
Human leukocyte antigens (HLAs) are encoded by major 
histocompatibility complex class I (MHCI) genes, which play 
a major antigen presentation role in the adaptive immune 
system. As such, there are a large number of HLA subtypes 
and alleles that provide extensive genetic diversity to host 
immunity [1]. HLA-B27, an MHCI molecule responsible 
for antigen presentation to CD8+ T lymphocytes, has been 
closely associated with the development of ankylosing spon-
dylitis and associated spondyloarthropathies [2,3]. Notably, 
HLA-B27 is also associated with the development of acute 
anterior uveitis (AAU), the most common form of uveitis 
worldwide [4,5]. In North America, the prevalence of the 
HLA-B27 allele in AAU patients is around 50% [6-8], and 
it is the most common genetic marker associated with the 
development of AAU [5,7,9]. This AAU is typically unilateral 
with substantial cellular and protein extravasation into the 
anterior chamber. Previous studies with HLA-B27 transgenic 
mice and rats have reproduced aspects of systemic spondylo-
arthritis [10-12]. However, evidence of AAU in these animals 
has generally been mild or negligible.

To study the role of HLA-B27 in disease, we have been 
characterizing the phenotypes of HLA transgenic mice. 
These animals were generated by crossing a transgenic strain 
carrying a human HLA-B27 allele with mice deficient in the 
endogenous mouse MHC class I genes, H-2K−/− and H-2D−/− 
(double knockout or DKO), to create the HLA-B27/DKO line 
[13,14]. In maintaining and expanding this mouse colony, a 
large number of transgenic and wild-type (WT) animals were 
generated. During this work, we observed a rare sporadic 
severe central keratitis that developed in transgenic animals, 
but that was not present in WT animals. This previously unre-
ported phenotype was observed most often in HLA-B27/DKO 
animals and occasionally in DKO animals, but never in non-
transgenic WT mice. Here we present our characterization of 
this pathology in naive animals, and following experimentally 
induced corneal inflammation.

METHODS

Transgenic mice: The HLA Tg B27 mouse strains were gener-
ated and described in detail previously [13]. The HLA Tg 
B27 mice on the C57BL/6 background were subsequently 
backcrossed with mice deficient in murine endogenous H2 
class I (H2-K−/−D−/− [DKO] mice) at least six times to generate 
HLA Tg B27/DKO strains [14]. HLA Tg B27/DKO and DKO 
offspring were categorized by flow cytometry of PBLs. HLA 
Tg B27/DKO was detected by monoclonal antibody (mAb) 
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ME1 and mAb BB7.1. DKO was demonstrated using mAb 
28–6-s. The mAbs used for flow cytometry were from the 
American Type Culture Collection (Manassas, VA), and the 
FITC-conjugated F(ab’)2 goat anti-mouse IgG (Fc-specific) 
was from Jackson ImmunoResearch Laboratories (West 
Grove, PA). The C57BL6 (WT) mice were used as a control 
in this study. All mice were housed in the specific pathogen-
free animal facility at Toronto Western Hospital in Toronto 
according to the guidelines of the Canadian Council of 
Animal Care. All animal studies were reviewed and approved 
by the University Health Network Research Committee.

Corneal debridement model: Corneal neovascularization was 
induced in mice between 6–8 weeks old through the tran-
sient removal of the corneal epithelium by gentle mechanical 
scraping, as previously described [15]. Briefly, mice were 
anesthetized by an i.p. administration of 250 mg/kg avertin. 
All eyes were locally anesthetized by a topical application of 
a 0.5% proparacaine solution (Bausch and Lomb, Rochester, 
NY) for 1 min. A topical anesthetic was blotted away with 
sterile gauze. Sterile PBS was applied to keep the eyes moist 
during surgery, which was performed under a standard labo-
ratory dissecting microscope. The eyes were proptosed with 
serrated forceps, and the corneal epithelium was removed 
with a sterile disposable scalpel using central brushing 
motions following the corneal surface. An antibiotic oint-
ment was applied to the debrided eyes and the animals were 
allowed to recover on a warming pad. Animals were then 
returned to the colony for 7 or 14 days, as indicated, before 
euthanasia and histological analyses.

Embedding and sectioning: To analyze the immune response 
of the cornea, animals were sacrificed on days 7 and 14 after 
scraping. Animals were euthanized with Ketamine/Xylazine 
followed by cervical dislocation. Eyes were enucleated with 
curved tweezers, slightly rinsed in 1 X PBS, and fixed with 
4% paraformaldehyde at 4  °C overnight under constant 
rocking. After fixation, eyes were washed with 1 X PBS and 
equilibrated in 30% sucrose solution at 4 °C until the samples 
sank to the bottom of the container. Eyes were then frozen in 
optical cutting temperature (OCT) (Sakura, Torrance, CA) on 
dry ice, and serial sections were cut at a thickness of 10 µm, 
mounted on SuperfrostPlus slides (VWR, Radnor, PA), and 
stored at −80 °C.

Histology and Immunofluorescence staining: For histology, 
sections were stained with hematoxylin and eosin (H&E), 
according to established protocols. For immunofluorescence, 
the sections were air-dried at room temperature for 15 min 
and with 4% paraformaldehyde for 10 min. Sections were 
then rinsed with 1 X PBST (0.25% Triton-X100). Blocking 
was performed for 30 min at room temperature in 5% normal 

serum in PBS. Sections were incubated with primary anti-
bodies diluted in PBS for 2 h at room temperature. Sections 
were washed with 1 X PBS and incubated with secondary 
antibodies diluted in PBS for 1 h at room temperature. After 
washing again, sections were mounted with the VECTA-
SHIELD HardSet mounting medium with DAPI (Vector 
Laboratories, Burlingame, CA) and imaged. Primary anti-
bodies used were: rat anti-mouse Ly6G and rat anti-mouse 
F4/80 (BioLegend, San Diego, CA), rat anti-mouse CD31, rat 
anti-mouse CD4, and rat anti-mouse CD8a (BD PharMingen, 
Mississauga, ON). Alexa Fluor 546, goat anti-rat (Life Tech-
nology, Burlington, ON) was used as the secondary antibody. 
All histology and immunofluorescence images are represen-
tative of at least three independent animal experiments.

Scoring and statistics: Scoring of keratitis was determined 
from H&E slides in a blinded fashion. A score of ‘0’ was 
assigned when there was no evidence of infiltrates or morpho-
logical disruption, ‘1’ if a few infiltrates were present, ‘2’ 
if a moderate number of infiltrates were present along with 
mild tissue damage, and ‘3’ if there was extensive damage, 
swelling, and a great number of infiltrates. To compare the 
resolution of corneal inf lammation between genotypes, 
the difference between days 7 and 14 post-debridement 
was analyzed by a non-parametric Mann–Whitney U test. 
Differences were considered significant at p value ≤0.05. A 
statistical analysis was performed using the GraphPad Prism 
software (version 5.00).

RESULTS AND DISCUSSION

DKO and B27/DKO mice develop sporadic severe central 
corneal keratitis: During colony breeding, we observed that 
a severe cloudy opacity occasionally developed in the central 
cornea of B27/DKO animals (6%; 6 of 106 animals), rarely in 
DKO animals (2%; 2 of 75 animals), and never in WT animals 
(0%; 0 of 70 animals). The opacity appeared to develop 
sporadically by three weeks of age, often presenting bilater-
ally with a variable pathology in each eye. There was no clear 
evidence of an aqueous flare or purulent discharge observed 
(Figures 1A, B). However, because of the established links 
between HLA-B27 and anterior uveitis, we followed up with 
this observation to characterize the phenotype further. Eyes 
from the affected animals were enucleated, fixed, and then 
sectioned for histopathological assessment.

Sections stained with H&E revealed a deep stromal 
keratitis in the central cornea, characterized by robust 
swelling, inflammatory infiltrates, and extensive vascular-
ization (Figure 1D). Though irregular, the epithelium gener-
ally remained intact over this region, but the endothelium 
was often disrupted. Toward the limbus, the general tissue 
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morphology was preserved, but milder evidence of infiltrates 
and neovascular growth was observed (Figure 1C). As it is 
unusual for inflammation to dominate the central cornea 
rather than the periphery, an additional characterization was 
warranted.

For a more precise characterization, neighboring sections 
were also stained with antibodies raised to markers of inflam-
mation and neovascularization and assessed by immuno-
fluorescence microscopy. The central regions of the affected 
corneas were prominently stained by antibodies raised to the 
vascular endothelial marker CD31, CD4+ and CD8+ T-cells, 
macrophages (F4/80), and neutrophils (Ly-6G; Figure 2). 
These results suggest a broad inflammatory response is 
engendered in the central corneal stroma, which is accompa-
nied by robust neovascularization.

Induced corneal inflammation is prolonged in HLA-B27/DKO 
animals: The central keratitis phenotype was sporadic in 
HLA-B27/DKO animals, and the trigger remained unknown. 
However, the healthy cornea typically exhibits a low expres-
sion of MHC class I genes, a characteristic that contributes to 
its immune privilege [16,17]. Due to the ubiquitous expression 
of HLA-B27 in this transgenic strain, we hypothesized that 
an excessive corneal T-cell response may result from injury 
or infection. Therefore, we designed a follow-up study to 
induce a broad corneal inflammatory response as an attempt 
to deliberately trigger the keratitis phenotype.

For this purpose, we used a debridement model of 
corneal inflammation and angiogenesis that we have previ-
ously described [15]. Following established methods, the 
corneal epithelium was removed from the left eye of animals 
of each genotype by gentle debridement with a scalpel blade. 
Typically, this procedure results in rapid inflammation char-
acterized by extensive neutrophil and macrophage infiltration 
and angiogenesis, as well as a generally mild T-cell response 
[15,18,19]. The epithelium resurfaces within 2–3 days, and 
the inflammation begins to resolve after one week, although 
the new blood vessels remain [15]. We therefore assessed the 
debrided corneas at two time points in each strain: after 7 
days, when the inflammatory response should still be high, 
and after 14 days, when WT corneas would normally resolve.

H&E staining of the sections from WT animals revealed 
the expected infiltrates in the central corneal stroma, accom-
panied by mild swelling at day 7 (Figure 3A). By day 14, both 
the swelling and infiltrates had generally resolved (Figure 
3B). In comparison, DKO and B27/DKO animals exhibited 
increasingly exacerbated inflammation and swelling at day 7 
(Figures 3C, E). Furthermore, B27/DKO animals often clearly 
showed sustained infiltrates that did not resolve at day 14 
(Figure 3F), as compared to WT and DKO (Figures 3B, D) 
animals. These results were quantified by blinded scoring of 
H&E-stained cornea sections from multiple animals of each 
genotype. Statistical analyses indicated there was a consistent 

Figure 1. Rare corneal opacities 
observed in HLA-B27/DKO mice. 
A: A clear eye from an HLA-B27/
DKO mouse. B: The contralateral 
eye developed a severe central 
corneal opacity. C: H&E staining 
of the periphery of an affected 
cornea shows some inflammatory 
infiltrates but limited tissue disrup-
tion. D: H&E staining of the central 
cornea shows a damaged but intact 
epithelium and a severely disrupted 
stroma, accompanied by a massive 
number of tissue infiltrates and 
neovascularization (n = 6). (E: 
epithelium, S: stroma, bar indicates 
50 μM).
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Figure 2. Broad inflammation and 
neovascularization characterize 
affected corneas. Central corneas 
from affected HLA-B27/DKO 
animals stain positive for a panel 
of markers, including CD31 (A, B), 
CD4 (C, D), CD8 (E, F), F4/80 (G, 
H), and Ly-6G (I, J), as compared 
to negative WT controls (n = 6). 
(Bar indicates 50 μM).
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trend toward increased inflammation in DKO and B27/DKO 
animals at days 7 and 14 compared to WT animals, but this 
change did not reach significance (p>0.05). More strikingly, 
there was a significant resolution of inflammation in WT and 
DKO animals at day 14, but the inflammation persisted in 
B27/DKO animals (Figure 4).

As MHC class I HLAs are involved in T-cell antigen 
presentation, we hypothesized that the constitutive expres-
sion of HLA-B27 in transgenic corneas would stimulate a 
robust and persistent T-cell response during debridement-
induced inflammation. Sections from animals at 14 days 
post-debridement were therefore stained with antibodies 
raised to CD4 and CD8. Central corneas from WT and DKO 
animals did not exhibit strong staining for either marker 
(Figures 5A–B, D–E). In particular, DKO animals have been 
reported to exhibit markedly deficient CD8+ responses, which 
may contribute to the exacerbated inflammation observed in 

these animals, possibly due to the increased activity of other 
T-cell populations [13,20]. However, corneas from B27/DKO 
animals exhibited robust and persistent staining for CD4+ and 
CD8+ cells (Figures 5C, F).

Therefore, these results are consistent with an increased 
T-cell response in B27/DKO corneas due to the expression of 
the HLA-B27 MHC class I allele, particularly the induction 
of a persistent CD8+ response that is deficient in DKO and 
resolves in WT animals. Previous evidence has suggested 
instead that CD4+ and CD8+ allograft recognition is primarily 
mediated through MHC class II molecules [16]. Therefore, an 
improved understanding of the factors regulating the MHC 
class I expression in the cornea may provide additional insight 
into certain types of graft failures [21-23].

Additionally, several new questions are generated by 
these results that will require further study. The explanation 

Figure 3. HLA-B27/DKO corneas 
are deficient in resolving induced 
inflammation. H&E-stained central 
corneas from debrided WT, DKO, 
and HLA-B27/DKO animals all 
show tissue swelling and infiltrates 
after 7 days (7d, panels A, C, 
E). After 14 days (14d), WT and 
DKO corneas had resolved, but 
HLA-B27/DKO corneas had not 
(panels B, D, F).
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for the unusual development of a central keratitis remains 
unclear; is it mediated by particular immune cell populations 
that are suppressed near the limbal vasculature? In addition, 
as the trigger(s) for the sporadic keratitis in our B27/DKO 

animals remains unknown, an additional characterization of 
the B27/DKO genotype may reveal sensitivities for particular 
pathogens that do not induce a strong immune response in the 
general population.

Figure 4. Persistent inf lamma-
tion in HLA-B27/DKO corneas. 
Box and whisker plots of corneal 
inflammation scores from H&E-
stained sections of WT, DKO, and 
HLA-B27/DKO animals following 
corneal debridement. A: WT and 
B: DKO corneas were signifi-
cantly resolved by day 14 but C: 
HLA-B27/DKO corneas did not. (n 
= 4 animals, *p<0.05).

Figure 5. Persistent CD4+ and CD8+ T-cell infiltrates in HLA-B27/DKO corneas. Central corneas from debrided animals at day 14 were 
stained with antibodies raised against CD4 and CD8. WT (A, D) and DKO (B, E) eyes were largely negative at this time, but HLA-B27/DKO 
corneas (C, F) retained strongly positive cells for both markers (arrowheads). (n = 4 animals, bar indicates 50 μM).
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