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Immunotherapies have revolutionized cancer treatment, but despite the many lives
that have been extended by these therapies many patients do not respond for
reasons that are not well understood. The tumor microenvironment (TME) is comprised
of heterogeneous cells that regulate tumor immune responses and likely influence
immunotherapy response. Senescent (e.g., aged) stroma within the TME, and
its expression of the senescence-associated secretory phenotype induces chronic
inflammation that encourages tumor development and disease progression. Senescent
environments also regulate the function of immune cells in ways that are decidedly
protumorigenic. Here we discuss recent developments in senescence biology and the
immunoregulatory functions of senescent stroma. Understanding the multitude of cell
types present in the TME, including senescent stroma, will aid in the development of
combinatorial therapeutic strategies to increase immunotherapy efficacy.
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INTRODUCTION

In the last 20 years there has been exponential growth in our understanding of the critical roles
played by the immune system in regulating tumor development and mediating tumor rejection.
This has culminated in revolutionary immunomodulating therapies that elicit robust and durable
responses across diverse tumor types (Borghaei et al., 2015; Larkin et al., 2015; Motzer et al.,
2015). While anti-tumor immunity is a concerted effort of both the innate and adaptive immune
systems, much of the attention is focused on the activity of CD8+ T cells specific to tumor cell-
expressed mutant peptides (neoantigens). Through cancer immunoediting, neoantigen-specific T
cells prevent tumor development by killing tumor cell clones that express strong neoantigens, but
also provide selective pressure for the outgrowth of the tumor cells that are not easily recognized by
the immune system (Shankaran et al., 2001; DuPage et al., 2012; Matsushita et al., 2012). CD8+ T
cells specific to neoantigens can mediate therapy-driven rejection in human patients (Wolfel et al.,
1995; Robbins et al., 2013; Gubin et al., 2014; Strønen et al., 2016). Prognostic indicators like CD8+
T cell infiltration and cytotoxicity, and neoantigen burden have been used to predict response to
immunotherapies targeting the PD-1 and CTLA-4 pathways but are imperfect (Rizvi et al., 2015;
Van Allen et al., 2015; Spranger et al., 2016). Additionally, most patients still fail to see benefit
following these therapies (Borghaei et al., 2015; Larkin et al., 2015; Motzer et al., 2015). One of the
challenges faced in the field is to place the activity of immune cell subsets in the context of the
broader TME to overcome immunotherapy resistance.

Rather than discrete aggregates of cancer cells, tumors are more akin to organs comprised of
many heterogenous cell types (Anderson and Simon, 2020). Non-cancerous cells that make up
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tumors are collectively referred to as the TME, and include
immune cell subsets (Binnewies et al., 2018), endothelial cells
(Castermans and Griffioen, 2007; Goel et al., 2011), and stromal
fibroblasts (Sahai et al., 2020). Cells within the TME directly
interact with tumor cells, but also influence the function of
other TME residents, creating a complex network of interactions
that ultimately determines tumor fate. TME cell subsets can
promote or impede tumor progression. For example, for every
antitumorigenic immune cell subset there is a protumorigenic
alter ego (Gajewski et al., 2013; Greten and Grivennikov, 2019).
Tumor vasculature is critical for the delivery of therapeutics
including immunotherapies, but also delivers nutrients to tumors
and can function as a barrier for immune cell infiltration (Goel
et al., 2011; Turley et al., 2015). While all cells of the TME play
important roles in tumor progression and can influence anti-
tumor immunity, the focus of this review is on tumor-associated
stromal fibroblast populations.

Studies in the last decade have increased our understanding
of cancer-associated fibroblasts (CAF). What was once a
homogeneous tumor-promoting population of cells is now
known to be comprised of distinct cellular subsets with both
tumor-permissive and suppressive functions that can potently
impact anti-tumor immunity (Özdemir et al., 2014; Rhim et al.,
2014; Dominguez et al., 2020; Grauel et al., 2020; Kieffer et al.,
2020). CAF are generally immunosuppressive and enhance the
recruitment and pro-tumorigenic phenotypes of myeloid cells
through expression of chemokines and cytokines including
CXCL and CCL family members, IL-6, IL-10, and TGFβ

(Monteran and Erez, 2019). CAF also suppress T cell function
by promoting infiltration and polarization of regulatory CD4+
T cells, expression of immune checkpoint molecules like PD-L1,
and aberrant antigen presentation (Nazareth et al., 2007; Costa
et al., 2018; Lakins et al., 2018; Elyada et al., 2019). Importantly,
the collective CAF phenotype is not the only fibroblast population
found in the TME. Senescent fibroblasts are also incorporated
into tumors (Alspach et al., 2013). Senescent fibroblasts are
permanently growth arrested but metabolically active and share
many similarities with CAF. However, the two phenotypes have
distinct differences with important implications for therapeutic
targeting. Detailed reviews regarding the status of CAF biology
are available (Valkenburg et al., 2018; Gieniec et al., 2019; Sahai
et al., 2020). Here we will discuss senescent stroma biology, recent
findings that underlie its importance in driving disease and its
potential for mediating immunosuppression within tumors.

WHAT IS SENESCENCE?

Following the advent of tissue culture techniques in the early
1900’s, the dogma surrounding the replicative lifespan of cells
in vitro stated that they were immortal. However, in 1961
Leonard Hayflick and Paul Moorhead published a seminal report
demonstrating that genetically normal human fibroblasts had a
finite replicative lifespan in vitro, and cells entered a state of
permanent growth arrest once this point was reached (Hayflick
and Moorhead, 1961; Shay and Wright, 2000). These findings are
now known as the “Hayflick limit”, and the state of permanent

growth arrest that Hayflick observed is now called cellular
senescence. Our understanding of what senescence entails has
greatly evolved over the ensuing decades.

Features of Senescent Cells
Senescent cells display gross phenotypic changes including
an enlarged, flattened morphology, distinct stress fibers, and
enlarged nuclei, as well as changes in lysosome function and
altered transcriptional profiles (which will be discussed in
more detail below) (Alspach et al., 2013; Hernandez-Segura
et al., 2018). Senescent cells are arrested in G1–G2 of the
cell cycle via the activation of regulatory pathways including
p53/p21WAF1/CIP1, p16INK4A/pRB, and p27KIP1 (Atadja et al.,
1995; Alcorta et al., 1996; Ruhland et al., 2016). Recently,
the “permanent” nature of the senescence growth arrest has
been called into question following findings that senescent
tumor cells can reenter the cell cycle following inhibition of
p53, or activation of H3K9me3 demethylases (Milanovic et al.,
2018; Yu et al., 2018). Senescent cells are generally resistant
to apoptosis, although apoptosis of senescent cells has recently
been demonstrated using small molecule inhibitors of the anti-
apoptotic BCL-2 protein family, and D-retro inverso (DRI)
peptide mediated disruption of interactions between FOXO4 and
p53 that result in the activation of caspase3/7 (Zhu et al., 2016;
Baar et al., 2017). These findings have added additional layers of
nuance to the definition of senescence to create a more dynamic
and heterogenous picture of this cell state.

Inducers of Cellular Senescence
In general, senescence is induced via persistent DNA damage
signaling that activates cell cycle regulatory pathways (Campisi
and d’Adda di Fagagna, 2007). Stress-induced premature
senescence (SIPS) can be induced in vitro through ionizing
radiation (Palacio et al., 2019), treatment with genotoxic drugs
like bleomycin and doxorubicin (Alspach et al., 2014; Demaria
et al., 2017), and reactive oxygen species (ROS)-producing
chemicals like hydrogen peroxide (Kim et al., 2019). The
replicative senescence originally observed by Hayflick is induced
by progressive telomere attrition over many rounds of cell
division that eventually results in irreparable DNA damage
signaling from the ends of chromosomes (Bodnar et al., 1998;
Fumagalli et al., 2012). Interestingly, telomeres are the primary
genetic location of persistent DNA damage in SIPS driven by
both general DNA damaging agents and replicative senescence
(Hewitt et al., 2012). More recently, a genome-wide CRISPR
screen identified the histone acetyltransferase KAT7 as a novel
regulator of senescence induction (Wang et al., 2021).

Inducers of senescence in vivo follow the general theme
of DNA damaging agents. Over the course of natural aging
and telomere shortening, senescent cells accumulate in mouse,
human, and non-human primate tissues (Dimri et al., 1995;
Herbig et al., 2006; Baker et al., 2016). The activation of
oncogenes, including Ras, Braf, and E2F1, and inactivation
of tumor suppressors including PTEN, result in uncontrolled
cell division. This creates genotoxic stress that can lead to
persistent DNA damage and senescence induction (Di Micco
et al., 2006; Mallette et al., 2007; Kumari and Jat, 2021). Systemic
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chemotherapy was recently shown to induce senescence in many
tissues in mice including lung, skin, and liver, and within the
stroma of human prostate tumors and head and neck squamous
cell carcinomas (Mellone et al., 2016; Demaria et al., 2017;
Xu et al., 2019). Type 1 inflammatory responses driven by
Simian virus 40 large T antigen (Tag)-specific CD4+ T cells have
also been shown to induce senescence of Tag-expressing tumor
cells in an IFNγ and TNFα dependent manner (Braumüller
et al., 2013), and it is reasonable to hypothesize that type 1
inflammation is capable of inducing senescence throughout the
TME. Hypoxic conditions like those found in many tumors
increase cellular ROS production and oxidative stress. It is
possible that these conditions in the TME represent another
way in which senescence is established in tumors, although
this has not been formally demonstrated. The ways in which
senescent stroma can be induced distinguishes these cells from
CAF. CAF induction is predominantly dependent on signaling
from tumor cells (Sahai et al., 2020), while senescence can be
established through tumor-independent mechanisms and can
impact many disease states, including all aspects of cancer
initiation, development, and progression.

Identifying Senescent Stroma
Elucidating the role of senescent stroma in tumor promotion
and regulation of anti-tumor immunity is complicated by
the challenge of identifying both the fibroblast cell type and
the senescent state in vivo. Fibroblasts lack specific lineage
markers and instead are defined by the absence of markers
that define epithelial cells, endothelial cells, and leukocytes
(e.g., EpCAM, CD31, and CD45, respectively) (Sahai et al.,
2020). The absence of defining markers of other cell types is
often combined with vimentin and/or α-smooth muscle actin,
which are expressed by fibroblasts and other mesenchymal cells
(Sahai et al., 2020).

One of the most common markers used to identify senescent
cells is senescence-associated β-galactosidase (SA β-gal) staining,
which preferentially labels senescent cells based on their altered
lysosomal activity (Debacq-Chainiaux et al., 2009). Senescence
can also be identified based on the increased expression of
the cell cycle inhibitor p16 via immunohistochemistry or
gene expression analysis (Baker et al., 2011; Demaria et al.,
2017; Xu et al., 2019). As discussed previously, senescent cells
express an altered transcriptional profile termed the senescence-
associated secretory phenotype (SASP), which can be used as
an additional marker of the senescent state and mediates the
biologic impacts of senescent cells (Table 1). The SASP is
comprised of a group of coordinately upregulated chemokines,
cytokines, growth factors, and modifiers of the extracellular
matrix (Bavik et al., 2006; Coppé et al., 2008; Pazolli et al.,
2009). While the specific components of the SASP may differ
based on the mode of senescence induction or anatomical
location (Kumari and Jat, 2021), upregulation of IL-6 is often
used as a surrogate marker for overall SASP expression within
tissues (Demaria et al., 2017). The secretory profile of senescent
cells is highly overlapping with that of CAFs, and similar
regulatory mechanisms for these profiles have been observed
(Alspach et al., 2014).

TABLE 1 | The immunoregulatory capabilities of a selection of factors
found in the SASP.

IL-6 •Increases accumulation of suppressive myeloid
populations (Ruhland et al., 2016)
•Suppresses CD8+ T cell cytotoxicity in a mouse colon
cancer model (Toyoshima et al., 2019)
•Blocks DC maturation (Park et al., 2004)
• Promotes leukocyte survival and proliferation (Fisher et al.,
2014)

AREG •Stabilizes Foxp3 expression in regulatory CD4+ T cells
and promotes their suppressive activity (Zaiss et al., 2013;
Wang et al., 2016)
•Promotes expression of PD-L1 on human and mouse
prostate tumor cells (Xu et al., 2019)

TGFβ • Suppresses cytotoxic CD8+ T cell activity (Batlle and
Massagué, 2019)
• Suppresses helper Th1 CD4+ T cell activity (Batlle and
Massagué, 2019)
• Induces tolerogenic DC populations (Batlle and
Massagué, 2019)
• Increases infiltration of macrophages and MDSC (Batlle
and Massagué, 2019)

CXCL12
(SDF-1)

• Restrains infiltration of CD8+ T cells in a mouse
pancreatic cancer model (Feig et al., 2013)
• Promotes M2 polarization of blood monocyte-derived
macrophages (Comito et al., 2014)
• Increases infiltration of regulatory CD4+ T cells (Costa
et al., 2018)
•Increases T cell infiltration in B16-F0 melanoma
(Dunussi-Joannopoulos et al., 2002)

CCL-2 (MCP-1) • Recruits MDSC populations in a mouse liver cancer
model (Yang et al., 2016)
• Promotes infiltration of cytotoxic yδ T cells in B16-F0
melanoma (Lança et al., 2013)

VEGF • Enhances recruitment of regulatory CD4+ T cells to tumor
and tumor-draining lymph node (Lund et al., 2012; Courau
et al., 2016)
• Decreases CD8+ T cell abundance in B16-F10 (Lund
et al., 2012)

While not exhaustive, this table shows examples of the many ways in which factors
that can be upregulated upon senescence influence immune cell function in the
tumor context. interleukin-6 (IL-6), amphiregulin (AREG), transforming growth factor
beta (TGFβ), myeloid-derived suppressor cell (MDSC), C-X-C motif chemokine
ligand 12 (CXCL-12), stromal cell derived factor 1 (SDF-1), C-C motif chemokine
ligand 2 (CCL2), monocyte chemoattractant 1 (MCP-1), vascular endothelial
growth factor 1 (VEGF). Red font indicates tumor promoting functions and green
font indicates tumor suppressive functions.

These traditional markers of fibroblasts and senescence can
be used in combination to identify senescent cells in general
and senescent tumor stroma, but they pose challenges for
high dimensional profiling and next generation technologies.
For example, the absence of specific surface markers makes
identifying fibroblasts within the complex milieu of the
TME difficult and SA β-gal staining cannot be used to
identify senescent cells within single cell RNA sequencing
datasets. While more amenable surface markers of senescence
have recently been identified, including the urokinase-type
plasminogen activator receptor (uPAR; Amor et al., 2020)
and dipeptidyl peptidase 4 (DPP4/CD26) (Kim et al., 2017),
a continuing challenge in the field is the development of
a standardized panel of markers for the identification of
senescent stroma.
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SENESCENCE IN PATHOLOGY

While cellular senescence is required for successful embryonic
development (Muñoz-Espín et al., 2013; Domínguez-Bautista
et al., 2021) and plays critical roles in wound healing (Demaria
et al., 2014), most of what we know regarding the physiologic
impacts of senescent cells is based in disease states. Because of
early observations that senescence accumulates with age (Dimri
et al., 1995), it was hypothesized that senescent cells contribute
to the aging process. In the last decade, work by several labs
has experimentally solidified the causal relationship between
senescence and aging in genetic mouse models where senescent
cells can be identified through reporter molecule expression and
selectively depleted (Baker et al., 2011; Demaria et al., 2017).
In INK-ATTAC mice the p16 promoter drives expression of a
transgene encoding an FK506 binding protein (FKBP)-caspase
8 fusion protein that allows for conditional caspase 8 activation
following treatment with the small molecule AP20187, and EGFP.
Senescent cells in INK-ATTAC mice can thus be identified by
EGFP expression and selectively depleted via caspase 8-mediated
apoptosis (Baker et al., 2011). Expression of the INK-ATTAC
transgene and selective depletion of senescent cells in either
BubR1H/H progeroid mice or naturally aged wild type mice
result in (1) significantly delayed onset of age-related changes
in spine curvature, eye function, and the composition of fat
and muscle tissue (Baker et al., 2011); (2) enhanced renal
and cardiac function (Baker et al., 2016); and (3) significantly
prolonged lifespan (Baker et al., 2016). Recently, expression
of the INK-ATTAC transgene in the MAPTP301SPS19 mouse
model of neurodegenerative disease demonstrated accumulation
of senescent cells in the brain, the clearance of which reduced
neurofibrillary tangles and enhanced cognitive function (Bussian
et al., 2018). The depletion of senescent cells in INK-ATTAC
mice also resulted in significantly longer latency of spontaneously
arising tumors (Baker et al., 2016). In the final sections of
this review, we will discuss the complex relationship between
tumorigenesis and senescence and the potential of senescent
stroma to regulate anti-tumor immunity.

Senescence and Tumors: A Paradoxical
Relationship
One of the first biologic functions attributed to cellular
senescence was tumor prevention. As discussed previously,
oncogene activation and tumor suppressor inhibition are
potent senescence inducers. While senescence is abundant in
premalignant lesions, its loss upon progression to neoplastic
disease is indicative of the requirement to overcome senescence
for tumors to develop (Chen et al., 2005; Michaloglou et al.,
2005; Bartkova et al., 2006). Generally, induction of senescence
in incipient tumor cells prevents malignancy. Induction of
senescence in the genetically normal host cells within the
TME often has the opposite effect. Senescence of immune
cells within the TME (immunosenescence) is only beginning
to be understood but is generally thought to be tumor
promoting particularly when it occurs within T cell populations
(Montes et al., 2008; Ye et al., 2012). Detailed discussions of

immunosenescence are available elsewhere (Aiello et al., 2019;
Prieto and Baker, 2019), and we will restrict our focus to the
protumorigenic impact of senescent stromal fibroblasts.

The interest in the potential of senescence to promote, rather
than inhibit, tumor development was spurred by the fact that
age is the greatest risk factor for the development of cancer.
Work by Dr. Judith Campisi and others using co-transplantation
of tumor cell lines with senescent or non-senescent fibroblast
cell lines provided the foundational evidence of the tumor-
promoting capability of stromal senescence. Implantation of
preneoplastic skin, breast, and prostate cell lines of mouse
and human origins with senescent fibroblasts results in more
aggressive tumor outgrowth compared to the tumor development
observed when these cells are implanted in the presence of non-
senescent fibroblasts (Krtolica et al., 2001; Pazolli et al., 2009;
Ruhland et al., 2016). Researchers more recently showed using
the p16-3MR mouse model (which is similar to the INK-ATTAC
model and allows for the selective depletion of senescent cells)
that senescence can be established via systemic chemotherapy
treatment in mice (treatment-induced senescence, TIS), and that
this drives the recurrence of MMTV-PyMT breast cancer cells
after surgical resection and enhances metastatic growth in the
lungs (Demaria et al., 2017). Similarly, prostate cancer patients
with higher levels of TIS within the tumor stroma experienced
significantly shorter disease-free survival (Xu et al., 2019). Tumor
promotion by senescent stroma is mediated predominantly by
SASP factors, as the inhibition of SASP expression abrogates
the ability of senescent fibroblasts to enhance tumor growth
(Pazolli et al., 2009; Alspach et al., 2014). SASP factors drive
chronic inflammation that predisposes tissues to tumor initiation,
promote tumor cell proliferation and invasion, and condition
metastatic sites (Parrinello et al., 2005; Tsai et al., 2005; Bavik
et al., 2006; Coppé et al., 2006, 2008; Liu and Hornsby, 2007;
Pazolli et al., 2009; Herranz et al., 2015; Demaria et al., 2017;
Gonzalez-Meljem et al., 2018; Perkins et al., 2020).

However, it is important to note anti-tumorigenic activity
of senescent stroma has been reported, particularly within liver
tissue (Krizhanovsky et al., 2008; Lujambio et al., 2013). It is
intriguing to hypothesize that, like the pro and anti-tumorigenic
subpopulations of CAF recently identified, that senescent cells
also exist as a gradient of subsets with opposing impacts on
tumors. High dimensional analysis of senescent populations will
need to be employed to determine the extent of heterogeneity
within the senescent phenotype.

IMMUNOREGULATORY ACTIVITIES OF
SENESCENT STROMA

In addition to direct interactions between senescent stroma and
tumor cells, the SASP mediates crosstalk between senescent
environments and a variety of immune cell populations
(Figure 1). Many of these interactions indicate the potential of
senescent stroma to suppress T cells, which are the main drivers
of tumor rejection (Wolfel et al., 1995; Robbins et al., 2013; Gubin
et al., 2014; Strønen et al., 2016; Alspach et al., 2019). Bone
marrow transfers from young donor mice into naturally aged
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recipient animals resulted in CD4+ T cell populations that were
significantly less proliferative and produced significantly less IL-2
upon stimulation ex vivo compared to parallel experiments using
young recipients (Clise-Dwyer et al., 2007). Similar results were
observed more recently using the p16-3MR mouse model where
ionizing radiation resulted in senescence and SASP upregulation
in splenocytes (Palacio et al., 2019). When senescent splenocytes
were stimulated in allogeneic mixed lymphocyte reactions,
defects in CD3+ T cell proliferation were observed that were
dependent on secreted SASP factors from the senescent splenic
environment rather than intrinsic defects in T cell function
(Palacio et al., 2019). In a tamoxifen inducible model of stromal
senescence driven by expression of p27KIP1, the presence of
senescent mouse skin fibroblasts resulted in increased infiltration
of CD45+ cells (Ruhland et al., 2016). While this increased
immune infiltrate contained lower frequencies of CD3+ T cells in
general, the frequency of immunosuppressive regulatory Foxp3+
CD4+ T cells was significantly enhanced (Ruhland et al., 2016).

Cells of the innate immune system are also impacted by
senescent or aged environments. The presence of senescent cells
in mouse skin tissue increased the frequency of CD11b+Ly6Ghi

myeloid cells that suppressed CD8+ T cell proliferation and IFNγ

production in vitro (Ruhland et al., 2016). Similar observations
were made in a mouse model of prostate cancer, where loss of
PTEN induced tumor senescence and the establishment of a TME
enriched in CD8+ T cell-suppressive myeloid cells (Toso et al.,
2014). The senescence-mediated accumulation of suppressive
CD11b+Ly6Ghi myeloid cells in mouse skin was dependent on
expression of the SASP factor IL-6 (Ruhland et al., 2016). In
aged individuals, myeloid populations are significantly skewed
including increases in monocyte-derived macrophages and
neutrophils and, conversely, profound decreases in plasmacytoid
dendritic cells (pDCs; Mogilenko et al., 2021). The myeloid
cells present in aged environments display altered cytokine
production and functional responsiveness (Hearps et al., 2012).
For example, in response to influenza infection, pDCs from older
individuals secrete less IFNα compared to younger individuals
(Jing et al., 2009).

The architecture of the lymph node, the headquarters of
immune response initiation in many settings including cancer, is
altered with age. The characteristic compartmentalized structure
of the lymph node is critical for the generation of effective
immune responses (Li et al., 2020; Kapoor et al., 2021).
The number of fibroblastic reticular cells (FRCs) decreases
in the lymph node with age, and the structural meshwork
and extracellular matrix proteins provided by these stromal
cells shows marked disorganization (Becklund et al., 2016).
Additionally, lymphatics become leaky and display a decreased
ability to support lymph flow and may ultimately contribute
to altered antigen transport and delayed immune responses
(Zolla et al., 2015). While it has yet to be shown that age-
related lymph node dysregulation is the direct result of FRC
senescence, a study in the setting of organ transplantation
demonstrated that senescent FRCs, which accumulate following
transplantation, drive disruption of lymph node architecture,
increased collagen I deposition and the establishment of a
proinflammatory environment (Li et al., 2020). FRCs are
integral to the organization of the lymph node, and it is

reasonable to hypothesize that senescence within this stromal
population may contribute to defects in T cell and dendritic
cell migration within the lymph node as well as the germinal
center dysfunction and blunted humoral response seen in older
individuals (Wagner et al., 2018). Considering the heterogeneity
of stromal cells in the lymph node and their demonstrated role
in facilitating appropriate immune responses (Knoblich et al.,
2018; Rodda et al., 2018; Kapoor et al., 2021), extensive work
is needed to understand the direct contribution of senescent
stromal populations in the lymph node to peripheral anti-tumor
immune dysfunction.

Finally, SASP factors expressed by senescent cells upregulate
cell surface immunosuppressive proteins. Following treatment
with genotoxic compounds, oncogene expression or ionizing
radiation, mouse and human fibroblasts upregulated the non-
canonical MHC molecule Qa-Ib or HLA-E, respectively (Pereira
et al., 2019). HLA-E/Qa-Ib expression significantly reduced
the cytotoxic activity of both natural killer cells and CD8+
T cells. Senescent fibroblast-conditioned media was sufficient
to upregulate HLA-E/Qa-Ib on the surface of non-senescent
fibroblasts, and this was driven, in part, by the SASP factor
IL-6 (Pereira et al., 2019). In human prostate cancer samples,
expression of SASP factor amphiregulin (AREG) by senescent
stroma was correlated with increased tumor expression of
PD-L1 (Xu et al., 2019). Furthermore, AREG expression
by a human prostate fibroblast cell line was sufficient to
promote PD-L1 expression on PC3 prostate cancer cells (Xu
et al., 2019). The PD-1/PD-L1 pathway is a major driver
of immunosuppression within the tumor microenvironment,
and AREG-mediated upregulation of PD-L1 on tumor cells
may explain the significantly reduced progression free survival
observed in prostate cancer samples with higher levels of
stromal senescence (Xu et al., 2019). Importantly, many of these
immunosuppressive impacts of senescent cells occurred in the
absence of tumor cells, indicating that senescent stroma may
prevent immunosurveillance during the earliest stages of tumor
initiation. This is particularly intriguing given recent evidence
that cancer immunoediting occurs less efficiently in older
patients (Castro et al., 2020).

DISCUSSION

The immunoregulatory capacity of the TME is clear, as is the
immunosuppressive potential of senescent and aged stroma.
While many examples of the suppressive potential of senescent
cells have been demonstrated in settings outside the tumor
context (e.g., the skin and the spleen), it is reasonable to
hypothesize that senescent stroma will mediate similar processes
within the TME. Furthermore, the impact of secreted SASP
factors on one cell type (e.g., SASP factor-mediated upregulation
of alternative MHC molecules on senescent fibroblasts) has the
potential to impose the same changes on nearby cells like tumor
cells in the TME.

An argument can be made that, compared to CAF populations
that are often proliferative, the non-proliferative nature of
senescent cells may make them minor players in tumor
regulation. However, injection of small numbers of senescent cells
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FIGURE 1 | SASP factor secretion by senescent environments impacts many cell types. Senescent environments impact tumor cells, endothelial cells, various
immune cell subsets, and lymphoid tissue in many ways that are or are hypothesized to be tumor promoting. Where identified, SASP factors produced by senescent
environments that mediate these impacts are listed. Regulatory CD4+ T cell (Treg); plasmacytoid dendritic cell (pDC); amphiregulin (AREG); osteopontin (OPN);
hepatocyte growth factor (HGF); matrix metalloproteinase (MMP); interleukin 6/8 (IL-6 and IL-8); vascular endothelial growth factor (VEGF).

into young mice was sufficient to induce age-related phenotypic
changes (Xu et al., 2017, 2018). Additionally, clearance of
senescence induced via natural aging or systemic chemotherapy
(where senescence is presumably induced sporadically within
tissues) was effective in significantly improving pathologies in
mouse models (Baker et al., 2016; Baar et al., 2017; Demaria
et al., 2017). These results argue that even small amounts of
senescence within tissues, including the TME, have the potential
to significantly impact disease outcome and present rationale for
the therapeutic targeting of senescent cells.

Therapeutic interventions targeting the tumor stroma,
particularly CAF, are currently in development to improve
anti-tumor immunity (Chakravarthy et al., 2018; Hanley and
Thomas, 2021). However, the unique characteristics of senescent
cells may make them resistant to therapies developed to
target CAF. For example, therapies intended to deplete CAF
subsets may be ineffective in depleting senescent stroma
which exhibits heightened apoptotic resistance. Strategies for
targeting senescence in vivo are also being developed. Small
molecule inhibitors of the antiapoptotic BCL-2 and BCL-XL like
venetoclax and navitoclax have been shown to induce apoptosis
preferentially in senescent cells (Demaria et al., 2017; Xu et al.,
2018; Kirkland and Tchkonia, 2020). Glutaminase-1 (GLS1) is
required for senescent cell viability, and inhibition of GLS1 was
recently shown to deplete senescent cells (Johmura et al., 2021).
Senescence-targeting immunotherapy in the form of uPAR-
specific chimeric antigen receptor (CAR) T cells was effective
in clearing oncogene-induced senescence in mouse liver (Amor
et al., 2020). The ability of senescence-targeting therapies to
improve anti-tumor immunity should be determined. In this way,
strategies aimed at depleting senescence can be added to our
arsenal of stroma-targeting therapies to expand the benefits of
immunotherapies to more patients.

Our understanding of senescence biology has advanced
significantly since Hayflick determined his limit. However, while
the impact of senescence on tumor growth is established

(Alspach et al., 2013; Baker et al., 2016; Demaria et al., 2017; Xu
et al., 2019), many outstanding questions remain. Because of
the challenges surrounding its identification, the true burden of
senescence within the TME, and whether senescence induction in
the TME varies in different tumor contexts (e.g., inflamed versus
non-inflamed, treatment responsive versus treatment resistant) is
not clear. While senescence impacts many immune cell subsets,
the mechanisms employed are unknown. A better understanding
of the immunoregulatory role played by senescence will mean a
better understanding of immunoregulation in the TME, and it
is the entirety of the TME that determines tumor fate (Dunussi-
Joannopoulos et al., 2002; Park et al., 2004; Parrinello et al., 2005;
Tsai et al., 2005; Lund et al., 2012; Feig et al., 2013; Lança et al.,
2013; Zaiss et al., 2013; Comito et al., 2014; Fisher et al., 2014;
Herranz et al., 2015; Courau et al., 2016; Wang et al., 2016; Yang
et al., 2016; Gonzalez-Meljem et al., 2018; Batlle and Massagué,
2019; Toyoshima et al., 2019).
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