which a “sec-
ond hit” is needed to trigger apoptosis [70] (Figure 3).
In this system, ER stress and macrophage apoptosis are
induced by low-dose ER stressors including thapsigargin
or 7-ketocholesterol, and combination of pattern recog-
nition receptors activation as the “second hits”, each of
which is unable to induce apoptosis by themselves [70]
(Figure 3). An example of PRR activation is activators of
SR-A and TLR 4, such as oxLDL. The other experiment
demonstrated that activators of CD36 and TLR2/6, such as
oxLDL and oxidized PLs (0xPL), can enhance the apoptosis

pathways [67] (Figure 3). The role of SR-A and CD36
as the “second hits” for ER stress-induced apoptosis was
demonstrated by a mouse model in which these receptors
were targeted, with a result that apoptosis of advanced
regional macrophages and plaque necrosis were deceased
[71]. In humans, advanced plaques show similar results
to those seen in mice. Autopsy specimens from human
coronary arteries with heart disease showed a correlation
with expression of markers of the UPR, including CHOP,
apoptosis, and advanced plaque stage [72].

Notably, macrophage apoptosis does not trigger plaque
necrosis. Plaque necrosis and rupture occurs when apop-
totic cells are not cleared sufficiently. Tabas called this
phenomenon efferocytosis, which describes the phagocytic
clearance of apoptotic cells [18]. Efferocytosis in early lesions
prevents cellular necrosis and triggers anti-inflammatory
pathways through TGF-f and the activation of the NF-«B cell
survival pathway (Figure 1) [73]. However, how efferocytosis
becomes defective in advanced lesions is still unknown. It is
assumed that the efferocytosis does not occur in advanced
lesions, resulting in defective anti-inflammatory signalling
(Figure 4) [18].

4. Biomarkers as Risk Factors Associated
with Macrophages in Atherosclerosis

Given the new understanding of inflammation in atheroscle-
rosis and their central role of macrophages, inflamma-
tory biomarkers for disease progression in atherosclerosis
should be independent of cholesterol and regulators of
blood. In this regard, we will discuss biomarkers related to
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macrophages and inflammation in atherosclerosis (Figure 5).
As our understanding of the biology of atherothrombosis
has improved [74], several studies have evaluated a series
of candidate biomarkers of inflammation, oxidative stress,
and thrombosis as potential clinical tools to improve the
prediction of risk in atherosclerosis [75, 76]. Although there
are hundreds of papers that discuss the important functions
of many mediators of atherosclerosis, the distinction between
biomarkers versus mediators of disease has proven quite
confusing. As discussed above, a particular molecule may
participate clearly in a pathogenic pathway but not serve
as an effective biomarker. For example, soluble VCAM-1 is
not a useful indicator of risk of future myocardial infarction
in apparently healthy men [77]. However, researchers have
demonstrated that VCAM-1 is essential for the initiation of
an atherosclerotic lesion [78].

4.1. Involvement of Cytokines Secreted by
Macrophages in Atherosclerosis

4.1.1. Tumour Necrosis Factor-a (TNF-a). TNF-a regulates
a number of critical cell functions including cell prolifera-
tion, survival, differentiation, and apoptosis. Macrophages
produce TNF-a induced by TLRs and are also highly
responsive to TNF-a through the TNF receptor (TNFR)
[79, 80]. One of the various functions is a pivotal role
in orchestrating the production of a pro-inflammatory
cytokine cascade. TNF-« is thus considered to be a “master
regulator” of pro-inflammatory cytokine production [81].
TNF-a-deficient Apoe—/— mice show a reduction in lesion
formation, with a concomitant decrease in VCAM-1 and

ICAM-1 expression, which are important for monocyte
rolling on endothelial cells as mentioned previously [82].
In contrast, mice deficient in the TNF-a receptor (TNFR)
develop larger lesions than control mice [83]. In addition
to these roles, Witsell and Schook [84] demonstrated that
TNF-a has macrophage differentiation capabilities. TNF-«
gene transcripts are expressed during differentiation of bone-
marrow-derived macrophages. TNF-« affects the develop-
ment of atherosclerosis at the fatty streak stage, and cleavage
of TNF is an important step in activating the proatherogenic
properties of TNF-« [85].

4.1.2. Interleukin 1 (IL-1). 1L-1 stimulation initiates leuko-
cyte adhesion to ECs for macrophage transmigration and
contributes to slowly progressing inflammatory processes
that take place in atherosclerosis [86]. Studies involving
blocking IL-1ra antibodies in Apoe—/— mice and with
Ldlr—/— transgenic mice that overexpress IL-1 or that have
a deficiency in IL-1f clearly show that IL-1 is involved in
atherogenesis [87]. Yet, although the circulating levels of IL-
1, even in severe inflammatory diseases, are undetectable, the
availability of anti-IL-1 antibodies will likely be very useful in
the future [86].

4.1.3. IL-12. 1L-12 is a key Thl cytokine that is produced
mainly by plaque macrophages and stimulates the prolifer-
ation and differentiation of NK cells and T cells. IL-12 is
detected in the aortas of Apoe—/— mice, and the adminis-
tration of IL-12 results in enhanced lesion size in Apoe—/—
recipients [88]. IL-12 p40-deficient Il12b—/—Apoe—/— mice
have a 52% reduction of the plaque area at 30 weeks, but
not at 45 weeks of age [89]. T lymphocyte recruitment
into the intima was accelerated in early and advanced
atherosclerotic lesions [16]. Most of the T cells are TCRaf3
CD4+ cells with an activated phenotype, and a few express
CD8+ or TCRyé [90]. Interestingly, analysing CD4+ T cells
showed that IL-12 upregulates CCR5 expression, chemotaxis,
and transendothelial migration toward CCL5 through IL-12
receptors [91].

4.1.4. IL-18. IL-18 is produced by macrophages and admin-
istration of IL-18 antibodies accelerates development of
atherosclerotic lesions in Apoe—/— mice. IL-18 seems to
enhance atherosclerosis by increasing IFN-y [92]. Although
IL-18 is not currently considered a useful tool for the
presence of subclinical atherosclerosis in general population
[93], the AtheroGene Study indicates that high serum
concentrations of IL-18 likely cause cardiovascular death in
patients with coronary artery disease [94].

4.1.5. Soluble CD40 Ligand (CD40L). Macrophages, T lym-
phocytes, ECs, SMCs, and DCs express CD40L, whereas
CD40 is found on macrophages, ECs, and SMCs from
atherosclerosis-prone vessels [9]. The interaction of CD40
with CD40L plays a significant role in thrombosis, but it
also contributes to modulation of the immune response
in plaques. Treatment with antibodies against CD40L
reduces atherosclerosis in Ldlr—/— mice, with a concomitant



decrease in macrophages and T cells and a reduction
in VCAM-1 expression [95]. Further experiments using
Cd40lg—/—Apoe—/— mice have demonstrated a proathero-
genic role for CD40L in advanced atherosclerosis by pro-
moting lipid core formation and plaque destabilisation [96].
Because preanalytical sampling conditions critically influ-
ence the soluble CD40L concentration, only plasma samples
are appropriate for CD40L measurement [97]. Although
CDA40L is critical for the development of advanced lesions
in animal experiments, the Dallas Heart Study suggests that
CD40L is not identified in subclinical atherosclerosis in the
general population [98]. However, high concentrations of
CDA40L are associated with increased vascular risk in healthy
women according the results of the Women’s Health Study
[99].

4.2. Anti-Inflammation Factors

4.2.1. IL-10. 1L-10, which is derived from monocytes and
macrophages, is an important anti-inflammatory regula-
tor for the development of advanced atherosclerosis. As
expected, IL-10-deficient mice showed a decreased amount
of collagen, induced by IFN-y production in the atheroscle-
rotic vessels [100]. Studies with II10—/—Apoe—/— mice
confirmed the atheroprotective properties of IL-10 in early
stage atherosclerosis and showed that IL-10 promotes the
stability of advanced plaques [101]. IL-10 is not a prognostic
marker for cardiovascular diseases. Although, it is possible
to test serum concentrations of IL-10, we anticipate future
studies on the involvement of this marker.

4.2.2. TGF-f. Several cell types, including macrophages,
produce TGF-f. Studies with animal models suggest that
local (rather than systemic) alterations in TGF-f3 activity may
be important during atherogenesis and that TGF-f levels
in tissues may be more informative than those in blood
[102]. Apoe—/— mice that express a dominant-negative
form of TGF-f receptor II in T cells clearly demonstrated
substantial roles for TGF-f in controlling the Th1 response in
atherosclerosis [103]. Several studies suggest that TGF-3 lev-
els are reduced at sites of atherosclerotic plaque development.
Introducing blocking antibodies against TGF-f3 or treatment
with soluble TGF-f receptor II accelerates atherosclerosis
with a significant loss of collagen content [87]. Although
a direct measure of the ligand is technically demanding,
associations between heart disease and genetic polymor-
phisms that are known to modulate ligand production
might prove more accessible. Furthermore, such associations
would support a causal relationship between altered TGE-
B production and diseases [102]. A number of studies have
examined the association between these polymorphisms and
cardiovascular disease status. A large study of more than 6000
individuals who were involved in the Rotterdam study found
an association between TGF-S1 polymorphisms and stroke
(another pathology associated with plaque rupture, but in
a different vascular field) [104]. Recently, using autopsy
sections of atherosclerosis in a Japanese population, Oda et
al. observed a significant association between atherosclerosis
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and the only TGF-S1 gene polymorphism, at least in some
artery fields [105]. Taken together, these studies suggest
that decreasing production of TGF-f1 ligands might favour
unstable lesion phenotypes without affecting the plaque
burden, once again highlighting the need to carefully select
the cardiovascular endpoint under study.

4.3. Chemokines Produced by Macrophages in Atherosclerosis

4.3.1. Chemokine Receptor CCR5. CCRS5 was initially known
as a coreceptor on macrophages for HIV infection. However,
evidence now supports a role for CCR5 and its ligands CCL3
(MIP-1a), CCL4 (MIP-1b), and CCL5 (RANTES) in the
initiation and progression of atherosclerosis [106]. Although
there is no CCR5 in normal coronary arteries, CCR5
immunoreactivity is detected in atherosclerotic lesions,
suggesting colocalisation of VSMC with macrophages [107].
It has been suggested that CCR5 may be more impor-
tant in the later stages of plaque development [108]. A
recent study found more than 50% reduction in the size
of plaque lesions in the aortic root and the abdominal
aorta of Apoe—/—Ccr5—/— mice and fewer macrophages
in lesions compared with Apoe—/— mice [109]. The com-
bined inhibition of three chemokine-receptor systems,
MCP-1 (CCL2)/CCR2, fractalkine (CX3CL1)/CX3CRI1, and
CCL5/CCR5, was reported to abolish development of
atherosclerosis in an Apoe—/— mouse model [110], sup-
porting nonredundancy of these chemokines with regard to
monocyte mobilisation in atherosclerosis. Compared with
chemokine receptors, the ligands CCL3, 4, and 5 seem to be
better choices for biomarkers in atherosclerosis because it is
possible to test their mRNA levels in circulating leukocytes.
The role of CCL3 and CCL4 acting on CCR5 in atherogenesis
is less well defined, but these chemokines also appear to be
important in atheroma progression and inflammatory cell
recruitment into plaques [111]. In particular, findings from
animal models indicate that CCL5 plays a greater role in
the development of atherosclerotic plaque than other CCR5
ligands [112].

4.4. Macrophage Migration Inhibitory Factor (MIF). MIF is
produced by macrophages in early and advanced atheroscle-
rotic lesions. The role of MIF with respect to inflammatory
cell recruitment in atherosclerotic plaque progression has
been described [113]. A study of Mif—/—Ldlr—/— mice
suggested that MIF is involved in atherosclerosis through
the regulation of lipid deposition, protease expression,
and intimal thickening [114]. Because MIF can be readily
measured in plasma and other tissue fluids in different
disease states [115], the different roles of MIF as a biomarker
in pathogenesis and progression of atherosclerosis are an
important area of inquiry.

4.5. Inflammation-Regulating Enzymes: Matrix Metallopro-
teinases (MMUPs). Macrophage-derived MMPs are involved
in the thinning of the fibrous cap [116]. MMPs are a family of
protease-activated enzymes that degrade extracellular matrix
(ECM) proteins. The regulation of MMPs is complex; once
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activated, an MMP can activate others. Studies showing
a temporal and spatial correlation between the presence
of macrophages in shoulder plaque regions, thinning of
the fibrous cap in these regions, MMP-2 and MMP-9,
have stimulated great interests in the potential roles of
MMPs in plaque rupture [117]. According to the follow-
up data, plasma MMP-9 during acute coronary syndromes
is increased two to three times compared with controls
[118]. However, whether MMP-9 becomes the independent
prognostic marker still requires further and large-scale
research. A targeted approach that inhibits MMPs has already
been considered [119].

4.6. Proinflammatory Mediators Associated with Macrophage:
C-Reactive Protein (CRP). Multiple large-scale studies
demonstrate that CRP strongly and independently predicts
adverse cardiovascular events, including myocardial infarc-
tion, ischemic stroke, and sudden cardiac death because of
atherosclerosis [120, 121]. However, these mechanisms have
not been comprehensively identified. CRP is found close
to LDL and macrophages within atherosclerotic plaques.
Recently, several reports demonstrated that CRP could
modulate endothelial functions and leukocyte activities.
CRP also induces the production of IL-la, IL-1f, IL-6,
CXCL1, and CXCL8 by human monocytes in vitro. In
contrast to these proinflammatory properties, CRP also
displays anti-inflammatory effects through the upregulation
of liver X receptor-a [122]. CRP binds to minimally
modified (mm) LDL to prevent the foam cell formation
from macrophages [123]. Based on animal experiments
and the cardiovascular risk stratification in primary
prevention populations, the Centers for Disease Control and
Prevention and the American Heart Association assigned
CRP as an independent marker of cardiovascular risk. The
recommended cut-off points in clinical practice are 1 mg/L
for low-risk and 3 mg/L for high-risk individuals [124].

4.7. Superoxide Production: Reactive Oxygen Species (ROS).
Extensive ROS has been implicated in atherosclerosis by
inducing the chronic activation of vascular endothelium
and components of immune systems. It has been demon-
strated that superoxide production from both macrophages
and vascular cells plays a critical role in atherogene-
sis [125]. When ROS production exceeds the scaveng-
ing capacity of cellular antioxidant systems, the resulting
oxidative stresses damage lipids, membranes, proteins, and
DNAs.

4.8. Emerging Future Biomarkers: MicroRNAs (miRNAs).
miRNAs are highly conserved single-stranded noncoding
small RNAs that control cellular functions by either degrad-
ing mRNAs or inhibiting their translation [126]. The
involvement of miRNAs in different aspects of cardiovascular
diseases has emerged as an important research field. The
dysregulation of many individual miRNAs has been linked to
the development and progression of cardiovascular diseases.
The forced expression or suppression of a single miRNA
is enough to cause or alleviate pathological changes. The

roles of miRNAs in the pathogenesis of heart and vascular
diseases suggest the possibility of using miRNAs as a
potential diagnostic biomarker and/or therapeutic target for
cardiovascular diseases [127].

As previously discussed, a critical step in the development
of chronic inflammatory atherosclerotic diseases is the
migration of circulating monocytes into the subendothelial
space and their differentiation into macrophages. A recent
study showed that miR-125a-5p mediates lipid uptake and
decreases the secretion of some inflammatory cytokines,
including IL-2, IL-6, TNF-a, and TGF-f from oxLDL-
stimulated monocyte-derived macrophages [128]. The target
gene of miR-125a-5p has been found to be ORP9, which has
diverse roles in the regulation of lipid metabolism, including
vesicle transport, and cell cycle regulation and differentiation
[129]. miR-33 appears to regulate both HDL biogenesis
in the liver and cellular cholesterol efflux [130]. miR-33
is an intronic miRNA located within the gene encoding
sterol-regulatory element-binding factor-2, a transcriptional
regulator of cholesterol synthesis. miR-33 modulates the
expression of genes that are involved in cellular cholesterol
transport. [t appears to be regulated by dietary cholesterol in
vivo and have several roles in cholesterol homeostasis [131].
miR-33 targets the 3’ UTR of ABCA1 in mouse peritoneal
macrophages and human cells [131, 132], resulting in
reduced atherogenic cholesterol efflux to apolipoprotein
Al. Similarly, in a mouse model, the lentiviral delivery of
miR-33 represses ABCA1 expression in the liver, leading
to a reduction in circulating HDL levels, whereas mice
expressing anti-miR-33 demonstrate increased plasma HDL
levels [132]. Clearly, miR-33 is a promising target for the
treatment of abnormalities in lipoprotein metabolism that
frequently contributes to atherosclerosis.

5. Conclusion

The accumulation of macrophages laden with cholesterol in
the vascular intima is the hallmark of fatty plaque formation
in atherosclerosis. Understanding the mechanisms involving
macrophages is critical for the prognosis, diagnosis, and
treatment of atherosclerosis. However, because most papers
cited in this paper show data from cultured macrophages
and animal models, these data may not completely reflect
the process in human diseases. As noted by Rosenfeld et al.,
mouse atherosclerosis is not a good model for true plaque
rupture or thrombosis [133]. In contrast, some papers on
atherosclerosis emphasise the fact that many genes involved
in macrophages have “major and critical” functions for
plaques, which complicates the process of determining useful
biomarkers for atherosclerosis. Human genetic studies and
mechanism-based clinical trials should be performed in the
future.

References

[1] B. Dahlof, “Cardiovascular disease risk factors: epidemiology
and risk assessment,” American Journal of Cardiology, vol.
105, no. 1, pp. 3A-9A, 2010.



10

[2] D. M. Lloyd-Jones, “Cardiovascular risk prediction: basic
concepts, current status, and future directions,” Circulation,
vol. 121, no. 15, pp. 1768-1777, 2010.

[3] G. K. Hansson, “Mechanisms of disease: inflammation,
atherosclerosis, and coronary artery disease,” New England
Journal of Medicine, vol. 352, no. 16, pp. 1685-1696, 2005.

[4] C. Mayerl, M. Lukasser, R. Sedivy, H. Niederegger, R.
Seiler, and G. Wick, “Atherosclerosis research from past to
present—on the track of two pathologists with opposing
views, Carl von Rokitansky and Rudolf Virchow,” Virchows
Archiv, vol. 449, no. 1, pp. 96-103, 2006.

[5] R. Ross, “Atherosclerosis—an inflammatory disease,” New
England Journal of Medicine, vol. 340, no. 2, pp. 115-126,
1999.

[6] G. K. Hansson and P. Libby, “The immune response
in atherosclerosis: a double-edged sword,” Nature Reviews
Immunology, vol. 6, no. 7, pp. 508519, 2006.

[7] E. Galkina and K. Ley, “Leukocyte influx in atherosclerosis,”
Current Drug Targets, vol. 8, no. 12, pp. 1239-1248, 2007.

[8] R.G. Gerrity, H. K. Naito, M. Richardson, and C. J. Schwartz,
“Dietary induced atherogenesis in swine. Morphology of the
intima in prelesion stages,” American Journal of Pathology,
vol. 95, no. 3, pp. 775-792, 1979.

[9] E. Galkina and K. Ley, “Immune and inflammatory mecha-
nisms of atherosclerosis,” Annual Review of Immunology, vol.
27, pp. 165-197, 2009.

[10] R. R. S. Packard and P. Libby, “Inflammation in atheroscle-
rosis: from vascular biology to biomarker discovery and risk
prediction,” Clinical Chemistry, vol. 54, no. 1, pp. 24-38,
2008.

[11] E Geissmann, S. Jung, and D. R. Littman, “Blood monocytes
consist of two principal subsets with distinct migratory
properties,” Immmunity, vol. 19, no. 1, pp. 71-82, 2003.

[12] Y. V. Bobryshev, “Monocyte recruitment and foam cell
formation in atherosclerosis,” Micron, vol. 37, no. 3, pp. 208—
222, 2006.

[13] K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh,

“Getting to the site of inflammation: the leukocyte adhesion

cascade updated,” Nature Reviews Immunology, vol. 7, no. 9,

pp. 678-689, 2007.

J. Mestas and K. Ley, “Monocyte-endothelial cell interactions

in the development of atherosclerosis,” Trends in Cardiovas-

cular Medicine, vol. 18, no. 6, pp. 228-232, 2008.

P. Kumar, S. Hosaka, and A. E. Koch, “Soluble E-selectin

induces monocyte chemotaxis through Src family tyrosine

kinases,” Journal of Biological Chemistry, vol. 276, no. 24, pp.

21039-21045, 2001.

[16] E. Galkina and K. Ley, “Vascular adhesion molecules in
atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular
Biology, vol. 27, no. 11, pp. 2292-2301, 2007.

[17] M. Kamei and C. V. Carman, “New observations on the

trafficking and diapedesis of monocytes,” Current Opinion in

Hematology, vol. 17, no. 1, pp. 43-52, 2010.

I. Tabas, “Macrophage death and defective inflammation

resolution in atherosclerosis,” Nature Reviews Immunology,

vol. 10, no. 1, pp. 36-46, 2010.

[19] E K. Swirski, P. Libby, E. Aikawa et al., “Ly-6Chi monocytes

dominate hypercholesterolemia-associated monocytosis and

give rise to macrophages in atheromata,” Journal of Clinical

Investigation, vol. 117, no. 1, pp. 195-205, 2007.

E Tacke, D. Alvarez, T. J. Kaplan et al., “Monocyte subsets

differentially employ CCR2, CCR5, and CX3CR1 to accu-

mulate within atherosclerotic plaques,” Journal of Clinical

Investigation, vol. 117, no. 1, pp. 185-194, 2007.

(14

(15

(18

(20

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

[31]

(32]

[34]

(35]

Mediators of Inflammation

B. Passlick, D. Flieger, and H. W. Ziegler-Heitbrock, “Identi-
fication and characterization of a novel monocyte subpopu-
lation in human peripheral blood,” Blood, vol. 74, no. 7, pp.
2527-2534, 1989.

K. E. Paulson, S. N. Zhu, M. Chen, S. Nurmohamed, J.
Jongstra-Bilen, and M. I. Cybulsky, “Resident intimal den-
dritic cells accumulate lipid and contribute to the initiation
of atherosclerosis,” Circulation Research, vol. 106, no. 2, pp.
383-390, 2010.

J. L. Johnson and A. C. Newby, “Macrophage heterogeneity in
atherosclerotic plaques,” Current Opinion in Lipidology, vol.
20, no. 5, pp. 370-378, 2009.

A. Mantovani, A. Sica, and M. Locati, “Macrophage polar-
ization comes of age,” Immunity, vol. 23, no. 4, pp. 344-346,
2005.

A. Mantovani, C. Garlanda, and M. Locati, “Macrophage
diversity and polarization in atherosclerosis: a question of
balance,” Arteriosclerosis, Thrombosis, and Vascular Biology,
vol. 29, no. 10, pp. 1419-1423, 2009.

S. Prokop, E L. Heppner, H. H. Goebel, and W. Stenzel,
“M2 polarized macrophages and giant cells contribute to
myofibrosis in neuromuscular sarcoidosis,” American Journal
of Pathology, vol. 178, no. 3, pp. 1279-1286, 2011.

W. Gillespie, N. Tyagi, and S. C. Tyagi, “Role of PPARy,
a nuclear hormone receptor in neuroprotection,” Indian
Journal of Biochemistry and Biophysics, vol. 48, no. 2, pp. 73—
81, 2011.

G. D. Norata, A. Pirillo, E. Ammirati, and A. L. Catapano,
“Emerging role of high density lipoproteins as a player in the
immune system,” Atherosclerosis, vol. 220, no. 1, pp. 11-21,
2012.

A. Kadl, A. K. Meher, P. R. Sharma et al., “Identification
of a novel macrophage phenotype that develops in response
to atherogenic phospholipids via Nrf2,” Circulation Research,
vol. 107, no. 6, pp. 737746, 2010.

A. P. West, L. E. Brodsky, C. Rahner et al., “TLR signalling
augments macrophage bactericidal activity through mito-
chondrial ROS,” Nature, vol. 472, no. 7344, pp. 476-480,
2011.

A. Kol, A. H. Lichtman, R. W. Finberg, P. Libby, and E.
A. Kurt-Jones, “Cutting edge: Heat shock protein (HSP) 60
activates the innate immune response: CD14 is an essential
receptor for HSP60 activation of mononuclear cells,” Journal
of Immunology, vol. 164, no. 1, pp. 13-17, 2000.

Y. I. Miller, S. Viriyakosol, C. J. Binder, J. R. Feramisco, T. N.
Kirkland, and J. L. Witztum, “Minimally modified LDL binds
to CDI14, induces macrophage spreading via TLR4/MD-
2, and inhibits phagocytosis of apoptotic cells,” Journal of
Biological Chemistry, vol. 278, no. 3, pp. 1561-1568, 2003.

A. E. Mullick, P. S. Tobias, and L. K. Curtiss, “Modulation
of atherosclerosis in mice by Toll-like receptor 2, Journal of
Clinical Investigation, vol. 115, no. 11, pp. 3149-3156, 2005.
Y. Sun, M. Ishibashi, T. Seimon et al., “Free cholesterol
accumulation in macrophage membranes activates Toll-like
receptors and p38 Mitogen-activated protein kinase and
induces cathepsin K,” Circulation Research, vol. 104, no. 4,
Pp. 455-465, 2009.

K. J. Moore and M. W. Freeman, “Scavenger receptors
in atherosclerosis: beyond lipid uptake,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1702—
1711, 2006.

P. I. Mikinen, J. P. Lappalainen, S. E. Heinonen et al,
“Silencing of either SR-A or CD36 reduces atherosclerosis in
hyperlipidaemic mice and reveals reciprocal upregulation of



Mediators of Inflammation

&
)

(44]

these receptors,” Cardiovascular Research, vol. 88, no. 3, pp.
530-538, 2010.

J. Jalkanen, P. Leppidnen, O. Nirvinen, D. R. Greaves, and
S. Yla-Herttuala, “Adenovirus-mediated gene transfer of a
secreted decoy human macrophage scavenger receptor (SR-
AI) in LDL receptor knock-out mice,” Atherosclerosis, vol.
169, no. 1, pp. 95-103, 2003.

M. Febbraio, E. A. Podrez, J. D. Smith et al., “Targeted
disruption of the class B, scavenger receptor CD36 protects
against atherosclerotic lesion development in mice,” Journal
of Clinical Investigation, vol. 105, no. 8, pp. 1049-1056, 2000.
E. A. Podrez, M. Febbraio, N. Sheibani et al., “Macrophage
scavenger receptor CD36 is the major receptor for LDL
modified by monocyte-generated reactive nitrogen species,”
Journal of Clinical Investigation, vol. 105, no. 8, pp. 1095—
1108, 2000.

K. Hoebe, P. Georgel, S. Rutschmann et al., “CD36 is a sensor
of diacylglycerides,” Nature, vol. 433, no. 7025, pp. 523-527,
2005.

L. M. Stuart, J. Deng, J. M. Silver et al., “Response to
Staphylococcus aureus requires CD36-mediated phagocyto-
sis triggered by the COOH-terminal cytoplasmic domain,”
Journal of Cell Biology, vol. 170, no. 3, pp. 477-485, 2005.
C.R. Stewart, L. M. Stuart, K. Wilkinson et al., “CD36 ligands
promote sterile inflammation through assembly of a Toll-like
receptor 4 and 6 heterodimer,” Nature Immunology, vol. 11,
no. 2, pp. 155-161, 2010.

S. Acton, A. Rigotti, K. T. Landschulz, S. Xu, H. H. Hobbs,
and M. Kriegert, “Identification of scavenger receptor SR-BI
as a high density lipoprotein receptor,” Science, vol. 271, no.
5248, pp. 518-520, 1996.

S. D. Covey, M. Krieger, W. Wang, M. Penman, and B.
L. Trigatti, “Scavenger receptor class B type I-mediated
protection against atherosclerosis in LDL receptor-negative
mice involves its expression in bone marrow-derived cells,”
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no.
9, pp. 1589-1594, 2003.

K. Daub, D. Siegel-Axel, T. Schonberger et al., “Inhibition of
foam cell formation using a soluble CD68-Fc fusion protein,”
Journal of Molecular Medicine, vol. 88, no. 9, pp. 909-920,
2010.

Y. Zhang, F. C. McGillicuddy, C. C. Hinkle et al., “Adipocyte
modulation of high-density lipoprotein cholesterol,” Circula-
tion, vol. 121, no. 11, pp. 1347-1355, 2010.

T. Y. Chang, C. C. Y. Chang, N. Ohgami, and Y. Yamauchi,
“Cholesterol sensing, trafficking, and esterification,” Annual
Review of Cell and Developmental Biology, vol. 22, pp. 129—
157, 2006.

G. H. Rothblat and M. C. Phillips, “High-density lipoprotein
heterogeneity and function in reverse cholesterol transport,”
Current Opinion in Lipidology, vol. 21, no. 3, pp. 229-238,
2010.

A. R. Tall, L. Yvan-Charvet, N. Terasaka, T. Pagler, and
N. Wang, “HDL, ABC transporters, and cholesterol efflux:
implications for the treatment of atherosclerosis,” Cell
Metabolism, vol. 7, no. 5, pp. 365-375, 2008.

L. Yvan-Charvet, M. Ranalletta, N. Wang et al., “Combined
deficiency of ABCA1 and ABCG1 promotes foam cell accu-
mulation and accelerates atherosclerosis in mice,” Journal of
Clinical Investigation, vol. 117, no. 12, pp. 3900-3908, 2007.
A. C. Calkin and P. Tontonoz, “Liver X receptor signaling
pathways and atherosclerosis,” Arteriosclerosis, Thrombosis,
and Vascular Biology, vol. 30, no. 8, pp. 1513-1518, 2010.

(52]

(53]

[54]

(55]

(56]

[57]

(58]

[59]

(60]

(64]

11

P. Duewell, H. Kono, K. J. Rayner et al., “NLRP3 inflam-
masomes are required for atherogenesis and activated by
cholesterol crystals,” Nature, vol. 464, no. 7293, pp. 1357—
1361, 2010.

R. K. Tangirala, E. D. Bischoff, S. B. Joseph et al., “Iden-
tification of macrophage liver X receptors as inhibitors
of atherosclerosis,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 99, no. 18, pp.
11896-11901, 2002.

S. Parthasarathy and S. M. Rankin, “Role of oxidized
low density lipoprotein in atherogenesis,” Progress in Lipid
Research, vol. 31, no. 2, pp. 127-143, 1992.

J. S. Evangelho, K. R. Casali, C. Campos, K. De Angelis, A. B.
G. Veiga, and K. Rigatto, “Hypercholesterolemia magnitude
increases sympathetic modulation and coagulation in LDLr
knockout mice,” Autonomic Neuroscience, vol. 159, no. 1-2,
pp. 98-103, 2011.

J. Liu, D. P. Thewke, Y. R. Su, M. E Linton, S. Fazio,
and M. S. Sinensky, “Reduced macrophage apoptosis is
associated with accelerated atherosclerosis in low-density
lipoprotein receptor-null mice,” Arteriosclerosis, Thrombosis,
and Vascular Biology, vol. 25, no. 1, pp. 174-179, 2005.

S. Arai, J. M. Shelton, M. Chen et al., “A role for the
apoptosis inhibitory factor AIM/Spa/Api6 in atherosclerosis
development,” Cell Metabolism, vol. 1, no. 3, pp. 201-213,
2005.

Z. Wang, B. Liu, P. Wang et al., “Phospholipase C f33
deficiency leads to macrophage hypersensitivity to apoptotic
induction and reduction of atherosclerosis in mice,” Journal
of Clinical Investigation, vol. 118, no. 1, pp. 195-204, 2008.

I. Tabas, “Consequences and therapeutic implications of
macrophage apoptosis in atherosclerosis: the importance
of lesion stage and phagocytic efficiency,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 25, no. 11, pp. 2255~
2264, 2005.

D. A. Wolf, A. P. Burke, K. V. Patterson, and R. Virmani,
“Sudden death following rupture of a right ventricular
aneurysm 9 months after ablation therapy of the right ven-
tricular outflow tract,” Pacing and Clinical Electrophysiology,
vol. 25, no. 7, pp. 1135-1137, 2002.

I. Tabas, A. Tall, and D. Accili, “The impact of macrophage
insulin resistance on advanced atherosclerotic plaque pro-
gression,” Circulation Research, vol. 106, no. 1, pp. 58-67,
2010.

J. J. Boyle, P. L. Weissberg, and M. R. Bennett, “Tumor necro-
sis factor-a promotes macrophage-induced vascular smooth
muscle cell apoptosis by direct and autocrine mechanisms,”
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no.
9, pp- 1553-1558, 2003.

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J.
Y. Westcott, and P. M. Henson, “Macrophages that have
ingested apoptotic cells in vitro inhibit proinflammatory
cytokine production through autocrine/paracrine mecha-
nisms involving TGF-f3, PGE2, and PAE” Journal of Clinical
Investigation, vol. 101, no. 4, pp. 890-898, 1998.

P. J. Gough, I. G. Gomez, P. T. Wille, and E. W. Raines,
“Macrophage expression of active MMP-9 induces acute
plaque disruption in apoE-deficient mice,” Journal of Clinical
Investigation, vol. 116, no. 1, pp. 59-69, 2006.

R. Virmani, A. P. Burke, F. D. Kolodgie, and A. Farb,
“Vulnerable plaque: the pathology of unstable coronary
lesions,” Journal of Interventional Cardiology, vol. 15, no. 6,
pp. 439-446, 2002.



12

(6]

(70]

(81]

T. DeVries-Seimon, Y. Li, M. Y. Pin et al., “Cholesterol-
induced macrophage apoptosis requires ER stress pathways
and engagement of the type A scavenger receptor,” Journal of
Cell Biology, vol. 171, no. 1, pp. 61-73, 2005.

L. Tabas, “The role of endoplasmic reticulum stress in the
progression of atherosclerosis,” Circulation Research, vol. 107,
no. 7, pp. 839-850, 2010.

H. Zinszner, M. Kuroda, X. Wang et al., “CHOP is implicated
in programmed cell death in response to impaired function
of the endoplasmic reticulum,” Genes and Development, vol.
12, no. 7, pp. 982-995, 1998.

A. Diwan, S. J. Matkovich, Q. Yuan et al., “Endoplasmic
reticulum-mitochondria crosstalk in NIX-mediated murine
cell death,” Journal of Clinical Investigation, vol. 119, no. 1,
pp. 203-212, 2009.

T. A. Seimon, A. Obstfeld, K. J. Moore, D. T. Golenbock,
and 1. Tabas, “Combinatorial pattern recognition receptor
signaling alters the balance of life and death in macrophages,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 103, no. 52, pp. 19794-19799, 2006.

J. J. Manning-Tobin, K. J. Moore, T. A. Seimon et al.,
“Loss of SR-A and CD36 activity reduces atherosclerotic
lesion complexity without abrogating foam cell formation
in hyperlipidemic mice,” Arteriosclerosis, Thrombosis, and
Vascular Biology, vol. 29, no. 1, pp. 19-26, 2009.

M. Myoishi, H. Hao, T. Minamino et al., “Increased endo-
plasmic reticulum stress in atherosclerotic plaques associated
with acute coronary syndrome,” Circulation, vol. 116, no. 11,
pp. 1226-1233, 2007.

P. M. Henson, D. L. Bratton, and V. A. Fadok, “Apoptotic cell
removal,” Current Biology, vol. 11, no. 19, pp. R795-R805,
2001.

P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420,
no. 6917, pp. 868-874, 2002.

P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and
atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135-1143,
2002.

S. Tsimikas, J. T. Willerson, and P. M. Ridker, “C-reactive
protein and other emerging blood biomarkers to optimize
risk stratification of vulnerable patients,” Journal of the
American College of Cardiology, vol. 47, no. 8, pp. C19-C31,
2006.

J. A. De Lemos, C. H. Hennekens, and P. M. Ridker, “Plasma
concentration of soluble vascular cell adhesion molecule-1
and subsequent cardiovascular risk,” Journal of the American
College of Cardiology, vol. 36, no. 2, pp. 423-426, 2000.

A. Kawakami, M. Aikawa, P. Alcaide, F. W. Luscinskas,
P. Libby, and E M. Sacks, “Apolipoprotein CIII induces
expression of vascular cell adhesion molecule-1 in vascular
endothelial cells and increases adhesion of monocytic cells,”
Circulation, vol. 114, no. 7, pp. 681-687, 2006.

J. L. Flynn, M. M. Goldstein, J. Chan et al., “Tumor necrosis
factor-a is required in the protective immune response
against mycobacterium tuberculosis in mice,” Immunity, vol.
2, n0. 6, pp. 561-572, 1995.

D. R. Wesemann and E. N. Benveniste, “STAT-1a and
IFN-y as modulators of TNF-« signaling in macrophages:
regulation and functional implications of the TNF receptor
1:STAT-1a complex,” Journal of Immunology, vol. 171, no. 10,
pp. 5313-5319, 2003.

R. N. Maini, M. J. Elliott, E M. Brennan, and M. Feld-
mann, “Beneficial effects of tumour necrosis factor-alpha
(TNF-«) blockade in rheumatoid arthritis (RA),” Clinical

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[91]

(92]

(93]

[94]

[95]

[96]

[97]

(98]

Mediators of Inflammation

and Experimental Immunology, vol. 101, no. 2, pp. 207-212,
1995.

H. Ohta, H. Wada, T. Niwa et al., “Disruption of tumor
necrosis factor-a gene diminishes the development of
atherosclerosis in ApoE-deficient mice,” Atherosclerosis, vol.
180, no. 1, pp. 11-17, 2005.

S. A. Schreyer, J. J. Peschon, and R. C. LeBoeuf, “Accelerated
atherosclerosis in mice lacking tumor necrosis factor receptor
p55,” Journal of Biological Chemistry, vol. 271, no. 42, pp.
26174-26178, 1996.

A. L. Witsell and L. B. Schook, “Tumor necrosis factor « is
an autocrine growth regulator during macrophage differen-
tiation,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 89, no. 10, pp. 4754-4758, 1992.
M. Canault, F Peiretti, M. Poggi et al., “Progression of
atherosclerosis in ApoE-deficient mice that express distinct
molecular forms of TNF-alpha,” Journal of Pathology, vol.
214, no. 5, pp. 574-583, 2008.

C. A. Dinarello, “A clinical perspective of IL-1f as the gate-
keeper of inflammation,” European Journal of Immunology,
vol. 41, no. 5, pp. 1203-1217, 2011.

A. Tedgui and Z. Mallat, “Cytokines in atherosclerosis:
pathogenic and regulatory pathways,” Physiological Reviews,
vol. 86, no. 2, pp. 515-581, 2006.

T. S. Lee, H. C. Yen, C. C. Pan, and L. Y. Chau, “The role of
interleukin 12 in the development of atherosclerosis in apoE-
deficient mice,” Arteriosclerosis, Thrombosis, and Vascular
Biology, vol. 19, no. 3, pp. 734-742, 1999.

P. Davenport and P. G. Tipping, “The role of interleukin-
4 and interleukin-12 in the progression of atherosclerosis
in apolipoprotein E-deficient mice,” American Journal of
Pathology, vol. 163, no. 3, pp. 1117-1125, 2003.

G. Wick, M. Romen, A. Amberger et al., “Atherosclerosis,
autoimmunity, and vascular-associated lymphoid tissue,”
FASEB Journal, vol. 11, no. 13, pp. 1199-1207, 1997.

X. Zhang, A. Niessner, T. Nakajima et al., “Interleukin 12
induces T-cell recruitment into the atherosclerotic plaque,”
Circulation Research, vol. 98, no. 4, pp. 524-531, 2006.

S. C. Whitman, P. Ravisankar, and A. Daugherty,
“Interleukin-18 enhances atherosclerosis in apolipoprotein
E(-/-) mice through release of interferon-gamma,”

Circulation research, vol. 90, no. 2, pp. E34-E38, 2002.

A. Zirlik, S. M. Abdullah, N. Gerdes et al., “Interleukin-
18, the metabolic syndrome, and subclinical atherosclerosis:
results from the Dallas Heart Study,” Arteriosclerosis, Throm-
bosis, and Vascular Biology, vol. 27, no. 9, pp. 20432049,
2007.

S. Blankenberg, L. Tiret, C. Bickel et al., “Interleukin-18
is a strong predictor of cardiovascular death in stable and
unstable angina,” Circulation, vol. 106, no. 1, pp. 24-30, 2002.
F. Mach, U. Schénbeck, G. K. Sukhova, E. Atkinson, and P.
Libby, “Reduction of atherosclerosis in mice by inhibition of
CD40 signalling,” Nature, vol. 394, no. 6689, pp. 200-203,
1998.

A. Zirlik, C. Maier, N. Gerdes et al., “CD40 ligand mediates
inflammation independently of CD40 by interaction with
Mac-1,” Circulation, vol. 115, no. 12, pp. 1571-1580, 2007.
N. Varo, R. Nuzzo, C. Natal, P. Libby, and U. Schonbeck,
“Influence of pre-analytical and analytical factors on soluble
CD40L measurements,” Clinical Science, vol. 111, no. 5, pp.
341-347, 2006.

J. A. De Lemos, A. Zirlik, U. Schénbeck et al., “Associations
between soluble CD40 ligand, atherosclerosis risk factors,
and subclinical atherosclerosis: results from the Dallas Heart



Mediators of Inflammation

Study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol.
25, no. 10, pp. 2192-2196, 2005.

U. Schonbeck, N. Varo, P. Libby, J. Buring, and P. M.
Ridker, “Soluble CD40L and cardiovascular risk in women,”
Circulation, vol. 104, no. 19, pp. 2266-2268, 2001.

W. K. Wu, O. P. C. Llewellyn, D. O. Bates, L. B. Nicholson,
and A. D. Dick, “IL-10 regulation of macrophage VEGF
production is dependent on macrophage polarisation and
hypoxia,” Immunobiology, vol. 215, no. 9-10, pp. 796-803,
2010.

G. Caligiuri, M. Rudling, V. Ollivier et al., “Interleukin- 10
deficiency increases atherosclerosis, thrombosis, and low-
density lipoproteins in apolipoprotein E knockout mice,”
Molecular Medicine, vol. 9, no. 1-2, pp. 10-17, 2003.

D. J. Grainger, “TGF-f and atherosclerosis in man,” Cardio-
vascular Research, vol. 74, no. 2, pp. 213-222, 2007.

A. K. L. Robertson, M. Rudling, X. Zhou, L. Gorelik, R. A.
Flavell, and G. K. Hansson, “Disruption of TGF-f signaling
in T cells accelerates atherosclerosis,” Journal of Clinical
Investigation, vol. 112, no. 9, pp. 1342-1350, 2003.

Y. Kim and C. Lee, “The gene encoding transforming
growth factor B1 confers risk of ischemic stroke and vascular
dementia,” Stroke, vol. 37, no. 11, pp. 2843-2845, 2006.

K. Oda, N. Tanaka, T. Arai et al., “Polymorphisms in pro-
and anti-inflammatory cytokine genes and susceptibility to
atherosclerosis: a pathological study of 1503 consecutive
autopsy cases,” Human Molecular Genetics, vol. 16, no. 6, pp.
592-599, 2007.

K. L. Jones, J. J. Maguire, and A. P. Davenport, “Chemokine
receptor CCR5: from AIDS to atherosclerosis,” British Journal
of Pharmacology, vol. 162, no. 7, pp. 1453—-1469, 2011.

A. D. Schecter, T. M. Calderon, A. B. Berman et al., “Human
vascular smooth muscle cells possess functional CCR5,
Journal of Biological Chemistry, vol. 275, no. 8, pp. 5466—
5471, 2000.

M. P. Quinones, H. G. Martinez, F. Jimenez et al., “CC
chemokine receptor 5 influences late-stage atherosclerosis,”
Atherosclerosis, vol. 195, no. 1, pp. €92—e103, 2007.

V. Braunersreuther, A. Zernecke, C. Arnaud et al., “Ccr5 but
not Ccrl deficiency reduces development of diet-induced
atherosclerosis in mice,” Arteriosclerosis, Thrombosis, and
Vascular Biology, vol. 27, no. 2, pp. 373-379, 2007.

C. Combadiére, S. Potteaux, M. Rodero et al., “Combined
inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi
and Ly6Clo monocytosis and almost abolishes atherosclero-
sis in hypercholesterolemic mice,” Circulation, vol. 117, no.
13, pp. 1649-1657, 2008.

T. J. Reape and P. H. E. Groot, “Chemokines and atheroscle-
rosis,” Atherosclerosis, vol. 147, no. 2, pp. 213-225, 1999.

T. J. Guzik, N. E. Hoch, K. A. Brown et al., “Role of the T
cell in the genesis of angiotensin II-induced hypertension and
vascular dysfunction,” Journal of Experimental Medicine, vol.
204, no. 10, pp. 24492460, 2007.

Z. Chen, M. Sakuma, A. C. Zago et al., “Evidence for a role of
macrophage migration inhibitory factor in vascular disease,”
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no.
4, pp. 709-714, 2004.

[114] J.H. Pan, G. K. Sukhova, J. T. Yang et al., “Macrophage migra-

tion inhibitory factor deficiency impairs atherosclerosis in
low-density lipoprotein receptor-deficient mice,” Circulation,
vol. 109, no. 25, pp. 3149-3153, 2004.

13

[115] G. Grieb, M. Merk, J. Bernhagen, and R. Bucala,
“Macrophage Migration Inhibitory Factor (MIF): a
promising biomarker,” Drug News and Perspectives, vol.
23, no. 4, pp. 257-264, 2010.

[116] K.]J. Moore and I. Tabas, “Macrophages in the pathogenesis
of atherosclerosis,” Cell, vol. 145, no. 3, pp. 341-355, 2011.

[117] Z. S. Galis, G. K. Sukhova, M. W. Lark, and P. Libby,
“Increased expression of matrix metalloproteinases and
matrix degrading activity in vulnerable regions of human
atherosclerotic plaques,” Journal of Clinical Investigation, vol.
94, no. 6, pp. 2493-2503, 1994.

[118] Y. Inokubo, H. Hanada, H. Ishizaka, T. Fukushi, T. Kamada,
and K. Okumura, “Plasma levels of matrix metallopro-
teinase-9 and tissue inhibitor of metalloproteinase-1 are
increased in the coronary circulation in patients with acute
coronary syndrome,” American Heart Journal, vol. 141, no. 2,
pp. 211-217, 2001.

[119] K. Musial and D. Zwolifiska, “Matrix metalloproteinases
(MMP-2,9) and their tissue inhibitors (TIMP-1,2) as novel
markers of stress response and atherogenesis in children with
chronic kidney disease (CKD) on conservative treatment,”
Cell Stress and Chaperones, vol. 16, no. 1, pp. 97-103, 2011.

[120] J. Danesh, J. G. Wheeler, G. M. Hirschfield et al., “C-reactive
protein and other circulating markers of inflammation in the
prediction of coronary heart disease,” New England Journal of
Medicine, vol. 350, no. 14, pp. 1387-1397, 2004.

[121] W. Koenig, H. Lowel, J. Baumert, and C. Meisinger, “C-
reactive protein modulates risk prediction based on the
Framingham Score: implications for future risk assessment:
results from a large cohort study in southern Germany,”
Circulation, vol. 109, no. 11, pp. 13491353, 2004.

[122] R. J. Bisoendial, J. J. P. Kastelein, and E. S. G. Stroes,
“C-reactive protein and atherogenesis: from fatty streak to
clinical event,” Atherosclerosis, vol. 195, no. 2, pp. el0—el8,
2007.

[123] S. K. Singh, M. V. Suresh, D. C. Prayther, J. P. Moorman,
A. E. Rusinol, and A. Agrawal, “C-reactive protein-bound
enzymatically modified low-density lipoprotein does not
transform macrophages into foam cells,” Journal of Immunol-
o0gy, vol. 180, no. 6, pp. 4316—4322, 2008.

[124] T. A. Pearson, G. A. Mensah, R. W. Alexander et al., “Markers
of inflammation and cardiovascular disease: application to
clinical and public health practice: a statement for healthcare
professionals from the centers for disease control and preven-
tion and the American Heart Association,” Circulation, vol.
107, no. 3, pp. 499-511, 2003.

[125] A. E. Vendrov, Z. S. Hakim, N. R. Madamanchi, M. Rojas, C.
Madamanchi, and M. S. Runge, “Atherosclerosis is attenuated
by limiting superoxide generation in both macrophages and
vessel wall cells,” Arteriosclerosis, Thrombosis, and Vascular
Biology, vol. 27, no. 12, pp. 2714-2721, 2007.

[126] Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are
transcribed by RNA polymerase II,” EMBO Journal, vol. 23,
no. 20, pp. 4051-4060, 2004.

[127] M. S. Jamaluddin, S. M. Weakley, L. Zhang et al., “MiRNAs:
roles and clinical applications in vascular disease,” Expert
Review of Molecular Diagnostics, vol. 11, no. 1, pp. 79-89,
2011.

[128] T. Chen, Z. Huang, L. Wang et al, “MicroRNA-125a-
5p partly regulates the inflammatory response, lipid



14

[129]

(130]

[131]

[132]

[133]

uptake, and ORP9 expression in oxLDL-stimulated
monocyte/macrophages,”  Cardiovascular  Research, vol.
83, no. 1, pp. 131-139, 2009.

V. M. Olkkonen and T. P. Levine, “Oxysterol binding
proteins: in more than one place at one time?” Biochemistry
and Cell Biology, vol. 82, no. 1, pp. 87-98, 2004.

M. S. Brown, J. Ye, and J. L. Goldstein, “HDL miR-ed down by
SREBP introns,” Science, vol. 328, no. 5985, pp. 1495-1496,
2010.

K.J. Rayner, Y. Sudrez, A. Davalos et al., “MiR-33 contributes
to the regulation of cholesterol homeostasis,” Science, vol.
328, no. 5985, pp. 1570-1573, 2010.

S. H. Najafi, E Kristo, Y. Li et al, “MicroRNA-33 and
the SREBP host genes cooperate to control cholesterol
homeostasis,” Science, vol. 328, no. 5985, pp. 1566—1569,
2010.

M. E. Rosenfeld, K. G. Carson, J. L. Johnson, H. Williams,
C. L. Jackson, and S. M. Schwartz, “Animal models of
spontaneous plaque rupture: the holy grail of experimental
atherosclerosis research,” Current atherosclerosis reports, vol.
4,1n0. 3, pp. 238-242, 2002.

Mediators of Inflammation



	Introduction
	Initiation and Early Progression of Atherosclerosis
	Recruitment and Entry of Monocytes to Arterial Walls
	Monocyte Differentiation into M1 and M2 Subsets of Macrophages
	Important Receptors and Transporters for Cholesterol Loading and Efflux in the Toll-Like Receptors of Macrophages
	Scavenger Receptors
	ATP-Binding Cassette Transporters, Subset A and G (ABCA and ABCG)
	Apoptosis of Macrophages in Early Atherosclerotic Lesion

	Advanced Progression in Atherosclerosis
	Plaque Necrosis and Macrophage Death in Advanced Atherosclerotic Lesions

	Biomarkers as Risk Factors Associatedwith Macrophages in Atherosclerosis
	Involvement of Cytokines Secreted byMacrophages in Atherosclerosis
	Tumour Necrosis Factor- (TNF-)
	Interleukin 1 (IL-1)
	IL-12
	IL-18
	Soluble CD40 Ligand (CD40L)

	Anti-Inflammation Factors
	IL-10
	TGF-

	Chemokines Produced by Macrophages in Atherosclerosis
	Chemokine Receptor CCR5

	Macrophage Migration Inhibitory Factor (MIF)
	Inflammation-Regulating Enzymes: Matrix Metalloproteinases (MMPs)
	Proinflammatory Mediators Associated with Macrophage: C-Reactive Protein (CRP)
	Superoxide Production: Reactive Oxygen Species (ROS)
	Emerging Future Biomarkers: MicroRNAs (miRNAs)

	Conclusion
	References

