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In this study, we evaluated the effect of microecological agents (MA) combined with

molasses (M) on the biodegradation of rice straw in the rumen. Rice straw was pretreated

in laboratory polyethylene 25 × 35 cm sterile bags with no additive control (Con), MA,

and MA + M for 7, 15, 30, and 45 days, and then the efficacy of MA + M pretreatment

was evaluated both in vitro and in vivo. The scanning electron microscopy, X-ray

diffraction analysis, and Fourier-transform infrared spectroscopy results showed that the

MA or MA + M pretreatment altered the physical and chemical structure of rice straw.

Meanwhile, the ruminal microbial attachment on the surface of rice straw was significantly

increased after MA+M pretreatment. Furthermore, MA + M not only promoted rice

straw fermentation in vitro but also improved digestibility by specifically inducing rumen

colonization of Prevotellaceae_UCG-001, Butyrivibrio, and Succinimonas. Altogether, we

concluded that microecological agents and molasses could be the best choices as a

biological pretreatment for rice straw to enhance its nutritive value as a ruminant’s feed.

Keywords: microecological agents, molasses, in vitro degradability, rumen microbial colonization, rice straw

INTRODUCTION

Lignocellulosic resources are potential ruminant feed materials with easy availability and low cost.
Among lignocellulosic biomass, their compositional contents are highly variable for hemicellulose,
cellulose, and lignin, hence their degradability is different. Rice straw is a common lignocellulosic
material that is distributed abundantly throughout the globe. According to statistics, the annual
output is∼1.14 billion tons (Satlewal et al., 2018). Rice straw is composed of 35.5% cellulose, 25.6%
hemicellulose, and 16% lignin (Patel et al., 2020). However, most of the straw is disposed of by
incineration, which causes resource wastage and environmental pollution (Zhao et al., 2019). In
fact, this is impractical for the direct utilization of rice straw as feed for ruminants due to the highly
polymeric and complex lignocellulose structure (Zhang Z. et al., 2016). Hence, pretreatments are
essential to overcome the recalcitrance of rice straw to utilize them for better management and
generation of bioproducts such as biogas (Kumar et al., 2019).

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.948049
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.948049&domain=pdf&date_stamp=2022-07-14
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:caozhijun@cau.edu.cn
https://doi.org/10.3389/fmicb.2022.948049
https://www.frontiersin.org/articles/10.3389/fmicb.2022.948049/full


Ma et al. Biodegradation of Rice Straw Silage

Previous studies have explored various pretreatment
methods, including steam explosion (Shi et al., 2019),
alkali (He et al., 2019), and acid (He et al., 2020). Among
them, a pretreatment method of microecological agents
(MA) composed of lactobacillus and cellulolytic enzyme
pretreatment ways are currently the most popular technologies
in production applications and have shown environmentally
friendly performance (Zhang et al., 2021). The low water-
soluble carbohydrate (WSC) content in rice straw may
limit the MA activity during the fermentation process. This
results in the insufficient substrate for MA fermentation
to rapidly lower pH and nutrient loss. It is challenging
to obtain high-quality silage from rice straw without
exogenous WSC (Oladosu et al., 2016). There are frequent
and effective ways to improve the WSC content in rice
straw by adding cheap sources of molasses (Yuan et al.,
2016b). Molasses, a by-product of the sugar industry,
is a highly soluble carbohydrate and can be used as a
fermentation substrate.

It has been well-documented that more than 90% of
lignocellulose is produced by short-chain fatty acids and
microbial proteins under the action of rumen microorganisms
(Deng et al., 2017). However, the composition of the rumen
bacterial community in the anaerobic digestion of lignocellulose
has not been deeply studied. Anaerobic digestion is an effective
management strategy for microbial pretreatment of waste
biomass resources. Up to 95% of organic matter can be
produced through anaerobic digestion. It involves the hydrolysis
of complex organics into simpler small molecules. Volatile fatty
acids (VFAs) produce CH4 and CO2 gases under anaerobic
conditions. The end product of anaerobic digestion is biogas,
an energy-rich biofuel (Patel et al., 2021). Previous research
trials have reported that Bacteroidetes, Firmicutes, Fibrobacteres,
and Proteobacteria were the main phylum in rumen bacteria,
which contributes to the degradation of fiber in the rumen
(Ozbayram et al., 2018; Xing et al., 2020). Comtet-Marre et al.
(2017) indicated that Ruminococcus, Fibrobacter, and Prevotella
played a pivotal role in polysaccharide degradation (Comtet-
Marre et al., 2017). However, the transformation of rumen
bacterial community structure and preference of rumen bacterial
colonization in MA inoculant pretreatment of lignocellulosic
biomass are still unclear.

Thus, this study was designed to investigate the effects of
MA ensiling pretreatment on fermentation dynamics, chemical
composition dynamics, physical structure, lignocellulosic in vitro
degradation, volatile fatty acids (TVFA), 72-h cumulative gas
production (GP72), and the temporal changes in the bacterial
communities that colonize the rumen of rice straw.

MATERIALS AND METHODS

Ethical Statement
This study was reviewed and approved by the Animal
Protection Professional Committee of the College of Animal
Science and Technology, China Agricultural University (Protocol
number: 2013-5-LZ).

Microecological Agents
The microecological agents consist of lactobacillus and enzymes.
The lactobacillus including Lactobacillus plantarum (1.4 × 109

cfu/g) and L. buchneri (6× 108 cfu/g) and the enzymes including
Cellulose (336 U/g),Xylanase (2,080 U/g), and β-glucanase (1,920
U/g) was provided by the Feed Research Institute, Chinese
Academy of Agricultural Sciences.

Substrate and Treatment
The rice straw was acquired after the rice harvest on suburban
farms (32.13◦N, 114.07◦E, Gushi County, Xinyang City, Henan
province, China) on December 10, 2019. The 500 g of rice straw
was weighted and chopped into 3–5 cm lengths and stored in
laboratory polyethylene 25 × 35 cm sterile bags provided by
Beijing Shengya Yuda Biological Technology Co., Ltd. (Beijing,
China); a total of 180 bags of rice straw were prepared. The bags
were divided into 3 batches: (1) not treated with any additive
(CON), (2) treated with an MA-containing additive (MA), and
(3) similar to 2, but with molasses (MA + M; Hebei Shuntong
Encyclopedia Trading Co., Ltd., China). The pretreatments were
sprayed on their respective rice straw batches according to
the 50 g/t rate. The moisture content of the rice straw was
adjusted to 70% by adding distilled water and then stored in
laboratory polyethylene sterile bags and sealed by a food vacuum
sealing machine (Konka KZ-ZK007; Dongguan Yijian Packaging
Machinery Co. Ltd., Dongguan, China) and stored at ambient
temperature (25± 3◦C) for 7, 15, 30, and 45 days. Each approach
contained 15 bags at each storage stage. Later, the fermentation
quality and chemical composition of samples were analyzed on
days 7, 15, 30, and 45. In addition, the samples stored for 45 days
were used for structural changes and grounded in a hammer mill
to bypass through a 1-mm sieve. Then, the in vitro digestibility
and rumen microbial colonization in vivo of the pretreated rice
straw was evaluated by passing them through a 2.5-mm sieve, and
each was tested in triplicate.

Chemical Composition and in vitro

Digestibility Analyses
The dry matter (DM), crude ash (Ash), neutral detergent fiber
(NDF), acid detergent fiber (ADF), and crude protein (CP)
contents of the rice straw samples were measured using a
previously adoptedmethod (Van Soest et al., 1991). The ANKOM
2000i automatic fiber analyzer (Beijing Anke Borui Technology
Co. Ltd., Beijing, China) was used to measure the NDF and
ADF contents.

An in vitro digestibility study was carried out using fluid from
rumen samples from three healthy Holstein cows. The samples
were collected 2 h after the morning feeding. The rumen fluid
was immediately mixed and was kept in a vacuum flask at a 39◦C
pre-temperature before transportation to the laboratory. Cows
were fed a TMR containing 5.6% oat hay, 11.5% alfalfa hay, 8.3%
alfalfa silage, and 24.5% corn silage and 50.1% concentrate (13.7%
of stem-flaked corn, 5.0% of corn, 8.4% of soybean meal, 5.2%
of soybean hull, 4.4% of corn DDGS, 2.9% of molasses, 3.3%
of cottonseed meal, 3.3% of sprayed corn skin, 0.5% of Berg +

Schmidt, 0.3% of XP XPC, 2.4% of premix, 0.4% of NaHPO3,
and 0.3% OPTIGEN of DM) and was offered three times per day
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(07:00, 14:00, and 18.30). Free access to the cows was assured
throughout the day.

An automatic trace gas recording system (AGRS) was used
to measure the in vitro gas production, as described in our
previous study (Yuan et al., 2016a). Briefly, 500mg of rice
straw (6 replicates) were placed in 120ml glass bottles. To each
bottle, 50ml of buffer solution was then added. Under anaerobic
conditions, the bottle was filled with nitrogen for 5 s, sealed,
connected to the AGRS, and incubated at 39◦C for 72 h (Zheng
et al., 2021). For each run, there were six bottles for blank
correction. The bottles were removed from the AGRS system
after 72 h of incubation, and the pH value was immediately
recorded. An interphosphate solution of 0.3ml containing 2.5
g/l was intermixed with 1ml of culture medium at 4◦C for
30min and centrifuged at 10,000 × g at 4◦C for 10min. For the
measurement of acetate acid (AA), propionic acid (PA), butyrate
acid (BA), and total volatile fatty acids (VFA), the supernatant
was stored at −20◦C. The supernatant was removed from the
bottle, the residual sample was dried at 65◦C, and then DM,
NDF, and ADF were measured. In vitro disappearance of DM
(IVDMD), NDF (IVNDFD), and ADF (IVADFD) was calculated
as a difference between the initial culture of DM, NDF, ADF
residual DM, NDF, and ADF and was corrected by blanks.

Structural Analyses
The morphological and structural images of the rice straw
before and after treatment with MA or MA + M were
acquired using scanning electron microscopy (SEM, ASU 3500,
Japan) at a magnification of 1,500. The samples were sputter-
coated with platinum to facilitate electrical conductivity. The
cellulose crystallinity index (CrI) was determined using the X-
ray diffraction (XRD) method (Wu et al., 2021). The XRD
was performed using a Siemens D-5000 diffractometer (Bruker,
Ettlingen, Germany), and Cu-K radiation was created at 20mA
and 40 kV. Samples were scanned from 3◦ to 40◦ with a step
size of 0.02 and 3 s per step. The CrI was measured using the
following formula:

CrI = (I002 − Iam)/I002

I002 represents the scattered intensity at the main peak for
cellulose type I. Iam represents the scattered intensity due to the
amorphous portion, measured as the least intensity between the
secondary and main peaks (Segal et al., 1959).

In situ Rumen Incubation
The in situ rumen incubation was determined as per the method
described by Gharechahi et al. (2020). In brief, pretreated rice
straw samples were air-dried and ground using a 2-mm sieve
Wiley mill (KRT-34; KunJie, Beijing, China). In addition, 5 g of
the milled samples were put into nylon bags (8 x 16 cm; pore
size = 50mm; 6 replicates). The bags were incubated for 0.5,
4, 12, and 24 h in three fistulated cows (Two parallel bags of
each pretreated sample were fitted in the cow at a given time
point). The bags were removed, washed with sterile saline to
remove loosely attached microbiota, and immediately frozen in
dry ice and shifted to the laboratory for storage at −80◦C until
DNA extraction.

DNA Extraction and Quantitative
Real-Time PCR Analysis
Total microbial genomic DNA was extracted from 200mg
of the rumen-incubated rice straw samples using the EZNA
Stool DNA kit (Omega Biotek, Norcross, GA, US). The
V3–V4 variable region of the 16S rDNA was targeted
using primers Eub338F (ACTCCTACGGGAGGCAGCAG) and
Eub806R (GGACTACHVGGGTWTCTAAT). Quantitative real-
time PCR (qPCR) was carried out following the procedures
adopted in a previous study (Jiao et al., 2014). A standard
curve was generated from the plasmid DNA of the 16S/18S
rRNA gene insert, and the standard curve met the following
requirements: R2 > 0.99. The qPCR assay was performed to
generate fragments of 460 base pairs appropriate for paired-end
sequencing on the Illumina Miseq system (Shanghai Majorbio
Bio-pharm Technology Co., Ltd). The reactions were carried out
in a 20 µl mixture containing 7.4% of ddH2O, 0.8 µl of each
primer (5µM), 10 µl of 2X Taq Plus Master Mix, and 1 µl of
each reaction was used as a template for PCR. Each sample was
performed in triplicate for PCR reactions.

Data Analysis
The cumulative gas production (GP72) (ml/g) data were recorded
using the AGRS system and fitted to the Groot model as per
equation (1) (Jcj et al., 1996).

GPt = A/[1+ (C/t)B] (1)

“A” is the asymptotic gas production (ml/g); “B” is a sharpness
parameter determining the curve’s shape; “C” is the time (h) at
which half of A is reached; and “t” is the in vitro incubation
time (h).

The effects of the ensiling day, pretreatment, and their
interaction were analyzed using a two-way analysis of variance.
One-way ANOVA analysis was performed to measure the MA
or MA + M pretreatment effect on the structure and in vitro
digestibility of rice straw. The level of significance was declared
at P < 0.05. All statistical procedures were performed using SPSS
24 (SPSS Inc., Chicago, IL, USA). The DNA sequencing data were
analyzed on a free online platform of Majorbio tools: https://
cloud.majorbio.com/page/project/p.html.

RESULTS

Physical Structure and Physicochemical
Properties
The SEM images of raw material and MA or MA + M
pretreated rice straw were used to describe the changes in
morphology. After pretreatment with MA or MA + M, the rice
straw samples reflected somewhat melted and patchy surfaces
(Figure 1), whereas Con exhibited smooth surfaces.

To observe the changes in cellulose structure, XRD diffraction
data were acquired (Figure 2). The CrI ofMA+Mwas decreased
(P < 0.05) compared to LAB and Con (Figure 2), and no
difference was found between LAB and Con (P > 0.05).

To evaluate the structural and chemical alterations
in lignin after pretreatment, the FTIR was performed
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FIGURE 1 | The effect of MA pretreatment on the surface structure of rice straw was analyzed using scanning electron microscopy (SEM). Con, no additive, control;

MA, added microecological agents; MA + M, a combination of microecological agents and molasses.

FIGURE 2 | The effect of MA pretreatment on the cellulose crystalline index (CrI, %) of rice straw was analyzed using X-ray diffraction (XRD). Con, no additive, control;

MA, added microecological agents; MA + M, a combination of microecological agents and molasses.

to detect the lignin extracted from untreated and
pretreated rice straw residues (Figure 3). The intensity
of the peak at 3,350, 2,900, 1,200–1,000, 1,425, and
1,640 cm−1 was reduced after MA or MA + M
pretreatment, and the MA + M group was the lowest in
each peak.

The NDF (P < 0.001) and ADF (P < 0.001) contents (Table 1)
of rice straw were decreased in MA and MA + M treatments
compared to Con, and the MA + M group had the lowest NDF
and ADF contents of rice straw (P < 0.001). While the content
of DM was in MA and MA + M higher than Con (P < 0.05),
no difference was found between MA and MA + M (P > 0.05).
The content of CP was higher in MA + M compared to other
groups (P < 0.001), and the MA content of CP was higher than

Con (P < 0.05). The EE and Ash contents were decreased in the
MA and MA+M groups and the MA+M group had the lowest
EE and Ash contents of rice straw (P < 0.05). In addition, the CP
content of rice straw increased with the extension of anaerobic
fermentation days and reached the highest level at 45 days (P <

0.001). Meanwhile, after 45 days of ensiling, the NDF (P < 0.001)
and ADF (P < 0.001) contents of rice straw were the lowest.
When rice straw was anaerobically fermented for 45 days, the EE
content increased compared with the seventh day, while the Ash
content decreased (P < 0.001).

In this study, with the extension of the fermentation days, the
pH value of each group showed a different decrease (Figure 4),
and the MA +M (3.7) (P < 0.001) had the lowest pH value after
ensiling for 30 days.
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FIGURE 3 | FTIR spectroscopy of rice straw after MA pretreatment. Con, no additive, control; MA, added microecological agents; MA + M, a combination of

microecological agents and molasses.

TABLE 1 | Effect of MA pretreatment and anaerobic storage days on the chemical composition of rice straw (%, DM).

Item Day SEM Treatment SEM P-value

7 15 30 45 Con MA MA + M D T D × T

CP, %DM 3.06c 2.94d 3.25b 3.32a 0.02 2.98c 3.14b 3.31a 0.02 <0.001 <0.001 <0.001

DM, % 96.26b 96.84a 96.22b 96.27b 0.03 96.19b 96.56a 96.46a 0.03 <0.001 <0.001 <0.001

NDF, %DM 65.57a 60.84b 60.11c 57.63d 0.39 68.82a 62.79b 56.51c 0.27 <0.001 <0.001 <0.001

ADF, %DM 39.32a 37.79b 35.75c 35.46d 0.27 40.07a 36.44b 34.72c 0.15 <0.001 <0.001 <0.001

EE, %DM 1.80b 1.38c 1.92a 1.94a 0.03 1.44a 1.84b 2.00c 0.02 <0.001 <0.001 <0.001

Ash, %DM 15.87a 15.38c 15.54b 15.69b 0.03 15.82a 15.64b 15.34c 0.02 <0.001 <0.001 <0.001

Different superscript letters a, b, c, and d indicate significantly different values (P < 0.05) across rows, and the same letters indicate insignificant differences (P > 0.05). SEM, standard

error of the mean; Con, no additive, control; MA, added microecological agents; MA + M, a combination of microecological agents and molasses; DM, dry matter (the dry matter

content is calculated based on air-drying the sample); CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; EE, ether extract.

In vitro Ruminal Degradation and Total Gas
Production
The MA + M and MA treatments increased DM (P < 0.001),
NDF (P < 0.001), and ADF (P < 0.001) in vitro degradation
(Table 2) of rice straw compared to Con. TheMA+Mgroup was
the highest. The MA + M increased gas production (P = 0.050)
over the 72-h incubation period and asymptotic gas production
(P = 0.049) compared to MA and Con, while no significant
difference was noticed between Con and MA treatments (P
> 0.05) for gas production and asymptotic gas production.
However, the C of the MA + M group was lower than the M
group (P = 0.012). Notably, the AGPR of the MA + M group
was significantly higher than Con and MA groups (P = 0.010),
while no significant difference was found between the Con and
MA treatments (P > 0.05).

In our current experimental trials, we documented that MA
and MA + M significantly (P < 0.001) increased the AA and

VFA concentrations of rice straw (Table 3). In addition, no
significant difference (P > 0.05) was found in the VFA and AA
concentrations between the MA and MA+M treatments.

Microbial Colonization in Pretreated Rice
Straw
The microbial colonization in the rice straw samples was
estimated by measuring the total copy number of bacterial 16S
rRNA genes (Figure 5). With increasing incubation time in the
rumen, the microbial colonization (MC) significantly increased
(P < 0.05) in the rice straw. Higher MC (P < 0.05) was also
observed in the MA + M and MA treatments than in the Con
at 12 h of rumen incubation. In addition, the MC of the MA
+ M group was the highest after 24 days of rumen incubation
(P < 0.05).
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FIGURE 4 | The effect of MA pretreatment on the pH value of rice straw. Con, no additive, control; MA, added microecological agents; MA + M, a combination of

microecological agents and molasses. ** indicate the significant correlations at P < 0.01.

TABLE 2 | Effects of MA pretreatment on the biodegradation and parameters of

gas production after 72 h of in vitro ruminal incubation of rice straw.

Item Con MA MA + M SEM P-value

Biodegradation (%)

DM degradation 50.40c 56.78b 60.86a 0.56 <0.001

NDF degradation 45.00c 48.75b 53.20a 0.67 <0.001

ADF degradation 40.72c 45.15b 50.55a 0.71 <0.001

Gas production

Total gas (mL/g of DM)

GP72 (mL/g) 145.07b 146.29b 164.76a 4.95 0.050

A (mL/g) 154.65b 157.75b 176.53a 5.7 0.049

B (h) 1.36 1.34 1.31 0.07 0.912

C (h) 8.85ab 9.85a 7.68b 0.34 0.012

AGPR (mL/h) 5.92b 5.37b 7.52a 0.33 0.010

Different superscript letters a, b, and c indicate significantly different values (P < 0.05)

across rows, and the same letters indicate insignificant differences (P > 0.05). SEM:

standard error of the mean. Con, no additive, control; MA, added microecological agents;

MA + M, a combination of microecological agents and molasses; A, the asymptotic gas

production (mL/g DM); B, a sharpness parameter determining the curve’s shape; C, the

time (h) at which half of A is reached; AGPR, average gas production rate (ml/h).

Diversity of the Bacterial Microbiota
Attached to Rice Straw Samples After 0.5 h
of Rumen Incubation
We analyzed alpha-diversity by using the Shannon and Chao1
indexes. The results showed no significant differences in
all groups (Supplementary Figures S1A,B). Diverse microbial
compositions were detected among groups in both phylum
and family levels (Figures 6A, 7A). At the phylum level, the
Bacteroidetes and Firmicutes were the most abundant. Rice straw
samples were incubated in the rumen for 0.5, 4, and 24 h, and the
relative abundance of Bacteroidetes was higher (P < 0.05) in MA

TABLE 3 | Effect of MA pretreatments on in vitro rumen fermentation parameters

of rice straw.

Item Con MA MA + M SEM P-value

Acetic acid (mM/L) 40.82b 45.81a 49.96a 0.81 <0.001

Propionic acid (mM/L) 13.39 15.06 14.64 1.43 0.069

Butyric acid (mM/L) 5.34 5.53 5.57 0.88 0.919

Total volatile fatty acid (mM/L) 62.08b 69.31a 73.08a 2.86 <0.001

Different superscript letters a and b indicate significantly different values (P < 0.05) across

rows, and the same or no letters indicate insignificant differences (P > 0.05). SEM:

standard error of the mean. Con, no additive, control; MA, added microecological agents;

MA + M, a combination of microecological agents and molasses.

+M than in Con and significantly higher than MA (Figure 6B).
Rice straw samples were incubated in the rumen for 4 and 24 h,
and the relative abundance of Firmicutes was higher (P < 0.05)
in Con than in other treatments (Figure 6C). At the family level,
the Prevotella was the most abundant. Rice straw samples were
incubated in the rumen for 0.5, 4, 12, and 24 h, and the relative
abundance of Prevotellawas higher (P< 0.05) inMA+Mthan in
Con (Figure 7B). Differentially abundant microbial colonization
of rice straw sample taxa was further identified by LEfSe analysis.
As shown in Figure 8, Prevotellaceae_UCG-001,Butyrivibrio, and
Succinimonas were accumulated in the rice straw with treated
MA+M.

The Link Between Rumen Bacterial
Attachment on the Surface of Rice Straw
and Environmental Factors
Analysis the relationship between the colonizated microbes
on the surface of rice straw and environmental factors (VFA,
IVDMD, IVNDFD, and IVADFD) by Spearman correlation
(Figure 9). The relative abundance of Prevotellaceae_UCG-001
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FIGURE 5 | The effect of MA pretreatment on the microbial colonization (MC) of rice straw. Con, no additive, control; MA, added microecological agents; MA + M, a

combination of microecological agents and molasses. Different superscript letters a, b, and c indicate significantly different values (P < 0.05) in different groups and

the same or no letters indicate insignificant differences (P > 0.05).

showed a significant positive correlation with VFA (P < 0.001)
and IVNDFD (P < 0.05) and IVADFD (P < 0.05) at 0.5 h.
And the relative abundance of Succinivibrionaceae_UCG-002
and Butyrivibrio were positively related to the IVDMD (P
< 0.05), IVNDFD (P < 0.05), IVADFD (P < 0.05), and
VFA (P < 0.001) at 4 h, while the relative abundance of
norank_f_Eubacterium_coprostanoligenes_group was negatively
related to the IVDMD (P < 0.001), IVNDFD (P < 0.001),
IVADFD (P < 0.001), and VFA (P < 0.001) at 4 h.

DISCUSSION

Physical Structure and Physicochemical
Properties of Pretreated Rice Straw
In this study, we present an optimized novel way to pretreat
rice straws. Traditional methods of rice straw management
through burning and soil incorporation contribute significantly
to environmental pollution. The rice straw novel pretreatment
way has overcome not only these limitations but also ensured
their efficient utilization as animal feed. Notably, the rumen
degradation efficiency of rice straw is an important indicator
for pretreatment evaluation. Rumen microbial colonization
is very important for feed degradation in the rumen (Pan
et al., 2021). However, there are many factors affecting rumen
microbial colonization on feed surfaces, including the chemical
composition, surface area, and structure of feed (Zhang et al.,
2020). Here, our study proved that the untreated rice straw
showed a dense and comparatively smooth surface structure.
These surface properties can make it difficult for bacteria to
bind to the rice straw and colonize it. Nevertheless, after MA

or MA + M pretreatment, the rice straw surface became
rougher and partially dissolved. This was probably due to the
change in hemicellulose from the cellulose and the disruption
of fibers by MA or MA + M pretreatment. Previous studies on
morphological structure have shown that the corn stover surface
becomes rougher and more disordered after the steam explosion
treatment (Zhao et al., 2018). Similar structural changes were
reported in sugarcane bagasse pretreated with bisulfite (Liu et al.,
2017). Furthermore, the internal contents exposed by the surface
structure were damaged by MA or MA + M pretreatment,
which could promote rumenmicrobial colonization and improve
digestion due to the increased availability of nutrients. The
findings indicated that the rice straw treated by MA and
MA+ M could provide more colonization sites for rumen
microorganisms. Notably, more rumen microbial colonization
on the feed surface means higher digestibility (Terry et al., 2020).
In addition to the influence of feed surface area on degradation,
cellulose CrI is also an important index often used to evaluate
the degradation of feed (Chen et al., 2022). Crystallinity is an
important parameter to characterize the properties of polymers.
The greater the crystallinity, the better the dimensional stability,
strength, and heat resistance of the material. Therefore, the study
of cellulose crystallinity is very important for the enzymatic
digestion of biomass materials (Feuzing et al., 2022). Here,
we find that the MA + M decreased the CrI of rice straw.
Notably, the negative effect of CrI on the degradation of rice
straw has been reported (Gao et al., 2021). This means that
MA + M may change the cellulose CrI content of rice straw,
which has a positive effect on the release of nutrients. The
results were consistent with the recent report that the lower
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FIGURE 6 | The relative abundance of microbial species under different pretreatment groups. (A) Histogram of the relative abundances of species of the rumen

microbiome in all pretreatments at the phylum level (abundances <0.01 were grouped as “others”). (B) The relative abundance of Bacteroidotas in all pretreatments.

(C) The relative abundance of Firmicutes in all pretreatments. Con, no additive, control; MA, added microecological agents; MA + M, a combination of microecological

agents and molasses. Different superscript letters a, b, and c indicate significantly different values (P < 0.05) in different groups and the same or no letters indicate

insignificant differences (P > 0.05).

cellulose CrI of Alamo switchgrass contributed to a greater
glucose yield (Hu et al., 2011). The results found that the
glucan yield of hydrothermally pretreated switchgrass was 38.2%

for leaves and 56.3% for internode portions, and their CrI
was 48.9 and 46.6%, respectively. Consistently, another study
reported that the effective reduction of crystallinity caused by ball
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FIGURE 7 | The relative abundance of microbial species under different pretreatment groups. (A) Histogram of the relative abundances of species of the rumen

microbiome in all pretreatments at the genus level (abundances <0.01 were grouped as “others”). (B) The relative abundance of Prevotella in all pretreatments. Con,

no additive, control; MA, added microecological agents; MA + M, a combination of microecological agents and molasses. Different superscript letters a, b, and c

indicate significantly different values (P < 0.05) in different groups and the same or no letters indicate insignificant differences (P > 0.05).
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FIGURE 8 | Indicator bacteria with LDA scores of 2 or greater in bacterial communities associated with different pretreatments at 0.5 h (A) and 4 h (B).

Different-colored regions represent different constituents (red, Con; blue, MA; green, MA + M). Con, no additive, control; MA, added microecological agents; MA + M,

a combination of microecological agents and molasses.

milling had a determinant effect on the digestibility of sugarcane
bagasse biomass (Da Silva et al., 2010). The results found that
glucose yields were 22.0% and 78.7% when the CrI of bagasse
was 0.06% and 0, respectively. Jia et al. (2014) documented
that corn varieties with low cellulose crystallinity content had
higher biomass digestibility. Hence, cellulosic CrI is essential for
the enzymatic saccharification of rice straw. In this study, we
confirmed that the three spectral profiles of most bands were
rather similar. However, the intensities of the absorption peaks
showed significant differences, indicating that the basic structure
of residual lignin in the MA or MA + M pretreated rice straw
samples was not greatly damaged. Some of the chemical bonds
in lignin were broken. For example, the intensity of the peak at
3,350 cm−1 was reduced after MA or MA + M pretreatment,
which corresponded to the O-H stretching of hydrogen bonds of
cellulose, hemicellulose, and lignin (Rosa et al., 2012), indicating
the partial removal of lignin and hemicellulose from rice straw.
The intensity of the peak at 2,900 cm−1 was reduced after
MA or MA + M pretreatment, which was attributed to C-H

stretching within the wax (Iskalieva et al., 2012), showing the
removal of wax from rice straw. The band at 1,200–1,000 cm−1

was typically related to the C-O-H stretching of cellulose and
hemicelluloses. After MA or MA + M pretreatment, the peak at
1,200–1,000 cm−1 was reduced, indicating the partial removal of
lignin and hemicellulose from rice straw. The band at 1,425 cm−1

has been attributed to absorption to C-H deformation within
the methoxyl groups of lignin (Guo et al., 2008). After MA or
MA + M pretreatment, the peak at 1,425 cm−1 was reduced,
demonstrating the partial removal of lignin. The intensity of
the peak at 1,640 cm−1 was reduced after MA or MA + M
pretreatment, which was attributed to C=O groups in the alkyl
groups of lignin side chains. It was suggested to conjugate with
the aromatic structure (Zhao et al., 2010), representing the ether
bonds of the lignin structure were hydrolyzed by MA or MA +

M pretreatment.
Importantly, the NDF content of feed affects feed intake

and ADF affects digestibility (Wang et al., 2021). Here, our
study proves that MA or MA + M pretreatments decreased
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FIGURE 9 | Correlations heatmap of top 30 genera in colonization on surface of rice straw during incubation in rumen 0.5 h (A), 4 h (B), 12 h (C), and 24 h (D) and

environmental factors. Con, no additive, control; MA, added microecological agents; MA + M, a combination of microecological agents and molasses. *, **, and ***

indicate the significant correlations at P < 0.05, 0.01, and 0.001. VFA, total volatile fatty acids; IVDMD, in vitro dry matter degradability; IVNDFD, in vitro neutral

detergent fiber degradability; IVADFD, in vitro acid detergent fiber degradability.

the NDF and ADF of rice straw, which suggests that the rice
straw pretreated by MA or MA+ M had a positive effect on
digestion. Consistently, Zhang et al. (2020) reported that in
vitro digestibility improved rice straw by reducing NDF and
ADF contents (Yang et al., 2018). Similarly, a study also found
that cellulase could reduce the ADF and NDF contents in king
grass silages, and the NDF and ADF contents of silages were
reduced by 5 and 3% after cellulose treatment (Mao et al.,
2014). Zhang Q. et al. (2016) documented that the addition
of LAB reduced the ADF and NDF contents in L. chinensis
silage. The pH value is one of the key indexes to measure
the quality of fermentation during silage fermentation (Kholif
et al., 2021). The low pH value during silage fermentation means
that the activity of harmful microorganisms was inhibited and
reduced the loss of nutrients (Fan et al., 2021). In this study,

we confirmed that MA + M pretreatment reduced the pH
value of rice straw. It was suggested that rice straw treated
by MA+ M could improve nutrition quality. Similar studies
show that the additive LAB can reduce the pH value of oat
silage; after 30 days, the pH value decreased from 4.55 to
4.18 (Cheng et al., 2022). Furthermore, the lower pH value
inhibits C. butyrate in rice straw silage and inhibits nutrient
loss (Tian et al., 2020). During the silage process, organic acids
accumulate gradually, which in turn lowers the pH. A study has
documented that a pH of 4.2 of silage or below shows well-
fermented silage (De Bellis et al., 2022). From the results of this
study, it can be observed that the pH value of the MA + M
group is lower than the MA group, which may be due to the
soluble carbohydrates being lower in rice straw. It needs to be
added exogenously in the form of molasses to ensure the rapid
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reproduction of LAB to produce more organic acids and reduced
pH value.

In vitro Ruminal Degradation and Total Gas
Production
The nutritional value of feed is mainly determined by the
digestibility of ruminants. The in vitro culture has become a
commonly used technique due to its high correlation with in
vivo digestibility and ease of operation. Importantly, in vitro
degradation is one of the most direct indicators to evaluate feed
quality, which not only reflects the utilization status of nutrients
but also evaluates the effect of pretreatment (Ciriaco et al.,
2021). The chemical composition of forage affects digestibility,
and generally high CP and low plant cell wall content are
beneficial to improving DM digestibility. To understand how
MA or MA + M pretreatments affect in vitro degradation
(IVDMD, IVNDFD, and IVADFD) accurately, we compared
the in vitro degradation characteristics among Con, MA, and
MA + M groups, and as expected, MA or MA + M could
improve IVDMD, IVNDFD, and IVADFD of rice straw. The
improved degradability of rice straw after MA or MA+M
pretreatment is due to the destruction of the cell wall structure
of rice straw and the improvement of enzymatic hydrolysis
efficiency. These findings suggest that the rice straw pretreated
by MA or MA + M could provide more nutrients that can be
absorbed and utilized by ruminants (Hymes-Fecht and Casper,
2021) and also imply a positive impact on animal performance
(Mpanza et al., 2020). A previous study has also shown that
the L. plantrum additives can improve in vitro degradation of
elephant grass (Shah et al., 2021), and the IVDMD and IVNDFD
increased by 13.97 and 32.69%, respectively. Similar findings
were reported in forage-sorghum silage that the additive LAB
can improve the in vitro digestibility of oat silage (Kaewpila
et al., 2021b). Cherdthong et al. (2020) also reported that L.
casei TH14 could improve the in vitro digestibility of rice straw
silage (Cherdthong et al., 2020). Nevertheless, the improved
in vitro digestibility of MA or MA + M pretreated rice
straw is consistent with the lower crystallinity of cellulose and
ADF content.

Total gas production is a visual representation of the
fermentation degree of feed in the rumen (McIntosh et al., 2003).
The greater the degree of fermentation of the feed in the rumen,
the greater the gas production. A large amount of gas production
indicates that the activity of the rumen microorganisms is high
and the fermentation of the substrate is more sufficient; if the gas
production is low, it is due to insufficient microbial fermentation
products in the substrate (Guo et al., 2022). In fact, gases such as
methane, hydrogen, and carbon dioxide are produced by rumen
microbes that degrade carbohydrates and other nutrients in the
feed (Aragadvay-Yungán et al., 2021). Cumulative gas production
can reflect the substrate utilization degree and nutrient value
of rumen microorganisms (Sookrali and Hughes, 2021). In this
study, we observed that MA + M could improve the GP72 of
rice straw. Similarly, a study reported that the additive LAB can
improve the gas production of corn stover silage (Huang et al.,
2022), and the cumulative GP72h increased from 84.49 to 118.19

ml/g. Kaewpila et al. (2021b) also reported that additive LAB to
forage-sorghum silage could increase gas production.

The VFA is a critical energy source for the production of
Holstein cows. Their composition, yield, and proportion in
rumen fluid are important indicators for evaluating rumen
fermentation function. The acetate and butyrate of VFA are
materials for milk fat synthesis (Chen et al., 2021), and
among them, propionic acid glyconeogenesis is the raw material
for lactose production improvement (Reynolds, 2006). Higher
production of propionate and lower production of acetate and
butyrate leads to improved energy efficiency (Knapp et al., 2014).
Notably, ruminants ferment the ingested feed in the rumen,
and the fermentation products (short-chain fatty acids) are
absorbed and utilized by rumen epithelial cells (Johnson et al.,
2019). In this study, we confirmed that MA and MA + M
pretreatments promoted acetic acid and total VFA production
by improving the rice straw nutritional quality. This will help
the rumen epithelium to absorb more energy and thus improve
the production performance. A recent study has also confirmed
that LAB inoculants in corn silage can improve the total VFA
concentration in the rumen (Monteiro et al., 2021), compared
with the control group, the increase was 13.7%. Kholif et al.
(2021) also reported that the addition of LAB to date palm leaves
could increase the total VFA in the rumen. Similar studies were
reported in wheat straw silage that the additive LAB can improve
the acetic acid and total VFA concentration of wheat straw silage
(Babaeinasab et al., 2015).

Microbial Colonization in Pretreated Rice
Straw
Ruminants have a special ability to digest and convert plant
cell wall polysaccharides into meat and milk. The evolution of
the symbiotic interaction between the host and the complex
microbial community inhabiting the rumen is responsible for
this ability (Grilli et al., 2013). The host depends on a series
of enzyme syntheses by these rumen microbes to change the
complex fibrous substances into VFA and microbial proteins,
which are helpful for growth, production, and maintenance (Kim
et al., 2016). The attachment of rumen microorganisms is critical
for the establishment of microbial communities associated with
feed digestion (Monteiro et al., 2022). Feed entering the rumen is
rapidly colonized by microbes followed by the digestion of plant
cell wall carbohydrates. Rumen bacteria preferentially colonize
damaged areas of plant surfaces (Gharechahi et al., 2020). After
the feed is ingested, rumen bacteria play an important role in
digestion, fermentation, and degradation. Thus, understanding
howMA orMA+Mpretreatments affect microbial colonization
on the rice straw surface is very important for evaluating the
pretreatment effect. We compared the microbial colonization on
the rice straw surface among the Con, MA, and MA+M groups
by real-time PCR technical. Although there were no differences
in the three groups at the incubation for 0.5 and 4 h, there was
an obvious increase in microbial colonization on the rice straw
surface in the MA + M group during the incubation for 12 and
24 h. The previous study has demonstrated that rumen microbial
colonization on the feed surface increases with incubation time
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and that the chemical composition and structure of the feed
strongly influence microbial colonization (Liu et al., 2016). The
increased microbial colonization of MA + M pretreated rice
straw is consistent with the lower crystallinity of cellulose, NDF,
and ADF content. Especially, the destruction of straw surface
in the previous result in the MA + M group provided more
space for microbial colonization. Notably, improved colonization
of microbes on the surface of the MA + M is consistent with
increased in vitro gas production and in vitro digestibility. Similar
studies in corn stover reported that the microbial colonization
was increased by increasing the porosity and surface area after
steam explosion treatment (Sun et al., 2017). These results
suggest that the rice straw pretreated by MA+M could improve
the degradation performance.

Diversity of the Bacterial Microbiota
Attached to Rice Straw Samples After 0.5 h
of Rumen Incubation
Many experiments have demonstrated that rumen microbes
rapidly colonized on the surface of ingested feed particles
(Piao et al., 2015; Huws et al., 2016), and the composition of
colonizing microbial communities is affected by the incubation
time, the physical structure, and chemical characteristics (Li
et al., 2017). Furthermore, it has been suggested that restricted
plasmin access to target substances, and in the rumen the
high throughput of lignocellulosic biomass, resist the ability
of degradation of plant cell walls in the rumen (Terry et al.,
2019). Understanding the limiting steps and mechanisms by
which rumen microbes degrade plant cell walls is critical for
developing strategies to improve feed utilization in ruminants.
To further evaluate the taxonomy and structure of rumen
microorganisms colonized on rice straw surfaces accurately,
we compared the bacterial compositions among the Con, MA,
and MA + M groups. Although there were no differences in
the Shannon and Chao indexes in the Con, MA, and MA +

M groups, obvious alterations in microbiome structures were
detected. Notably, members of the rumen bacterial community
have different attachment preferences to rumen particles and
the rumen wall (Cheng et al., 2017), and they contribute
to nutrient acquisition, maintaining health, and improving
production (Liu et al., 2016). Here, the findings of this study
indicated that MA or MA + M promoted the degradation of
rice straw by altering the compositions of rumen microbial
colonization on the surface of rice straw, including a severe
reduction in the abundance of Firmicutes, and an increase in
the abundance of Bacteroidetes, Prevotella, Prevotellaceae_UCG-
001, Butyrivibrio, and Succinimonas. During the whole process
of rumen incubation, Bacteroidetes were significantly enriched
in the MA + M group. Particularly, the colonization of rumen
microbes is caused by microbial populations with distinct roles
that alter with time (Cao et al., 2022). It has been documented
that the Bacteroidetes show the dominant epiphytic community
colonizing ryegrass and ryegrass hay (Belanche et al., 2017).
In a previous study, it has been shown that the members of
Bacteroidetes respond primarily to proteolysis and carbohydrate
degradation (Chen et al., 2015). The Bacteroidetes are among
the most abundant members of the rumen microbiota and

function to degrade carbohydrates, and their genomes show
good lignocellulose degradation ability due to the presence
of a large number of pectinolytic enzymes and cellulolytic
enzymes (Lapébie et al., 2019). Similarly, Prevotella spp. is an
abundant member of the rumen microbiota with the ability to
grow on substrates such as cellulose, hemicellulose, and pectin
(Golder et al., 2014). Their main properties are to degrade feed
xylan in the rumen and thus play an essential role in fiber
degradation (Dodd et al., 2010). In this study, we observed
that the Prevotella significantly enriched in MA + M pretreated
rice straw, implicating MA + M pretreated rice straw had a
greater degradation in the rumen. Notably, according to our
previous results, rice straw treated with MA + M not only
increased the concentration of VFA but also suffered a large
degree of structural damage, which means that rumen microbial
accessibility of carbohydrates may be increased. The enrichment
of Prevotella is consistent with the increased accessibility of
simple carbohydrates (Beauchemin et al., 2019). Prevotella is
involved in the metabolism of carbohydrates and nitrogen and
can break down sugars and break down cellulose (Kim et al.,
2017). Furthermore, the application of LEfSe revealed differential
pathways between Con, MA, and MA + M. We observed that
Butyrivibrio, Prevotellaceae_UCG-001, and Succinimonas were
enriched in MA + M pretreated rice straw. This is consistent
with previous studies that report Butyrivibrio and Succinimonas
as having an important role in forage degradation (Chesson
et al., 1986; Krause et al., 2003). Such findings are similar to
the changes in alfalfa hay degradation in the rumen (Liu et al.,
2016). Our results demonstrated that the MA + M could induce
rumen microorganisms with lignocellulosic degradation ability
to colonize rice straw surfaces.

Furthermore, the relationship between microbial colonization
on the surface of rice straw treated by MA or MA + M
and in vitro degradation was analyzed. We observed that
Prevotellaceae_UCG-001, Succinivibrionaceae_UCG-002, and
Butyrivibrio were positively related to IVDMD, IVNDFD,
IVADFD, and VFA. These results clearly prove that rice straw
treated by MA or MA+ M could induce the colonization
of rumen microorganisms with fiber degradation ability,
thus improving the degradation of rice straw in the rumen.
In addition, we have summarized the effects of different
pretreatments on different parameters of rice straw (Table 4).

CONCLUSION

Altogether, we concluded that the MA or MA + M pretreated
rice straw significantly reduces NDF and ADF contents but
also increases CP content. Based on chemical composition and
fermentation quality, 30 days was the optimal duration for
pretreatment of rice straw as ruminant feed. The MA or MA
+ M destruct the rice straw’s structure and increases its surface
area, which leads to the enhancement of microbial colonization,
fermentation, and fiber digestion. Furthermore, MA + M
specifically induced the colonization of Prevotellaceae_UCG-
001, Butyrivibrio, and Succinimonas of rumen on the surface
of rice straw. In this study, we used a novel MA to pretreat
the refractory rice straw and analyzed the reasons for the
improved degradation after pretreatment in terms of changes
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TABLE 4 | Comparison among different studies using various pretreatment methods for rice straw.

Pretreatments Species Chemical changes CrI (%) Degradation Rumen

microorganism

References

Compound enzyme preparation Rice straw Lignin content reduced by 1.29% CrI reduced by

7.34%

– – Yu-Rong et al.,

2017

Compound enzyme preparation

+ Lactobacillus plantarum +

Lactobacillus buchneri

Corn stover NDF and ADF decreased by 19.9

and 11.2%, respectively

CrI increased by

2.85%

– – Jianhong et al.,

2018

Bacillus amyloliquefaciens

HRH317 and Bacillus subtilis

CP7

Corn silage NDF and ADF decreased by 1.3

and 1.7%, respectively

– – – Bai et al., 2022

Probiotic Sorghum

vegetable silage

– – DMD increased

by 7.3%

Increased

abundance of

Prevotella

Forwood et al.,

2020

Lactobacillus plantarum Alfalfa silage NDF decreased by 1.1% – – – Li et al., 2020

Lentilactobacillus buchneri Oat Silage DM loss reduced by 1.28% – – – Cheng et al., 2022

Lactic acid bacteria Alfalfa silage DM loss reduced by 3.04% – – – Ergin and Gumus,

2020

Lactic acid bacteria Whole crop corn

silage

NDF and ADF decreased by 12.3

and 9.4%, respectively

– DMD increased

by 6.1%

– Nair et al., 2020

Lactic acid bacteria Forage sorghum

silage

NDF and ADF decreased by

10.03 and 8.15%, respectively

– IVDMD

increased by

6.85%

Kaewpila et al.,

2021a

Compound enzyme preparation

+ Lactobacillus plantarum +

Lactobacillus brucella

Rice straw – – DMD increased

by 15.56%

– Xiaowen et al.,

2016

Compound enzyme preparation

+ Lactobacillus plantarum +

Lactobacillus brucella

Corn stover NDF decreased by 4.9% – NDFD increased

by 7.99%

– Lian et al., 2016

Compound enzyme preparation: Cellulase+ xylanase+ β -glucase, pectinase, laccase. CrI (%), Crystallinity of cellulose; DM, dry matter; NDF, neutral detergent fiber; ADF, acid detergent

fiber; DMD, dry matter degradation; IVDMD, in vitro dry matter degradation; NDFD, neutral detergent fiber degradation.

in physicochemical structure and specific induction of rumen
microbial colonization. Microecological agents and molasses
combined pretreatment provided a new strategy for the
pretreatment of lignocellulosic raw materials in the future and
thus could be useful in the alleviation of the shortage of ruminant
feed resources.
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