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Introduction
The complexity and heterogeneity of cancer makes it highly 
difficult to develop effective cancer therapeutics. 
Mathematical models can help in designing effective cancer 
therapy and predicting cancer behavior in a more tractable, 
efficient, and inexpensive manner.1–3 There is an increasing 
interest in developing multiscale mathematical models that 
can simulate and predict cancer growth, development, and 
response to drug treatments due to its potential for enabling 
patient-oriented predictions, treatment design, planning, and 
drug delivery.4–9 This is because cancer is a complex disease 
and its evolution cuts across multiple temporal and spatial 
biological scales. The spatiotemporal scales are characterized 
by processes ranging from reactions at the molecular scale to 
interactions within and among the cells, and to cancer 
growth, development, and metastasis at the tissue level.10 
The multiscale and complex nature of cancer thus calls for 
modeling frameworks that are able to capture the molecular-, 
cellular-, tissue-, and organ-level processes involved across 
the spatiotemporal scales adequately.

Recent studies have highlighted the significance of mul-
tiscale modeling to cancer behavior and treatment strate-
gies. For instance, multicellular modeling of the growth and 
development of cancer through the alteration in the 
mechanical property of mutant cells has been investigated 
by Osborne.4 It provides insights into how mutations affect 
the structures of cells and an approach for the inclusion of 
cell phenotypic properties with diverse mechanical features 
associated with cellular Potts models is given.4 Yan et  al7 

developed a 3-dimensional (3D) multiscale model to exam-
ine the progression of glioblastoma (GBM) by exploring 
tumor development under diverse microenvironment condi-
tions. The effect of feedback among diverse types of cell and 
cross talk between vascular endothelial cells and glioma 
stem cells were explored. A partial disruption of the cross 
talk link results in tumor size reduction but does not increase 
the invasive potential. Thus, the cross talk link may be 
exploited as a new therapeutic target for GBM therapy.7 To 
show that telomerase inhibitions repress the rate of cell 
death detects and increases the cell senescence rate, a cell 
compartment approach was implemented to investigate the 
time-dependent and dose-based impacts of the anticancer 
agent (RHPS4) on the HCT116 cancer cell line.8

The dynamic behavior and phenotypic properties of a single 
tumor cell to an external therapeutic agent may be influenced 
by the cell’s interaction with the diverse neighboring cells; 
hence, the effect of treatments may deviate significantly from 
the expected outcome based solely on the individual cell’s phe-
notypic features. Thus, Brown et al9 investigated 4 beneficial 
and detrimental aggregation effects in cancer cell populations 
by applying the evolutionary and ecological concept to multi-
scale mathematical modeling while accounting for the rela-
tionships among diverse group of tumor cells. The model 
shows the importance of exploiting the detrimental aggrega-
tion effects in designing evolutionary-based drugs that can 
take advantage of the deleterious effects that neighbor cells 
might have on one another.9
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In cancer system modeling and drug therapeutics, it is vital 
to understand the response of the system to perturbations and 
how to obtain a desired effect via a modification to the system. 
For effective drug discovery and intervention, it is critical to 
have an understanding of the complex mapping between geno-
type and phenotype, an evaluation of the regulatory interaction 
among genes, proteins, and other molecules and the effect of 
perturbations and other biological processes at the molecular, 
cellular, and tissue/organ scales.8,11–13 Thus, it is imperative to 
have models that can predict and provide functional insights 
into disease-drug interactions and pharmacokinetics/pharma-
codynamics (PK/PD) information, to ensure that therapeutic 
intervention becomes a more systematic and faster process. A 
major challenge is linking drug PK characteristics with PD 
information for a better grasp of the time course of drug effects 
after drug intake. Mathematical modeling14 and simulation 
tools are indispensable in integrating PK/PD information and 
optimizing drug regimen. Thus, this study presents a system-
atic and multiscale mathematical model to study drug effects 

under the assumption that the drug target corresponds to a 
gene or protein in the proposed model.15,16 The goal is to inves-
tigate the system responses at various scales under drug pertur-
bations to provide suggestion for effective therapeutic 
intervention.

The various components of the proposed multiscale model 
are depicted as shown in Figure 1, where the molecular level, 
cellular level, and multicellular levels are considered. An ordi-
nary differential equation (ODE) pathway model is adopted at 
the molecular level, where the concentration of proteins and 
gene expression levels are treated as continuous values. Cellular 
automata of a 2-dimensional grid at the cellular level are used. 
Each individual cell is treated as a discrete entity, and cell fate 
is derived using a Markov chain. The transition probability of 
the Markov chain is determined by the downstream gene 
expression levels of the pathway of interest and the microenvi-
ronment (mE). At the multicellular level, the cells affected by 
the drug exhibit progressive degrees of decay from the surface 
to the core assuming a solid tumor. From the biological signal 

Figure 1.  The schematic representation of the proposed multiscale model and the components.
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transduction perspective, biological signals and drug perturba-
tion at the molecular scale trigger intracellular signaling in 
various pathways. At the cellular scale, the biological signals 
coupled with the cell cycle and microenvironment cues deter-
mine cell fate such as proliferation and apoptosis. At the mul-
ticellular scale, the population of cells and their behavior 
determines the structure and behavior of the resulting tumor.

The detailed model setup is discussed in section “Multiscale 
Model Formulation.” Simulation studies are presented in 
Section “Simulation Results.” Section “Discussion” presents 
additional discussions, whereas section “Conclusions” provides 
a conclusion to the article.

Multiscale Model Formulation
Mathematical cancer models usually follow the discrete, con-
tinuous, or hybrid modeling methods.17 Discrete modeling 
approaches involve the explicit representation of individual 
cells, for instance, using biological rules. Discrete modeling 
methods are usually based on the lattice-free modeling (agent-
based modeling [ABM]) or the lattice-based modeling (CA) 
approaches. The ABMs can be lattice based too and CA may 
be considered a special case of ABM.18–20 These techniques 
have the capability to describe the evolving population-level 
dynamics without prior knowledge of tumor behaviors.

Continuous mathematical models describe the large-scale 
tumor growth dynamics by treating the tumor size as a con-
tinuous medium instead of the resolutions of individual cells. 
Hybrid modeling approaches involve the integration of both 
the continuous and discrete entities used to describe the con-
centrations or density fields and the individual cells, respec-
tively. Continuum mathematical modeling methods are 
commonly based on ordinary and partial differential equa-
tions. These modeling methods have the ability to describe the 
common behaviors of tumors, simulate experimental observa-
tions, and recommend modification as well as test theoretical 
hypotheses.

Hybrid models combine the strengths of both continuous 
and discrete modeling approaches. Stochastic hybrid system 
can also model randomness that may be inherent to the system 
being modeled. In this work, stochastic hybrid modeling 
method is proposed to integrate randomness and exploit the 
advantages of both the discrete and the continuous modeling 
frameworks to stochastically simulate the behavior of the 
tumor cells.6,7

Because cancer tumor cells divide uninhibitedly and they 
often grow and develop with the goal of optimizing their pro-
liferation potentials, they are categorized as proliferating, qui-
escent, or decaying/dead in the proposed model. It is assumed 
that each proliferating cell from the cancer cell population may 
produce daughter cells with similar kinetic characteristics when 
the cell cycle and microenvironment permit. It is also assumed 
that the cells will go through a series of decay until dead when 
damaged. Figure 1 has 4 major parts with each part described 
in the remainder of this section as follows.

Part I: pharmacokinetic and pharmacodynamic 
models

Pharmacokinetics define the drug dose concentration-time 
response, ie, how the drug is absorbed, distributed, metabo-
lized, and excreted, whereas pharmacodynamics explore the 
concentration-response of drug effects.1 Our model includes a 
drug effect factor ηdrug  in equation (1) that is related to the 
time course of drug effects (PK/PD) after drug perturbation 
(ie, ηdrug  links PK and PD). An integrated PK and PD model 
is vital in adequately describing the time course of drug effects 
because such model bridges between a pair of classical topics in 
pharmacology.21

The PK model.  The concentration of the drug at the effect site 
is vital for the pharmacological effect of the drug. As illustrated 
by Kuh et al,22 the drug’s intracellular concentrations increase 
exponentially when the drug is absorbed following each intake 
of the drug. The concentration of the drug may change slowly 
(this is approximated as a flat line in our model) when the drug’s 
intracellular and extracellular concentrations approach equilib-
rium. Then, the concentration decreases exponentially as the 
drug elimination rate is higher than the rate of entering the 
effect site, resulting in diminishing effects. According to Kuh 
et al,22 a widely used modeling curve for the concentration-time 
profile of the drug is the PK plot shown in Part I of Figure 1. 
The proposed modeling approach is generalized enough to 
handle diverse cases even though different drugs function dif-
ferently. The concentration increase stage may be ignored if the 
drug concentration increases very rapidly, or the equilibrium 
phase may be neglected if it is very short. By adjustment of the 
model, one can represent specific drug characteristic.

The PD model.  Generally, drug pharmacologic effect magni-
tude is directly proportional to the dose before it eventually 
reaches saturation.23 The most widely used concentration 
response model is the logistic model or the Hill equation, 
equally referred to as the sigmoidal Emax  model.24 It is assumed 
in our model that the drug effect coefficient ηdrug  (where the 
drug target is x j  according to equation (1)) relates to the con-
centration via a sigmoidal function approximated by the PD 
plot in Part I of Figure 1, where the drugs only begin to be 
effective after the concentration level exceeds a lower threshold 
( )C1  and the effect of the drug reaches saturation after the 
concentration level rises above an upper threshold ( )C2 . The 
PK curve is sampled for each time instant and the correspond-
ing drug concentration level is fed into the PD curve to obtain 
the drug effect factor ηdrug  (linked to Part II).

Part II: proliferation and survival pathway 
modeling

At the molecular level, the proliferation and survival pathway 
(see the work by Li at al25 for pathway and equations) is con-
sidered. The RAS/RAF/MEK/ERK pathway is usually 
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associated with cell proliferation, prevention of programmed 
cell death, and resistance to therapies. This pathway is 
exploited by growth factors and mitogens in transmitting sig-
nals from the receptors for regulating gene expression and 
preventing apoptosis or programmed cell death. Some of the 
proliferation pathways’ components (for instance, RAS, 
B-RAF) undergo mutations or overexpressions in human 
cancer (for instance, breast and prostate cancers).26 However, 
PI3K/AKT/mTOR pathway signifies a prototypical survival 
pathway which is activated in various types of cancer. The 
pathway is usually activated by diverse processes some of 
which include mutations or amplifications of the PI3K, loss 
of the tumor suppressor (PTEN) function, activations of the 
growth factor receptors, amplifications or mutations of AKT, 
exposure to carcinogen, and so on. After it is activated, signal-
ing through AKT may propagate to various array of substrates 
that includes mTOR, a crucial regulator of protein transla-
tion. The survival pathway functions as an appealing drug 
target for cancer therapy because it serves as a point of con-
vergence for various growth stimuli. It is equally responsible 
for the regulation of cellular processes that contribute to can-
cer growth and development via the downstream substrates. 
In addition, activation of the AKT/mTOR pathway bolsters 
resistances to many cancer treatment approaches, and it thus 
constitutes one of the poor prognostic factors for several types 
of cancer.27

Genetic regulation in a pathway with drug perturbation can 
be modeled with rate equations that express the differences 
between production and degradation rates,11,28,29 as follows:

x x xi j j drug i i= −β η α 	 (1)

where xi  and x j  represent gene (protein) expression levels, x j  
is targeted by the drug and it is also regulated by xi . β j   0>  is 
a synthesis factor and αi   0>  is a degradation factor. ηdrug  rep-
resents the drug effect factor which is determined by the phar-
macologic model of the drug. The state of the switch depends 
on the drug perturbation.

Using the rate equations, the proliferation and survival path-
ways that biologists currently understand, for example, the Kegg 
collection of pathways (https://www.genome.jp/kegg/pathway.
html) and the NIH BioCarta pathway collections (https://cgap.
nci.nih.gov/Pathways/BioCarta_Pathways), are illustrated in the 
works by Dougherty and colleagues,25,30,31 which provides the 
pathway dynamics (following equation (1)) for the proteins and 
complexes together with input from drug lapatinib.25 The 
expected effect of the drug (lapatinib) is the suppression of the 
pathway, that is, reducing the concentration level of ERK and 
thus preventing the tumor cells from proliferation. It is assumed 
that the lower the ERK concentration, the more effective the 
drug is and the lower the number of proliferating cells. After 
solving the system of coupled ODEs describing the pathway at 
each instant, the concentration of downstream ERK ([ERK]) is 
obtained and linked to Part III.

Parts III and IV: cellular/multicellular level

A CA model is proposed at the cellular level in an N N  ×  grid 
to describe the intracellular and intercellular interactions 
among the cells, drug profile, and the microenvironment (mE) 
conditions. Specifically, it is assumed that each cell is in one of 
the states at a given time. For each cell, the gene expression 
levels and the microenvironment conditions such as nutrients 
and the number and types of neighboring cells, as well as the 
current cell states and cell cycle, determine the transition prob-
abilities in the proposed Markov chain as shown in Part III of 
Figure 1. For instance, If [ERK] is above a threshold, it is 
expected that P12  and P22  will be high because high ERK con-
centration implies that more cells are expected to be in a prolif-
erating state. It is assumed that once a cell enters the decaying 
state, it will never transition back to the quiescent or proliferat-
ing state and it is eventually dead based on a progressive degree 
of decay similar to the transit compartment model.32,33

Proliferation of cells potentially increases the number of 
cells in the grid. It results in a cell duplicating into a pair of 
similar offspring cells. The proliferating cells with a good 
microenvironment condition (based on the transition probabil-
ity) search for an empty space to deliver their offspring. Because 
each grid site may be occupied by a single cell, one offspring 
cell resides in the mother’s grid site and the second is situated 
in an empty grid site34 as illustrated in Part IV of Figure 1. The 
procedures for simulating the above process are illustrated in 
Algorithm 1.

Simulation Results
Simulations have been performed in MATLAB using the pro-
posed model. The simulations incorporate a baseline run of the 
pathway ODEs by following the procedure in Algorithm 1. 
The computational simulation of the proposed model is per-
formed to analyze the model’s performance following drug 
treatments in silico. The output results correspond to the time 
series data of the number and type of individual cells.

Algorithm 1.  Procedures for simulating the phenotypic decision 
process for cancer cells.

1: Input: Pathway parameters, drug dosage, initial transition 
probabilities Pij , initial number of cells, initial gene expression 
levels
2: Output: Cell phenotype, percent of nonproliferating cells
3: for each observation interval t ti( )  =  do
4: for each cell do
5: Get ηdrug it( )  from drug PK/PD curve
6: Solve pathway ODEs and obtain [ERK]
7: If ([ERK] [ ]ERK threshold ) then
8: adjust Pij
9: Sample Markov chain
10: Cell phenotype state of Markov chain←
11: end if
12: if Cell phenotype Proliferating←  then
13: if mE Good←  & Space empty←  then
14: Add new cell
15: end if
16: end if
17: return Number of cells

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
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As the tumor grows and develops, the cells at the core of the 
tumor are starved of nutrients and thus become dead cells 
(Figure 2) which are characteristic of tumors. Dead cells far 
away from the core of the tumor are removed from the lattice. 
Taking into account the typical duration of the cell cycle (about 
24 hours)35,36 and the effective drug half-life (approximately 
24 hours for lapatinib),37 the Markov chain is sampled in about 
every 10-hour interval divided into time slots of 1 hour each. 
The growth patterns of the cells after some iterations showing 
a snapshot of spatial and temporal evolutions of cancer cells 
with no drug perturbation and with drug administration (low 
dose and high dose) are shown in Figure 2. Simulation depicts 
a tumor having a necrotic core that is surrounded by cells in a 
quiescent and proliferating state, respectively. When the peri-
odic drug intake has a high dose, the constant drug concentra-
tion in plasma is high enough causing the drug PD value to fall 
into the effective region in contrast with the drug being admin-
istered periodically at low dose that causes the drug PD value 
to fall in the ineffective range. Thus, the growth of cancer cells 
is slowed down following the drug administration (Figure 2C) 
as compared with the case with no drug administration (Figure 
2A) as evidenced by the decreased number of cancer cells fol-
lowing the drug administration. This may be due to the admin-
istered drug being effective in inhibiting the expression level of 
ERK and decreasing its concentration, thereby repressing the 
proliferation pathway. The spatial and temporal patterns depict 
a tumor having a compact shape and a boundary that is irregu-
lar, as it has been observed in some solid tumours.20

Figure 3 shows the evolution of the cells with and without 
drug perturbations. The proliferating cell population typically 
grows exponentially when they are not exposed to any antican-
cer drug (Figure 3A) or when a low dose of the drug is admin-
istered (Figure 3B) as the drug PD value falls in the ineffective 
range. It is shown that cancer cell proliferation happens at a 
much greater speed in comparison with cell death when there 
is no drug administered or when the administered dose is too 
low. With a high dose drug intake, the constant drug concen-
tration in plasma is high enough to eventually cause the drug 
PD value fall within the effective region, Figure 3C shows the 
effectiveness of the drug administration on the number of pro-
liferating cells and it is observed that the cancer cell prolifera-
tion initially happens at a much greater speed than that of cell 
death and the trend is eventually reversed as the drug becomes 
more effective in repressing the proliferating cells. Overall, the 
results show that gene or protein network perturbation by drug 
at the subcellular level manifests as functional changes at the 
intercellular, intracellular, and multicellular scales.

Another measure of the repression of the proliferation and 
survival pathway is the percentage change in number of non-
proliferating tumor cells according to the TGen experiments 
on HCT116 cancer cell line.25 To capture a vital measure of 
drug effectiveness, the percentage of nonproliferating tumor 
cells versus the simulation time can be observed from Figure 3. 

Figure 2.  Growth patterns of the cancer cells after 50, 100, 150, 200, 

250, 300, and 350 iterations, showing a snapshot of spatial and temporal 

evolutions of cancer cells (A) with no drug perturbation, (B) with low dose 

drug intake, and (C) with high dose drug intake.
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Figure 3C shows that the drug administration represses the 
proliferating cancer cells as time progresses resulting in the 
increment observed in the percentage of nonproliferating cells 
as compared with Figure 3A and B in which the proliferating 

cells continue to increase as there is no drug administered to 
repress the cells or the dose of the administered drug is too low 
(drug PD value falls in the ineffective region) and the drug 
becomes ineffective in killing the cells. The observed difference 
may be due to the effectiveness of the drug in targeting the 
proliferating cells and repressing the pathway.

Discussion
Mathematical models are increasingly being used in the area of 
quantitative multiscale cancer modeling.38 Although several 
modeling approaches have been explored in the literature, the 
actual biosystems are far more complex to the point that cur-
rent available computational tools are not able to sufficiently 
describe all the details. In addition, such mathematical models 
are usually computationally demanding and should therefore 
be designed in a way that maintains a balance between model 
complexity and mathematical tractability or simplicity with the 
aid of clinical or experimental data. In modeling such type of 
integrated systems and experimental modeling method, associ-
ated challenges that researchers may encounter include availa-
bility of pertinent biomedical/experimental data, model 
validation, estimation of model parameters, uncertainty and 
sensitivity analyses, variable choice for model inclusions, and 
access to data standards facilitating sharing of results and infor-
mation.39 Access to proven biomedical or experimental data, 
model validation against in vivo experiments and high-level 
innovative mathematical and simulation tools may help to mit-
igate some of the challenges.

To limit the complexity of the model and to focus primarily 
on system modeling, we have not incorporated processes such 
as angiogenesis, vascularization, cell heterogeneity, drug resist-
ance, 3D tumor morphology, and several other biological and 
biochemical mechanisms into the proposed model. There have 
been many studies integrating some of these processes into 
multiscale tumor models and interested readers may refer to 
the previous works.6,40–43 However, many existing models do 
not usually integrate the relevant and detailed modeling of the 
regulatory networks or signaling pathways and the drug phar-
macology information. The proposed model is simulated on a 
fixed grid size for the sake of simplicity and in the case of real 
cells; the regulation and interaction processes are much more 
complicated as several hundreds of biochemical reactions occur 
in the cells. The proposed multiscale model is conceptual and 
the model parameters are not directly estimated from clinical/
experimental data. They are obtained based on general under-
standing of tumor behavior and via literature search. Availability 
of various clinical or in vivo data and assays (for instance, drug 
delivery and metabolism data) may help improve the predic-
tion accuracy of the model. For a more realistic application 
toward precision medicine, future work on the model could 
incorporate detailed descriptions of some of these processes 
and the dynamic changes in tissue morphology resulting from 
the evolutionary competition among the cells.

Figure 3.  Dynamics or evolution of proliferating, quiescent and dead 

cells (A) with no drug administration, (B) with low dose drug 

administration, and (C) with high dose drug perturbation.
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Conclusions
This study has proposed a multiscale mathematical model 
depicting the dynamics of cancer cell population with different 
drug perturbations. The model has been implemented at the 
subcellular, cellular, and multicellular hierarchical levels. It is 
shown by simulations that the tumor cell population typically 
grows exponentially when they are not exposed to anticancer 
drug or low dosage of drugs, whereas the growth of tumor cells 
is repressed with high dose of drugs. The proposed multiscale 
model could provide vital insight into tumor growth, develop-
ment, and therapeutic strategies while taking into account spe-
cific PK/PD profiles and genetic pathway information. As 
further experimental/biomedical data become available, the 
model parameters could be better refined, estimated, and cali-
brated. Additional study is needed to extend the modeling 
approach to describe cancer cells in primary cultures and tumor 
tissues. This may provide further insights into the growth 
dynamics and response to drug treatments of cancer cell popu-
lation in vivo.
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