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In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and
object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a
convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from
CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally,
to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples.
Extensive experiments validate the robustness and effectiveness of the proposed method.

1. Introduction

Cell and object tracking have been an active research area in
computational biology [1, 2] and computer vision [3–6]with a
lot of practical applications, for example, drug discovery, cell
biology, intelligence video surveillance, self-driving vehicles,
and robotics. Despite much progress made in recent years,
designing robust cell and object tracking methods is still
a challenging problem due to appearance variations caused
by nonrigid deformation, illumination changes, occlusions,
dense populations and cluttered scenes, and so forth. There-
fore, one key component in cell and object tracking is to build
a robust appearance model that can effectively handle the
above-discussed challenges.

Over the years, discriminative model based appearance
modeling has been popular due to its effectiveness in extrapo-
lating from relatively small number of training samples. Most
existing methods focus on two aspects to construct a robust
discriminative appearance model: feature representation and
classifier construction.

Feature Representation. Tremendous progress has been made
in feature representation for cell and object tracking. Typi-
cally, a number of cell and object tracking methods employ

simple color [7] or intensity [8] histograms for feature rep-
resentation. Recently, a variety of more complicated hand-
crafted feature representations has been applied in cell and
object tracking, such as subspace-based features [9, 10], Haar
features [11–13], local binary pattern (LBP) [14], histogram
of gradient (HoG) [15, 16], scale invariant feature transfor-
mation (SIFT) [17], and shape features [18]. While the above
handcrafted features have achieved great success for their spe-
cific tasks and data domains, they are not effective to capture
the time-varying properties of cell and object appearances.

Classifier Construction. Designing a good classifier plays
another important role in the robust appearance model. The
typical classifiers include ensemble learning [19–22], struc-
tural learning [18, 23], support vector machine [24], sparse
coding [25, 26], coupled minimum-cost flow [27], and semi-
supervised learning [28, 29]. However, due to the fact that
appearance variations are highly complex, most of these
classifiers suffer from their shallow structures.

In this paper, inspired by the remarkable progress in
deep learning [30–34] for big data analysis [35], we propose
a robust cell and object tracking method (termed CDBN-
Tracker) that relies on convolutional deep belief networks
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Figure 1: Illustration of how the proposed CDBNTracker constructs an appearance model from a convolutional deep belief network. The
raw input image is fed to a 2-stage convolutional deep belief network consisting of two max-pooling CRBMs and one fully connected layer.
Each CRBM contains a filter bank layer and a probabilistic max-pooling layer, respectively. The outputs of the second stage are followed by
one fully connected layer with 192 units.

(CDBNs) to address both limitations raised fromhandcrafted
feature and shallow classifier designs. As shown in Figure 1,
our CDBNTracker is built upon the CDBNs trained from
raw pixels, which is composed of two convolutional restricted
Boltzmannmachines (CRBMs) andone fully connected layer.
To the best of our knowledge, it is the first time to applyDBN-
like network architectures into cell and object tracking.

The CRBMs are stacked on top of one another, each of
which contains a filter bank layer and a probabilistic max-
pooling layer, respectively.With end-to-end training, CDBN-
Tracker automatically learns hierarchical features in a super-
vised manner, making it extremely discriminative in appear-
ance modeling. We further propose a transferring strategy to
better reuse the pretrained CDBN features on the cell and
object tracking tasks. This allows the CDBNTracker to learn
cell or object-specific feature representations.

Last but not least, we propose a systematic and heuristic
solution to alleviate the tracker drifting problem for the
CDBNTracker. In particular, we classify the positive samples
into three categories to update the CDBN-based appearance
models, that is, ground-truth samples (nonadaptive samples
obtained in the first frame), long-term samples (moderately
adaptive samples obtained in the most recent frames), and
short-term samples (highly adaptive samples collected in the
current frame). The advantages of our CDBNTracker are
threefold.

(1) Our CDBNTracker follows the cutting-edge deep
learning framework. And the proposed CDBNTracker dif-
fers from the recent deep learning-based trackers by using
multilayer CDBNs with local tied weights to reduce the

model complexity under the scarcity of training samples.
Furthermore, we transfer generic visual patterns as good
initialization in our tracker to alleviate the “the first frame
labeled” problem.

(2)We develop a newmodel update strategy to effectively
alleviate the tracker drift. In addition to short-term and
first frame information, long-term information is selectively
memorized for updating the current model state to alleviate
the abrupt appearance changes.

(3) Different from most previous trackers which use
handcrafted features and shallow models, our CDBNTracker
is online trained with a multilayer CDBN in a supervised
manner which is more discriminative and descriptive.

The rest of the paper is organized as follows. An overview
of the related work is given in Section 2. Section 3 introduces
how to learn a data-driven cell or object appearance model
from aCDBN.Thedetailed trackingmethod is then described
in Section 4. Experimental results are given in Section 5.
Finally, we conclude this work in Section 6.

2. Related Work

Over the past decades, a huge amount of cell and object
tracking methods have been proposed [1–6]. Since the pro-
posed tracking method focuses on utilizing deep learning
to construct robust appearance models for cell and object
tracking, in this section, we firstly review online generative
and discriminative tracking methods. Then, cell tracking
methods are also briefly introduced. Finally, we discuss the
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current progress using deep learning for the cell and object
tracking research.

2.1. Online Cell and Object Tracking

2.1.1. GenerativeModels. Generative trackingmodels describe
the cell and object appearances via a statistical model using
the reconstruction errors. Some representative methods
include mean shift-based tracker [7], integer programming-
based tracker [8], PCA-based tracker [9], sparse coding-
based trackers [25, 26], GMM-based tracker [36], mul-
titracker integration [37], and structured learning-based
tracker [18]. While generative tracking methods usually
succeed in less complex scenes due to the richer appearance
models used, they are prone to fail in complex scenes with-
out considering the discriminative information between the
foregrounds and backgrounds.

2.1.2. Discriminative Models. On the other hand, discrimina-
tive tracking models typically view cell and object tracking as
a binary classification task. Thus, they aim to explicitly learn
a classifier which can discriminate the cell or object from
the surrounding backgrounds. In [38], an ensemble learning-
based tracker is proposed, in which a group of weak classifiers
is adaptively constructed for object tracking. In [11], an online
boosting-based tracker is proposed for object tracking. Grab-
ner and Bischof [11] extend a boosting algorithm for online
discriminative tracking. However, online learning-based
trackers is prone to the tracker drifting problem. Recently,
various discriminative trackingmethods have been proposed
to alleviate the drifting problem. Using an anchor assumption
(i.e., the current tracker does not stray too far from the initial
appearance model), Matthews et al. [39] develop a partial
solution for the template-based trackers. In [20], a semi-
supervised boosting algorithm is applied to online object
tracking by using a prior classifier. It is obvious that the semi-
supervised boosting-based tracker is not robust to very large
changes in appearance. In [28], Babenko et al. present amulti-
ple instance boosting-based tracking method. Hare et al. [12]
employ an online kernelized structured output support vector
machine for object tracking. In [23], an online structured
support vector machine-based tracker is proposed. Duffner
and Garcia [29] use a fast adaptive tracking method to track
nonrigid objects via cotraining. A number of attempts have
been made to apply transfer learning to object tracking [40,
41]. However, they may be limited by using handcrafted
features which cannot be simply adapted according to the
new observed data obtained during the tracking process.

2.1.3. Cell Tracking Methods. Recently, with the rapid devel-
opment of cell and computational biology, several cell track-
ingmethods have been proposed. In [8], Li et al. employ inte-
ger programming for multiple nuclei tracking in quantitative
cancer cell cycle analysis. In [18], Lou et al. propose an active
structured learning method for multicell tracking, in which
a compatibility function (i.e., global affinity measure) is
designed to associate hypotheses and score. In [27], Padfield
et al. present a cell tracking method via coupling minimum-
cost flow for high-throughput quantitative analysis.

2.2. Deep Learning for Cell and Object Tracking. Due to
the powerful representation abilities, deep learning [33] has
recently drawn more and more attention in computational
biology, medical imaging analysis [42], computer vision [32,
43], speech recognition [31], natural language processing,
and so forth. Deep belief networks [44], autoencoders, and
convolutional neural networks [32] are the three represen-
tative deep learning methods for computational biology and
computer vision.

Despite the fact that tremendous progress has been made
in deep learning, only a limited number of tracking methods
using the feature representations from deep learning have
been proposed so far [42, 45–50]. In [46], a convolutional
neural network-based trackingmethod is proposed for track-
ing humans. However, once the model is trained, it is fixed
during tracking due to the features being learned during
offline training. In order to handle the left ventricle endo-
cardium in ultrasound data, Carneiro and Nascimento [42]
fusemultiple dynamicmodels and deep learning architecture
in a particle filtering framework. In [51], without using the
fully connect layers in convolutional neural networks, a fully
convolutional neural network is proposed for object track-
ing. In [47], a convolutional neural network-based tracking
method is presented, in which a pretrained network is
transferred to an interested object. Ma et al. [48] combine
the pretrained VGG features [52] and correlation filters to
improve location accuracy and robustness in object tracking.
In [49], a multidomain convolutional neural network-based
tracking method is proposed. In [50], Chen et al. propose a
convolutional neural network-based tracking method, which
transfers the pretrained features from a convolutional neural
network to the tracking tasks. Compared to Chen’s method
using a convolutional neural network, our CDBNTracker
explores a different deep learning algorithm (i.e., a convo-
lutional deep belief network, CDBN) for single-cell/object
tracking. Instead of using convolutional neural networks,
an autoencoder-based tracking method [45] is proposed, in
which the generic image features are firstly learned from an
offline dataset and then transferred to a specific tracking task.

In this paper, we focus on how to construct an effective
CDBN-based appearance model for discriminative single-
cell and object tracking in cell biology and computer vision,
respectively. To the best of our knowledge, it is the first time
to apply DBN-like network architectures to single-cell and
object tracking.

3. Object Appearance Model

In this section, we address the problem of how to learn a data-
driven appearance model from a CDBN.

3.1. CRBM and CDBN. The CDBN [43] is a hierarchical
generative model composed of one visible (observed) layer
and many hidden layers, that is, several CRBMs stacked on
top of one another. A statistical relationship between the units
in the lower layer is learned by each hidden layer unit; the
higher layer representations tend to become more complex
and abstract. Following the notations of Lee et al. [43], we
briefly review the CRBM and CDBN.
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The CRBM is an extension of the RBM which fully
connects the hidden layer and visible layer. To capture the 2D
structural of image and incorporate translation invariance,
the CRBM shares the weights between the hidden units and
the visible units among all locations in the hidden units. The
CRBM consists of a visible (input) layer and a hidden layer.
In this paper, we use real-valued visible units V ∈ 𝑅𝑛𝑉×𝑛𝑉
and binary-valued hidden units ℎ ∈ {0, 1}𝑛𝐻×𝑛𝐻 . Denote𝑊𝑘 ∈ 𝑅𝑛𝑊×𝑛𝑊 as the 𝑘th convolution filter weight between
a hidden unit and the visible unit; 𝑏𝑘 ∈ 𝑅 as a bias variable
shared among hidden units and 𝑐 ∈ 𝑅 as a visible bias shared
among visible units. The energy function of the probabilistic
max-pooling CRBM with real-valued visible units can then
be defined as

𝐸 (V, ℎ) = 12
𝑛𝑉∑
𝑖,𝑗=1

V2𝑖𝑗 − 𝐾∑
𝑘=1

𝑛𝐻∑
𝑖,𝑗=1

𝑛𝑊∑
𝑟,𝑠=1

ℎ𝑘𝑖𝑗𝑊𝑘𝑟𝑠V𝑖+𝑟−1,𝑗+𝑠−1
− 𝐾∑
𝑘=1

𝑏𝑘 𝑛𝐻∑
𝑖,𝑗=1

ℎ𝑘𝑖𝑗 − 𝑐 𝑛𝑉∑
𝑖,𝑗=1

V𝑖𝑗,
s.t. ∑
(𝑖,𝑗)∈𝐵𝑎

ℎ𝑘𝑖𝑗 ≤ 1, ∀𝑘, 𝑎,
(1)

where𝐾 is the number of convolution filters and 𝐵𝑎 = {(𝑖, 𝑗) |ℎ𝑘𝑖𝑗 belonging to the block 𝑎} is a 𝐶 × 𝐶 block of locally
neighboring hidden units ℎ𝑘𝑖𝑗 that are pooled to a pooling
unit 𝑝𝑘𝑎 . It should be noted that probabilistic max-pooling
enables the CRBM to incorporatemax-pooling-like behavior,
while allowing probabilistic bottom-up and top-down infer-
ence [43]. The conditional probability distributions can be
calculated as follows:

𝑃 (ℎ𝑘𝑖𝑗 = 1 | V) = exp (𝐼 (ℎ𝑘𝑖𝑗))
1 + ∑(𝑖 ,𝑗)∈𝐵𝑎 exp (𝐼 (ℎ𝑘𝑖𝑗)) ,

𝑃 (V𝑖𝑗 | ℎ) = 𝑁((∑
𝑘

𝑊𝑘∗𝑓ℎ𝑘)
𝑖𝑗

+ 𝑐, 1) ,
𝑃 (𝑝𝑘𝑎 = 0 | V) = 1

1 + ∑(𝑖 ,𝑗)∈𝐵𝑎 exp (𝐼 (ℎ𝑘𝑖𝑗)) ,
(2)

where 𝐼(ℎ𝑘𝑖𝑗) = (�̃�𝑘∗VV)𝑖𝑗 + 𝑏𝑘, ∗𝑓 is a full convolution, ∗V is a
valid convolution, and �̃�𝑘𝑖𝑗 = 𝑊𝑘𝑛𝑊−𝑖+1,𝑛𝑊−𝑗+1.

Typically, the CRBM is highly overcomplete due to the
fact that the hidden layer of the CRBM contains 𝐾 groups of
units, each roughly with size of the visible layer (input image).
To avoid the risk of learning trivial solutions by the CRBM, a
sparsity penalty term is added to the log-likelihood objective
function of the training data. Consequently, each hidden unit
group has a mean activation close to a small constant. Finally,
after the greedy and layer-wise training, we stack the CRBMs
to form a CDBN.

3.2. LearningCell andObject AppearanceModels fromCDBNs.
In this paper, we view object tracking as an online transfer

learning problem and use the CDBN to construct the cell and
object appearance model due to its capacity for automatically
learning a hierarchical feature representation. As shown in
Figure 2, the key idea is to use the internal CDBN features as
a generic and middle-level image representation, which can
be pretrained on one dataset (the source task here CIFAR-10
[53]) and then reused on the tracking tasks.

More specifically, for the source task, we pretrain a CDBN
with two CRBM layers followed by one fully connected layer
from the CIFAR-10 natural image dataset [53]. The CIFAR-
10 dataset is a labeled subset of the 80 million tiny images,
containing 60,000 images and ten classes. Each CRBM layer
is composed of a hidden and pooling layer. The first CRBM
layer consists of 12 groups of 5∗5 convolution filters, while the
secondCRBM layer consists of 288 groups of 7∗7 convolution
filters. The pooling ratio is set to 2 for each pooling layer.
The target sparsity for the first and second CRBM layer is
set as 0.003 and 0.005, respectively. The fully connected layer
FC3 has 192 units. The output layer has size 10 equal to the
number of target categories. It can be seen from Figure 3(a)
that the learned filters in first CRBM layer (top) are oriented
and localized edge filters, while the learned filters in second
CRBM layer (bottom) selectively respond to contours, cor-
ners, angles, and surface boundaries in the images.

After pretraining on the source task, the parameters of
layers h1, p1, h2, p2, and FC3 are first transferred to the track-
ing task. Then, we remove the output layer with 10 units and
add an output layer with one unit. Finally, the newly designed
CDBN is retrained (fine-tuned) on the training data from
a specific tracking task to learn a cell or object appearance
model. This simple yet effective transferring schema enables
the proposed CDBNTracker to tackle the domain changes
in training tasks. To empirically illustrate the efficacy of the
transfer, we check the fine-tunedfilters trained on the training
data from a specific tracking task. Figure 3(b) shows the
fine-tuned filters trained on the training data from the first
frameof themotorRolling sequence [6]. Figure 3(c) shows the
fine-tuned filters trained on the training data from the first
frame of the Mitocheck sequence [54]. It can be seen from
both Figures 3(b) and 3(c) that, in addition to edge, corner,
and junction detectors, the transferred CDBN also adaptively
learns different and complicated features according to the
newly observed data.

4. Single-Cell and Object Tracking via
CDBNs (CDBNTracker)

In this section, we present a single-cell and object tracking
method, in which the CDBN-based appearance model is
effectively incorporated into a particle filtering framework.
The particle filtering framework consists of two key compo-
nents.

(1) A dynamic model 𝑝(𝑥𝑡 | 𝑥𝑡−1) generates candidate
samples based on previous particles. In this paper, the
dynamic model between two consecutive frames is assumed
to be a Gaussian distribution: 𝑝(𝑥𝑡 | 𝑥𝑡−1) = 𝑁(𝑥𝑡; 𝑥𝑡−1, ∑),
where∑ denotes a covariancematrix and 𝑥𝑡 = (𝑝𝑥𝑡 , 𝑝𝑦𝑡 , 𝑤𝑡, ℎ𝑡)
denotes the cell or object state parameters composed of the
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Figure 2: Learning object appearance models by transferring the CDBN features. First, the CDBN is pretrained on the source task (CIFAR-10
classification, top row).Then, the pretrained parameters of the internal layers of the CDBN (h1–FC3) are then transferred to the tracking task
(bottom row). To achieve the transfer and construct the cell and object appearance models, we remove the output layer with 10 units and
add an output layer with one unit. Furthermore, to alleviate the drifting problem, we treat training samples differently to update the cell and
object appearance models.

horizontal coordinate, vertical coordinate, width, and height,
respectively.

(2) An observation model 𝑝(𝑦𝑡 | 𝑥𝑡) calculates the
similarity between candidate samples and the cell or object
appearance model. In this paper, the proposed CDBN-based
appearance model is used to estimate the score of the
likelihood function 𝑝(𝑦𝑡 | 𝑥𝑡).

To capture the appearance variations, the observation
model (i.e., the CDBN-based appearance model) needs to
be updated over time. Therefore, to alleviate the tracker
drifting problem, we classify the positive samples into
three categories: ground-truth samples (nonadaptive samples
obtained in the first frame), long-term samples (moderately
adaptive samples obtained in themost recent frames via FIFO
schema), and short-term samples (highly adaptive samples
collected in the current frame). We assume the ground-truth
set of positive samples obtained in the first frame to be 𝑠+𝑔 ={𝑥+1,𝑖}𝑁+1𝑖=1. The long-term set of positive samples obtained in
the most recent frames is denoted as 𝑠+𝑙𝑡 = {𝑥+𝑡−𝑖}𝑇𝑖=1, where𝑇 is the buffer size of temporal sliding window. The sets of
negative samples and short-term positive samples collected
in the current frame are denoted as 𝑠−𝑡 = {𝑥−𝑡,𝑖}𝑁−𝑡𝑖=1 and 𝑠+𝑡 ={𝑥+𝑡,𝑖}𝑁+𝑡𝑖=1, respectively. At each frame 𝑡, we update the CDBN-
based appearance model using 𝑠+𝑔 , 𝑠+𝑙𝑡, 𝑠+𝑡 , and 𝑠−𝑡 .

Finally, a summary of our CDBN-based tracking method
for single-cell and object tracking is described inAlgorithm 1.

Algorithm 1 (single-cell and object tracking via learning and
transferring CDBN).

Initialization
(1) Pretrain a CDBN on the CIFAR-10 dataset.
(2) Acquire manual labels in the first frame. Collect the

ground-truth set of positive samples 𝑠+𝑔and negative
samples 𝑠−1 .

(3) Resize each positive/negative image patch to 32 ∗ 32
pixels.

(4) Construct the CDBN-based appearance model via
fine-tuning and transferring the pre-trained CDBN
using 𝑠+𝑔 and 𝑠−1 .

(5) Initialize the particle set {𝑥𝑖1, 𝑤𝑖1}𝑁1𝑖=1 at time 𝑡 = 1,
where 𝑤𝑖1 = 1/𝑁1, 𝑖 = 1, . . . , 𝑁1

(6) Set the maximum buffer size 𝑇 for long-term positive
samples 𝑠+𝑙𝑡.

For 𝑡 = 2 to the End of the Video
(1) Prediction: for 𝑖 = 1, . . . , 𝑁1, generate 𝑥𝑖𝑡 ∼ 𝑝(𝑥𝑡 |𝑥𝑖𝑡−1)
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(a) (b)

(c)

Figure 3: (a)The pretrained filters in first (top) and second (bottom) CRBM layer learned from CIFAR-10 natural images. (b)The fine-tuned
filters in first (top) and second (bottom) CRBM layer learned from the training data of motorRolling sequence [6]. (c) The fine-tuned filters
in first (top) and second (bottom) CRBM layer learned from the training data of Mitocheck sequence [54].

(2) Likelihood evaluation: for 𝑖 = 1, . . . , 𝑁1, let 𝑤𝑖𝑡 =𝑤𝑖𝑡−1𝑝(𝑦𝑡 | 𝑥𝑖𝑡).
(3) Determine the optimal object state 𝑥∗𝑡 as the particle

with the maximum weight.
(4) Resample: Normalize the weights and compute the

covariance of the normalized weights. If this variance
exceeds one threshold, then 𝛽𝑗 ∼ {𝑤𝑖𝑡}𝑁1𝑖=1 and replace
{𝑥𝑖𝑡, 𝑤𝑖𝑡}𝑁1𝑖=1 with {𝑥𝛽𝑗𝑡 , 1/𝑁1}𝑁1𝑗=1.

(5) Update:

(5.1) Set short-term positive samples 𝑠+𝑡 at time 𝑡 as
the image patches having the 10 highest confi-
dences (estimated by the likelihood evaluation).

(5.2) Select negative samples 𝑠−𝑡 at time 𝑡.
(5.3) Update the long-term set of positive samples𝑠+𝑙𝑡 = 𝑠+𝑙𝑡 ∪ {𝑥∗𝑡 }.

(5.4) If the size of 𝑠+𝑙𝑡 is larger than 𝑇, then 𝑠+𝑙𝑡 is
truncated to keep the last 𝑇 elements.

(5.5) Update the CDBN-based appearance model
based on 𝑠+𝑔 , 𝑠+𝑙𝑡, 𝑠+𝑡 and 𝑠−𝑡 .

End For

5. Experiments

In this section, we first introduce the setting of our exper-
iments. Then, we test the proposed CDBNTracker (CDBN-
10-2), which has two CRBM layers followed by one fully con-
nected layer and is pretrained on the CIFAR-10 dataset, the
Mitocheck dataset [54], and CVPR2013 tracking benchmark
[6], respectively. The Mitocheck dataset from the Mitocheck
project [54] is a time-lapse microscopic image sequence. The
Mitocheck sequence contains higher cell density, larger inten-
sity variability, and illumination variations. The CVPR2013
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tracking benchmark contains 50 fully annotated image
sequences. Each image sequence is tagged by a number
of attributes indicating the presence of different challeng-
ing aspects, such as illumination variation, scale variation,
occlusion, deformation, and background clutters. To show
the advantage of the CDBN-10-2 over the other competing
trackers, we compare it with some state-of-the-art tracking
methods including a related deep learning tracker (DLT)
[45]. Moreover, the efficacy of different positive samples is
empirically evaluated by a carefully designed experiment.
Finally, to examine the impact of the different training data
and CDBN architecture, we evaluate the performance of the
proposed CDBNTracker as the amount of training data and
the number of CRBM layers in CDBN grow.

5.1. Experiment Setting. The proposed CDBN-10-2 is imple-
mented in Matlab on a HP Z800 workstation with an Intel�
Xeon� E5620 2.40GHz processor and 12G RAM. The num-
ber of particles in particle filtering is set to 1,000. Each image
observation of the target object is normalized to a 32 ∗ 32
patch.The buffer size of temporal sliding window is set as 25.
To train the CDBN,we adopt stochastic gradient descent with
momentum. In each frame, the number of epochs needed to
train the CDBN is 500.The learning rate and momentum are
set as 1𝑒−1 and 0.5, respectively.The average processing speed
is about 5 fps at the resolution of 320 ∗ 240 pixels without
using GPUs. Consequently, the proposed CDBN-10-2 can
achieve real-time processing speed if the GPUs (e.g., tesla
k40) are used. The main memory cost is from the number
of parameters in the proposed CDBN model. However, the
CDBN shares weights among all locations in an image. Thus,
the number of parameters in ourCDBNmodel is significantly
reduced (to only 6.9 ∗ 104). We only need a small-scale
dataset (e.g., CIFAR-10 with 60,000 images) to pretrain our
CDBNmodel, which can then be effectively transferred to the
tracking tasks.TheproposedCDBNmodel can obtain a better
performance if we use other large-scale datasets for initializa-
tion (e.g., Caltech-256 or ImageNet). In our experiments, if
the memory space of one parameter is one byte in Matlab, we
find the memory cost is about 6.9 ∗ 104/1024 = 70KB. We
use the same parameters for all of the experiments.

For performance evaluation, we test the proposedCDBN-
10-2 on the Mitocheck dataset [54] and CVPR2013 tracking
benchmark, respectively. In the CVPR 2013 tracking bench-
mark, 30 publicly available trackers are evaluated. We follow
the protocol used in the benchmark, in which the evaluation
is based on two different metrics: the precision plot and suc-
cess plot. The precision plot shows the percentage of frames
whose estimated location is within the given threshold dis-
tance of the ground truth, and a representative precision score
(threshold = 20 pixels) is used for ranking. Another metric
contains the overlap precision over a range of thresholds.The
overlap precision is defined as the percentage of frames where
the bounding box overlap exceeds a given threshold varied
from 0 to 1. In contrast to the precision plot, the trackers are
ranked using the area under curve (AUC) in the success plot.
In addition, we compare the CDBN-10-2 against the deep
learning-based tracker (DLT) of Wang and Yeung [45].

5.2. Comparison with Other Trackers on
the CVPR2013 Tracking Benchmark

5.2.1. Quantitative Evaluation. The quantitative comparison
results of all the trackers are listed in Figure 4 where only the
top 10 trackers are shown for clarity. The values in the legend
of the precision plot are the relative number of frames in the
50 sequences where the center location error is smaller than a
threshold of 20 pixels. The values in the legend of the success
plot are the AUC. In both the precision and success plots,
the proposed CDBN-10-2 is the state-of-the-art compared to
all alternative methods. Our CDBN-10-2 outperforms Struck
by 2.8% in mean distance precision at the threshold of 20
pixels, while it outperforms SCM by 4.3% with the AUC.The
robustness of ourCDBN-10-2 lies in the hierarchical and deep
structure-based appearance model which is discriminatively
trained online to account for each variation.

5.2.2. Temporal and Spatial Robustness Evaluation. It is
known that a tracker may be sensitive to initialization. To
analyse a tracker’s robustness to initialization, we follow the
evaluation protocol proposed in [6] by perturbing the initial-
ization temporally (referred to as temporal robustness, TRE)
and spatially (referred to as spatial robustness, SRE). For
TRE, each sequence is partitioned into 20 segments, whereas,
for SRE, 12 different bounding boxes are evaluated for each
sequence. The precision and success plots for TRE and SRE
are shown in Figure 5. The proposed CDBN-10-2 performs
favorably compared to other trackers on the temporal and
spatial robustness evaluation.

5.2.3. Attribute-Based Evaluation. The object appearance
variationsmay be caused by illumination changes, occlusions,
pose changes, cluttered scenes, moving backgrounds, and so
forth. To analyse the performance of trackers for each chal-
lenging factor, the benchmark annotates the attributes of each
sequence and constructs subsets with 11 different dominant
attributes, namely, illumination variation, scale variation,
occlusion, deformation,motion blur, fastmotion, in-plane rota-
tion, out-of-plane rotation, out-of-view, background clutter,
and low resolution. We perform a quantitative comparison
with the 30 state-of-art trackingmethods on the 50 sequences
annotated with respect to the aforementioned attributes. Due
to space limitation, we show the representative success scores
of SRE for different subsets divided based on main variation
of the target object in Table 1. As we can see, the proposed
CDBN-10-2 performs favorably on the 11 attributes.

5.2.4. Qualitative Evaluation. Qualitative comparison with
the top 10 trackers (on four typical sequences) is shown
in Figure 6. Meanwhile, for more close-view evaluation, we
show the corresponding examples of the center distance error
per frame in Figure 7 with the top 10 trackers compared,
which show that our method can transfer the pretrained
CDBN features to the specific target object well.

Recall that the pretrained CDBN is learned entirely from
natural scenes, which are completely unrelated to the tracking
task. However, according to the overall tracking results, the
proposed CDBN-10-2 outperforms the competing methods.
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Figure 4: The precision and success plots of quantitative comparison for the 50 sequences in the CVPR2013 tracking benchmark [6]. The
performance score of each tracker is shown in the legend. The proposed CDBN-10-2 (in red) obtains better or comparable performance
against state-of-the-art tracking methods.

Table 1: A representative success score (AUC) of SRE for different subsets divided based on main variation of the target object. Only the top
5 trackers are displayed for clarity.

Image attributes Ranking
The first The second The third The fourth The fifth

Fast motion (17) CDBN-10-2 (0.472) Struck (0.451) TLD (0.385) CXT (0.348) OAB (0.322)
Background clutter (21) CDBN-10-2 (0.414) ASLA (0.410) Struck (0.408) SCM (0.387) VTD (0.377)
Motion blur (12) CDBN-10-2 (0.530) Struck (0.452) TLD (0.392) CXT (0.354) DFT (0.325)
Deformation (19) CDBN-10-2 (0.451) Struck (0.398) ASLA (0.386) DFT (0.364) CPF (0.362)
Illumination variation (25) CDBN-10-2 (0.440) ASLA (0.405) Struck (0.396) SCM (0.389) VTS (0.378)
In-plane rotation (31) CDBN-10-2 (0.422) CXT (0.410) Struck (0.410) ASLA (0.405) SCM (0.399)
Low resolution (4) CDBN-10-2 (0.387) Struck (0.360) MTT (0.326) OAB (0.311) TLD (0.305)
Occlusion (29) CDBN-10-2 (0.441) Struck (0.405) SCM (0.398) TLD (0.384) LSK (0.384)
Out-of-plane rotation (39) CDBN-10-2 (0.427) Struck (0.409) ASLA (0.404) SCM (0.396) VTD (0.392)
Out of view (6) CDBN-10-2 (0.457) Struck (0.421) LOT (0.411) TLD (0.407) CPF (0.394)
Scale variation (28) CDBN-10-2 (0.441) ASLA (0.440) SCM (0.438) Struck (0.395) TLD (0.384)

It implies that our method can construct robust object
appearance models by effectively learning and transferring
the highly general CDBN features.

5.2.5. Comparison with DLT [45]. To show the advantage of
the CDBN-10-2 over other competing trackers based on deep
learning, we compare it with the DLT [45]. According the
experimental results given in [55], DLT achieves a precision
of 0.452 at the threshold of 20 pixels and an AUC of 0.443
on the CVPR 2013 tracking benchmark. Although the DLT
has shown good performance in several scenarios, it does
not exploit the label information to learn features from the

denoising autoencoder and can hardly work well in cluttered
background. The proposed CDBN-10-2 outperforms DLT
by 23.2% in mean distance precision at the threshold of
20 pixels, while it outperforms it by 9.9% in AUC. This
is because the proposed CDBN-10-2 can effectively learn
the appearance changes of the target while preserving the
ability to discriminate the target from the background via
combining the offline and online discriminative learning.

5.3. Efficacy of Different Positive Samples. One big advantage
of the proposed CDBN-10-2 lies in that the positive samples
are classified into three categories to capture the appearance
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Figure 5: The precision and success plots for TRE and SRE. The proposed CDBN-10-2 (in red) achieves comparable performance in all the
evaluations.

variations while alleviating the drifting problem. To verify
this advantage, we check the updating process for the positive
samples and give several examples in Figure 8. The motor-
Rolling sequence on the first row suffers from large pose and
lighting variations. The football sequence on the second row
contains a playermoving in front of a clutter background.The
singer1 sequence on the third row is captured by a PTZ cam-
era and has large illumination changes.The jogging sequence
on the fourth row suffers from short-term occlusions, pose,
and appearance changes. As shown in Figure 8, it is obvious

that the proposed CDBN-10-2 can effectively exploit ground-
truth, long-term, and short-term positive samples to incre-
mentally update the CDBN-10-2 to capture object appearance
changes while alleviating the drifting problem.

5.4.The Impact ofDifferent TrainingData andCDBNArchitec-
ture. Since the proposed CDBN-10-2 consists of two CRBM
layers followed by one fully connected layer and is pretrained
on the CIFAR-10 dataset [53], the following questions arise:
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Figure 6: Qualitative comparison on several sequences from [6], that is, the freeman4, motorRolling, singer2, and carScale sequence,
respectively.

(1) why the common object recognition dataset is effective
for object tracking, even though the dataset does not contain
the target objects? (2) Whether the proposed CDBNTracker
will continue to improve as data or the number of CRBM
layers in CDBN grows? To answer these two questions, we
investigate the performance of the proposedCDBNTracker as
the amount of training data and the number of CRBM layers
in CDBN grow.

Specifically, we first study two simple variations to the
CDBN-10-2, namely, CDBN-100-2 and CDBN-tiny-2. They
share the same topology of CDBN-10-2 but they are pre-
trained on either CIFAR-100 or tiny datatset [53]. CIFAR-100
is just like the CIFAR-10, except it has 100 classes containing
600 images each. From the 79 million tiny images, we
randomly sample 202,932 images to pretrain the CDBN-tiny-
2.Then, we pretrain a CDBNTracker with three CRBM layers
followed by one fully connected layer from the CIFAR-10.
This version of the CDBNTracker is denoted by CDBN-10-3.

Due to space limitation, we only show the precision and
success plots for TRE on the CVPR2013 tracking benchmark
in Figure 9. Obviously, the performance of the proposed

CDBNTracker continues to improve as data or the number of
CRBM layers inCDBNgrows.Moreover, although theCDBN
is trained offline for other purpose (e.g., object recognition),
the proposedCDBNTracker can performwell for the tracking
task by using the internal CDBN features as a generic and
middle-level image representation. We conjecture that it is
because the CDBN features are more effective to represent
middle-level concept of target than hand-crafted ones.

5.5. Experimental Results on the Mitocheck Cell Dataset. The
qualitative single-cell tracking results of our method on a
single-cell from the Mitocheck dataset [54] are shown in Fig-
ure 10. Due to space limitations, multiple single-cell tracking
results are combined to be shown in Figure 10. It is obviously
seen from Figure 10 that the low-quality (low-contrast)
images, illumination variations, and large intensity variations
challenge the cell trackingmethods. Due to the powerful rep-
resentation learned from multilayer CDBNs with local tied
weights to reduce the model complexity under the scarcity
of training samples, our method can still provide promising
single-cell tracking results.
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Figure 7: Quantitative comparison on the center distance error per frame for several sequences from [6].

6. Conclusion

In this paper, we have proposed a robust single-cell/object
tracking method via learning and transferring CDBN fea-
tures. The proposed CDBNTracker does not rely on engi-
neered features and automatically learns the most discrim-
inative features in a data-driven way. A simple yet effective
method has been used to transfer the generic and midlevel
features learned from CDBNs to the single-cell/object

tracking task.The drifting problem is alleviated by exploiting
ground-truth, long-term, and short-term positive samples.
Extensive experiments on the Mitocheck cell dataset and
CVPR2013 tracking benchmark have validated the robustness
and effectiveness of the proposed CDBNTracker.
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Figure 9: We compare the performance of the proposed CDBNTrackers (e.g., CDBN-10-2, CDBN-100-2, CDBN-tiny-2, and CDBN-10-3) as
the amount of training data and the number of CRBM layers in CDBN grow.
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Figure 10: Qualitative comparison on a single-cell from the
Mitocheck dataset [54].
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