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Introduction

Human diseases caused by obligate intracellular bacterial

pathogens result in significant morbidity and mortality. Obligate

intracellular bacteria that replicate in the cytoplasm of host

endothelial cells include Rickettsia prowazekii, Rickettsia rickettsii, and

Orientia tsutsugamushi (etiologic agents of epidemic typhus, Rocky

Mountain spotted fever, and scrub typhus, respectively). Residing

in specialized vacuolar compartments are Anaplasma phagocyophilum

and Ehrlichia chaffensis (agents of febrile illnesses that have tropisms

for neutrophils and monocytes, respectively) and Chlamydia

trachomatis, which targets mucosal epithelia and causes blinding

trachoma and sexually transmitted diseases. Coxiella burnetii

preferentially colonizes mononuclear phagocytes during natural

infection where it inhabits a specialized vacuole with properties of

a phagolysosome [1]. The pathogen causes a debilitating

influenza-like illness in humans called Q (query) fever, a disease

that has received recent notoriety due to a large outbreak in the

Netherlands [2]. The absolute reliance of obligates on a eucaryotic

host cell for growth imposes significant experimental constraints,

not the least of which is difficulty in establishing pathogen genetic

systems. However, C. burnetii was recently liberated from its host

cell by a medium that supports axenic (host cell–free) growth.

Here, we provide a brief overview of the systematic approach used

in C. burnetii media development and discuss how insight gained

from this success could facilitate development of axenic media for

other obligate intracellular bacterial pathogens.

Known Physiology and Cellular Microbiology
Greased the Wheels for C. burnetii Axenic Media
Development

Prior metabolic studies of host cell–free C. burnetii and

knowledge of pathogen-host interactions provided a foundation

on which to base initial media formulations. The critical finding

that the Coxiella-containing vacuole (CCV) resembles a phagolyso-

some [3] led to several reports showing metabolic activity of

purified bacteria was optimal under moderately acidic conditions

(approx. pH 5) [4]. The mechanistic basis of ‘‘acid activation’’ of

C. burnetii metabolism is unresolved although it may involve

stimulation of proton symporters [5]. Pathogen-host interactions

revealed that the CCV is highly fusogenic with fluid phase

endosomes, but impermeable to small molecules within the cytosol

[1], suggesting the ion composition of the CCV might reflect that

of the serum/tissue culture medium, i.e., low concentration of K+

(,5 mM) and high concentrations of Na+ (,145 mM) and Cl2

(,110 mM). Furthermore, the CCV fuses with autophagosomes, a

process predicted to deliver proteinacious material that can be

degraded into peptides and amino acids by the hydrolytic activity

of the vacuole [6]. Indeed, early acid activation studies showed a

preference by C. burnetii for amino acids over carbohydrates as

carbon and energy sources [4]. C. burnetii has a biochemically

unusual peptidoglycan with associated protease-resistant proteins

that may provide protection against CCV degradative activities

that can quickly destroy E. coli [6,7].

The cellular microbiology and known metabolic properties of

other obligates provide insight into conditions that might support

axenic growth. C. trachomatis replicates in a vacuole disconnected

from the endocytic pathway [8]. The compartment is freely

permeable to cytoplasmic ions and has a pH of 7.2 [9]. Vesicular-

meditated nutrient delivery is invoked based on vacuole interac-

tions with multivesicular bodies, lipid droplets, and Golgi-derived

vesicles [10]. Defined metabolic activities of purified chlamydia

include transport and oxidation of glucose-6-phosphate [11].

Vacuoles harboring E. chaffeensis and A. phagocytophilum resemble

early endosomes and autophagosomes, respectively, with predicted

pHs slightly lower than neutrality [12,13]. Intracellular trafficking

studies suggest access to ample supplies of amino acids [12,13].

Rickettsia spp. replicate in the well-defined milieu of the host

cytoplasm and, similar to C. trachomatis, scavenge ATP from the

host via the activity of an ATP/ADP translocase [14].

In Silico Pathway Reconstruction Reveals
Metabolic Capacity

Along with known metabolic capabilities and host cell niches,

clues to axenic growth requirements can be gleaned from in silico

metabolic pathway reconstructions. An excellent recent review by

Fuchs and co-authors [15] details predicted metabolic capacities of

Coxiella, Chlamydia, and Rickettsia based on genome data. A

common nutritional deficiency of these and other obligates is

extensive amino acid auxotrophy that is compensated for by the

activities of amino acid and peptide permeases that scavenge

amino acids from the host [15]. For example, C. burnetii encodes 13

predicted major facilitator superfamily transporters having docu-

mented roles in amino acid uptake [16,17] and several peptide

transporters [18]. C. burnetii encodes the largest number of open
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reading frames (2,280 in the Nine Mile reference strain) among the

obligates discussed in this review, and consequently, has predicat-

ed metabolic complexity relative to these bacteria [18]. Obligates

that have undergone more extensive genome reduction rely on

additional specialized transport systems to acquire nutrients from

the host. For example, genome data indicate defects in purine and

pyrimidine biosynthesis by C. trachomatis, R. rickettsia, R. prowazekii,

and O. tsutsugamushi. Consequently, these organisms have evolved

predicted and verified transporters that import host nucleotides

[10,14,19,20]. Consistent with defined utilization of glucose-6-

phosphate and a largely intact glycolytic pathway, C. trachomatis has

a predicted transporter (UhpC) for this energized sugar that likely

represents an important carbon and energy source [15].

Do Not Forget the Oxygen

Low oxygen concentration (1–5%) was essential for axenic

growth of C. burnetii, a result that seems counterintuitive

considering the bacterium prodigiously grows in host cells

cultivated in ambient oxygen (,21% O2). However, the intracel-

lular oxygen concentration of cultured cells is generally lower than

the extracellular concentration [21], and tissues have a range of

oxygenation levels that can be well below ambient levels [22].

The impetus for testing low oxygen arose from genome analysis

showing C. burnetii encodes the terminal oxidases cytochrome bd

and cytochrome o. Thus, C. burnetii appeared adaptable to growth

under different oxygen concentrations because cytochrome bd and

cytochrome o, based on O2 affinities, are typically used under

microaerobic and aerobic conditions, respectively. C. trachomatis, R.

rickettsia, and R. prowazekii also encode cytochrome bd, implying a

microaerobic environment might be optimal for axenic growth of

these organisms. Other obligates might simply prefer a low oxygen

environment to lessen oxidative stress.

Getting Started

Known pathogen physiology, niche characteristics, and pre-

dicted metabolic capacity provide a basis on which to embark on a

stepwise approach to axenic media development. Two important

technical considerations before beginning are 1) obtaining

adequate amounts of highly pure bacteria for testing, and 2)

developing a straightforward assay to gauge metabolic fitness.

Obligate intracellular bacteria are typically cultivated in tissue

culture—a growth system that requires an extensive purification

protocol to rid bacterial preparations of contaminating host cell

material—with the most problematic contaminates for metabolic

studies being mitochondria. Incorporation of radioactive amino

acids into protein reflects a biosynthetic process reliant on the

activity of major metabolic pathways, and thus is an informative

and easy assay of global metabolic activity. C. burnetii protein

synthesis was measured by scintillation counting and/or gel

electrophoresis and autoradiography following incubation in

different media formulations containing [35S] cysteine-methionine.

The first media component to identify is a metabolically

permissive buffer having a pKa near the predicted pH of the

bacterium’s intracellular niche. Testing of buffers containing [35S]

cysteine-methionine and readily metabolized glutamate showed

that citrate buffer was optimal for C. burnetii protein synthesis [23].

Various salt mixtures providing physiologic concentrations of ions

can then be tested, again with composition based on intracellular

habitats. As speculated, C. burnetii preferred serum levels of Na+,

K+, and Cl2, and was particularly sensitive to Cl2 concentration

[23]. The resulting buffer was supplemented with nutrients (e.g.,

fetal bovine serum [FBS]) predicted to be transported from the

host extracellular environment to the CCV via fluid phase

endocytosis. Neopeptone was added as the bulk carbon and

energy source based on Coxiella’s known and predicted preference

for amino acids/peptides [23].

During C. burnetii media development, metabolic activity

continued to improve, but increases in genome equivalents by

quantitative PCR were not detected. Thus, to gain insight into

potential media deficiencies, the transcriptomes of C. burnetii

incubated in media and growing in Vero host cells were compared

[24]. As expected, the corresponding gene transcriptional profiles

were highly discordant. However, a marked down regulation of

ribosomal gene expression by axenically cultured bacteria was

observed, suggesting that, despite the presence of a rich amino acid

source (neopeptone), media was still deficient in amino acids. A

different source of amino acids, casamino acids, was then tested.

Additionally, media was supplemented with a high concentration

(1.5 mM) of L-cysteine based on the similar requirement for

axenic growth of Legionella pneumophila, a close relative of C.

burnetii’s. Casamino acids and L-cysteine had an additive effect on

metabolic fitness under ambient oxygen (,21%), but again,

bacterial replication was not observed.

Negative growth results prompted an assessment C. burnetii

replication at low oxygen levels. When C. burnetii was incubated in

a medium now termed acidified citrate cysteine medium (ACCM)

in 2.5% oxygen, vigorous growth (,3 log10 in 6 days) occurred. A

summary of a systematic approach to developing axenic growth

media for obligate intracellular bacteria is depicted in Figure 1.

Chlamydia: A Work in Progress

Two recent reports support the idea that axenic growth of C.

trachomatis may be possible by refuting dogma that the non-

replicating, infectious elementary body (EB) is incapable of

metabolism outside of a eukaryotic host cell [11,25]. Haider et

al. [25] showed by Raman microspectroscopy and autoradiogra-

phy that labeled phenylalanine is incorporated by EBs during

extended incubation in DGM-21A, a medium that, interestingly, is

optimized for growth of Acanthameoba sp. Omsland and co-workers

[11] subsequently developed a novel phosphate buffer–based CIP-

1 medium that supports pronounced metabolism of host cell–free

C. trachomatis. Based on previous characterization of the chlamydia-

containing vacuole [9], CIP-1 has ion concentrations and a pH

mimicking the host cytoplasm. Moreover, bioinformatics data and

known physiology prompted addition of glucose-6-phosphate and

dithiothreitol, as well as FBS, all amino acids, and four nucleotide

triphosphates to account for auxotrophies. Seminal findings of this

study include (1) glucose-6-phosphate is a preferred energy source

of EBs; (2) replicative reticulate bodies (RB), but not EBs, require

exogenous ATP as an energy source; and (3) microaerobic

conditions enhance metabolic activity.

CIP-1 medium with further modifications might support axenic

replication of C. trachomatis. However, a potential obstacle is

reproducing conditions that promote completion of the chlamydial

biphasic developmental cycle. Because only EBs are infectious,

failure to accomplish the EB-to-RB-to-EB cycle under axenic

conditions would likely result in cultured bacteria that are non-

infectious. Differentiation of L. pneumophila between replicative and

transmissive forms is dependent on stationary phase physiology

associated with nutrient limitation [26]. A similar scenario is

proposed for developmental transitions of C. burnetii wherein non-

replicating and metabolically dormant small cell variants (SCVs)

differentiate in replicative large cell variants (LCVs) that, in turn,

convert back to SCVs [27]. It is logical to suspect chlamydial

development is also regulated by nutrient availability and that

nutrient-derived developmental signals could be reproduced in
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Figure 1. Systematic approach to developing media supporting host cell–free growth of obligate intracellular bacteria. (A)
Predictions based on niche characteristics, metabolic pathway reconstructions, and known physiology of purified organisms can be used to establish
initial media pH and compositions. Oxygen tension should be tested empirically. (B) Stepwise testing of media formulations and oxygen tension to
find conditions that support increased metabolic fitness using informative indicators of metabolic activity such as SDS-PAGE/autoradiography and
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axenic media. Indeed, developmental transitions of C. burnetii in

ACCM appear comparable to those of host cell–grown bacteria

[24]. By associating C. trachomatis metabolic activities and

developmental transitions with modifications of CIP-1 medium,

critical insight into medium constituents that impact development

will be gained that may ultimately lead to axenic replication that

mimics growth in host cells.

Extension to Unculturable Normal Flora

Although this review emphasizes approaches to culturing

obligate intracellular bacterial pathogens, similar logic and

strategies can be applied to growth of ‘‘unculturable’’ human

normal flora that are refractory to cultivation using conventional

techniques [28]. Metagenomic sequencing and other molecular

techniques have verified that only a small sub-fraction of the

human microbiome has surrendered to conventional culture

techniques. As stressed for obligates, replicating the microbe’s

natural environment as closely as possible can be instrumental to

successful culture. This can mean using the environment itself as a

culture medium [28]. Sizova and co-workers [29] adapted

methods originally designed for culturing of environmental

bacteria to culture recalcitrant human oral bacteria. One

approach used an ingeniously designed incubation device consist-

ing of a removable oral appliance with agarose-containing

diffusion minichambers supporting in vivo growth of a mixed

bacterial culture. Subsequent subculture of chamber bacteria on

basic anaerobic medium (BM) yielded previously uncultivated

taxa. A second successful approach used long-term incubation of

microtiter plates where individual wells containing BM were

inoculated with single bacterial cells derived from subgingival

plaque. The first approach illustrates the poorly understood

phenomenon that initial in vivo growth increases the likelihood of

subsequent in vitro growth, while the second approach demon-

strates the principal that successful culture of previously unculti-

vated bacteria is enhanced if single cells are allowed to replicate

without competition from faster-growing neighbor bacteria [29].

Concluding Remarks

It is reasonable to reclassify C. burnetii as a facultative

intracellular bacterium, although this designation can be debated

based on the absence of a defined natural environment that

sustains extracellular growth [30]. Axenic growth has fueled

important new areas of research, including development of a

complete set of genetic tools [31]. There is no obvious reason why

similar axenic growth cannot be achieved for Anaplasma, Ehrlichia,

Chlamydia, Orientia, and Rickettsia. With the exception of Orientia,

these bacteria contain a substantially reduced genome relative to

the ,2 megabase genome of C. burnetii that may present a greater

barrier to overcome in pursuit of axenic growth. However, a

similar systematic approach that exploits known and predicted

physiologic behaviors, and persistence in testing, could prove

successful in rescuing these obligates from their host cell.
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