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Detecting exposure to new or emerging pathogens is a critical challenge to protecting 
human, domestic animal, and wildlife health. Yet, current techniques to detect infections 
typically target known pathogens of humans or economically important animals. In the 
face of the current surge in infectious disease emergence, non-specific disease surveil-
lance tools are urgently needed. Tracking common host immune responses indicative 
of recent infection may have potential as a non-specific diagnostic approach for disease 
surveillance. The challenge to immunologists is to identify the most promising markers, 
which ideally should be highly conserved across pathogens and host species, become 
upregulated rapidly and consistently in response to pathogen invasion, and remain 
elevated beyond clearance of infection. This study combined an infection experiment 
and a longitudinal observational study to evaluate the utility of non-specific markers of 
inflammation [NSMI; two acute phase proteins (haptoglobin and serum amyloid A), two 
pro-inflammatory cytokines (IFNγ and TNF-α)] as indicators of pathogen exposure in a 
wild mammalian species, African buffalo (Syncerus caffer). Specifically, in the experimen-
tal study, we asked (1) How quickly do buffalo mount NSMI responses upon challenge 
with an endemic pathogen, foot-and-mouth disease virus; (2) for how long do NSMI 
remain elevated after viral clearance and; (3) how pronounced is the difference between 
peak NSMI concentration and baseline NSMI concentration? In the longitudinal study, we 
asked (4) Are elevated NSMI associated with recent exposure to a suite of bacterial and 
viral respiratory pathogens in a wild population? Among the four NSMI that we tested, 
haptoglobin showed the strongest potential as a surveillance marker in African buffalo: 
concentrations quickly and consistently reached high levels in response to experimental 
infection, remaining elevated for almost a month. Moreover, elevated haptoglobin was 
indicative of recent exposure to two respiratory pathogens assessed in the longitudinal 
study. We hope this work motivates studies investigating suites of NSMI as indicators for 
pathogen exposure in a broader range of both pathogen and host species, potentially 
transforming how we track disease burden in natural populations.
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inTrODUcTiOn

Emerging infectious diseases cause human suffering (1, 2), 
threaten food security (3), and contribute to the decline of 
vulnerable populations and species (4). As such, in the face of 
elevated rates of infectious disease emergence in humans (5, 6), 
domestic animals (7) and wildlife (8–10), effective surveillance 
for pathogen exposure is increasingly important.

Surveillance for emerging infections is challenging because 
it requires detection of previously unreported infectious agents, 
and/or diagnosis of exposure or infection in understudied animal 
species. Indeed, animals are hosts to hundreds of pathogens and 
parasites (11) with previously unidentified species regularly 
documented (12–14). Yet, available disease diagnostics typi-
cally target known infections that cause detectable pathology in 
humans or economically important domestic animals resulting 
in a relatively narrow range of tests that are highly pathogen 
specific. Common molecular techniques to detect pathogens 
include tests that detect genetic material of the pathogen itself 
and antibody-based diagnostics that detect the host’s antibod-
ies to a given pathogen. Advancing sequencing methods show 
promise for simultaneously detecting a wider range of pathogens 
(15, 16) but, while genetically based techniques often have high 
sensitivity and specificity, they are limited to detection of active 
infections. Many infections last only a few days and thus may 
escape detection unless sampling can occur on a tight time frame. 
Most importantly, diagnostic techniques based on amplifying 
pathogen genetic material still require pathogen specific prim-
ers and/or previous publication of genetic sequences and are, 
thus, unsuitable in situations where the identity of pathogens is 
uncertain. Antibody-based techniques, such as enzyme-linked 
immunosorbent assays or immnuofluorescence assays, offer a 
way to detect infection after pathogen exposure has occurred 
because antibody titers to many infections can remain elevated 
for months to years after primary infection (17). However, 
antibody-based techniques typically used in disease diagnostics 
are highly pathogen specific, which limits their utility in detecting 
novel infections.

An ideal diagnostic approach for monitoring (often unknown) 
infections in natural populations would complement existing 
genetic and antibody techniques by detecting the presence of 
pathogens non-specifically, using immunological markers that 
indicate recent presence of infection. Ideal markers should 
increase rapidly and reliably in response to a broad range of 
pathogens and remain elevated for a consistent period after 
active infection has subsided. A test that detects exposure both 
early in infection as well as past pathogen clearance could aid 
in monitoring population health and improve surveillance for 
emerging infections.

Here, we suggest that non-specific markers of inflammation 
(NSMI hereafter) have potential for use in detecting pathogen 
exposure in natural populations. NSMI include APP [this 
study: haptoglobin, serum amyloid A (SAA)] and cytokines 
(here: TNF-α, IFNγ). APP are an integral part of the acute 
inflammatory response to pathogen exposure and engage in 
opsonization of pathogens and scavenging of toxic substances 
(18). SAA is produced by the liver after acute phase induction by 

pro-inflammatory cytokines; its main functions include binding 
cholesterol from inflammation sites, modulating the function of 
innate immune cells, and opsonizing pathogens for destruction 
by immune cells (18). Haptoglobin binds hemoglobin, which 
prevents oxidative damage and deprives bacteria of iron needed 
to grow (18). Cytokines are small “messenger” proteins secreted 
by immune cells to mediate the immune response. TNF-α is a 
primary signaling molecule in systemic inflammatory reactions 
and is a vital component of the acute phase response; IFNγ is 
a key signaling molecule in clearance of intracellular pathogen 
infections (19).

We combined an infection experiment and a longitudinal 
observational study to evaluate the utility of these four NSMI as 
indicators of pathogen exposure in a wild mammalian species, 
African buffalo (Syncerus caffer) (Figure 1). Specifically, in the 
experimental study we asked (1) How quickly do buffalo mount 
NSMI responses upon challenge with an endemic pathogen, foot-
and-mouth disease virus (FMDV); (2) for how long do NSMI 
remain elevated after viral clearance; and (3) how pronounced 
is the difference between peak NSMI concentration and baseline 
NSMI concentration? In the longitudinal study, we asked (4) Are 
elevated NSMI associated with recent exposure to seven bacterial 
and viral respiratory pathogens, in a natural host population?

MaTerials anD MeThODs

African buffalo (Syncerus caffer) included for this study were 
located within Kruger National Park (KNP), a 19,000 km2 reserve 
located in northeastern South Africa. Two populations were used 
for the study: (1) 12 1- to 2-year-old bovine tuberculosis (BTB) 
and FMDV free wild-caught buffalo obtained from Hluwluwe 
iMfolozi Park and transferred to the Skukuza State Veterinary 
enclosure (FMDV experiment buffalo, hereafter); (2) a herd of 
60–75 wild buffalos, of mixed age and sex, contained within a 
900-ha enclosure near Satara camp in the central area of KNP 
(cohort buffalo, hereafter). The first population was used in a 
FMDV challenge experiment identifying triggers of FMDV 
transmission and tracing viral evolution; the second population 
is part of an ongoing observational study identifying drivers of 
FDMV dynamics. The study was conducted under South Africa 
Department of Agriculture, Forestry and Fisheries Section 20 
permits Ref 12/11/1 and Ref 12/11/1/8/3, ACUP project number 
4478 and 4861, Onderstepoort Veterinary Research Animal 
Ethics Committee project number 100261-Y5, and the Kruger 
National Park Animal Care and Use Committee project number 
JOLAE1157-12 and JOLAE1157-13.

Field sampling
FMDV Experiment Buffalo
Foot-and-mouth disease virus is an endemic viral infection 
of cloven-hoofed ungulates, with African buffalo acting as 
the maintenance host (20). Briefly, 12 buffalo were exposed to 
FMDV (day 2) by allowing them to mix with recently infected 
[via injection, using protocols optimized previously for buffalo: 
Maree et al. (21)] animals. All 12 recipient animals were sedated 
on days 2, 4, 6, 8, 11, 14, and 30 days post FMDV exposure to 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 1 | A schematic illustrating the study design and analysis for the foot-and-mouth disease virus (FMDV) experiment and cohort buffalo longitudinal study. 
The bar graph (cohort study, middle panel) depicts the number of new cases throughout the study period of seven respiratory parasites. The number of new cases 
of viral parasites are displayed in dark gray (ad3 = Adenovirus; bhv = bovine herpes virus II; brsv = bovine respiratory syncytial virus; bvdv = bovine viral diarrheal 
virus; pi3 = Parainfluenza virus), the number of new cases of bacterial parasites are displayed in light gray (mb = Mycoplasma bovis, mh = Mannheimia haemolytica). 
The line graphs (FMDV experiment, bottom panel) illustrate the exponential decay curve fit from day of peak NSMI concentration to day NSMI returned to baseline 
for each animal. All animals mounted haptoglobin, SAA, and IFNγ responses, however, only three animals mounted a TNF-α response.
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allow for collection of blood samples for quantification of NSMI 
and FMD viremia. Immobilizations were conducted by South 
African State Veterinarians using standard protocols for buffalo 
(22). Blood was collected via jugular venipuncture directly into 
vacutainer tubes with (plasma, whole blood) or without (serum) 
heparin, and stored on ice for transport back to the laboratory. 
Immediately upon arrival at the laboratory, blood was centri-
fuged at 5000  ×  g for 10  min; plasma and serum pipetted off 
the cellular layer into sterile microcentrifuge tubes and stored 

at −80°C until analysis. In addition, 1.5 ml of whole blood, col-
lected in tubes with heparin, was aliquoted into separate, sterile 
microcentrifuge tubes and incubated at 37 C for 72 h. After 72 h, 
plasma was pipetted off the cellular layer and stored at 4 C until 
cytokine analysis 24–72  h later (23). Samples collected within 
3  days of each other were all processed on the same cytokine 
assay; therefore, samples collected 3 days prior to running the 
assays were stored at 4 C for 72 h, samples collected 2 days prior 
to running the assays were stored at 4 C for 48 h and samples 
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collected 1 day prior to running the assays were stored at 4 C 
for 24 h.

Cohort Buffalo
Cohort buffalo were originally captured in 2001 from the North 
of KNP and have been maintained since then in the enclosure as 
a BTB free breeding herd. During our study period (2014–2016), 
the herd included 65–70 animals. Natural births and deaths 
occurred during the study, leading to a total of 77 individuals 
included in analyses.

The enclosure is entirely within KNP and has numerous 
other wild animals typical of the ecosystem (e.g., giraffe, zebra, 
warthogs, small mammals, and small predators). However, the 
enclosure excludes megaherbivores (rhino, hippo, elephant) and 
large predators (lion, leopard). Cohort buffalo graze and breed 
naturally and find water in seasonal pans and manmade (perma-
nent) water points. In extreme dry seasons, supplemental grass 
and alfalfa hay are supplied.

Cohort buffalo were caught every 2–3 months from February 
2014 to February 2016, totaling 10 capture periods. To sample, 
buffalo were herded into a capture corral, separated into groups 
of 4–10 animals, and sedated. Buffalo that evaded corral capture 
were darted individually from a helicopter. Sedation procedures 
are outlined in Couch et al. (24). Animals were released from the 
capture corral within 1–5 days after captures.

The animals’ sex was determined visually. Age was determined 
by a combination of incisor wear and tooth emergence for ani-
mals older than 2.5 years, and via body size and horn growth in 
younger calves, as described in Jolles et al. (25). Body condition 
was determined by assigning a score from 1 to 5 based on manu-
ally palpating four sites (ribs, hips, spine, and tail base); average 
score was used in all analyses (26). At each capture period, blood 
was collected and processed identically to FMDV experiment 
procedures, with the addition of serum being stored for analysis 
of exposure by respiratory pathogens.

laboratory Methods
Foot-and-mouth disease virus qRT-PCR and respiratory 
pathogen ELISAs were run using serum samples. NSMI mark-
ers were quantified using plasma samples; cytokine assays were 
run using incubated plasma samples (outlined in field methods 
section) whereas haptoglobin and SAA assay were run using non-
incubated plasma samples.

FMDV Experimental Buffalo
The number of FDMV RNA genome copies per ml of serum, 
expressed as log10, was measured using quantitative qRT-PCR 
methods outlined in Ref. (21). Buffalo were considered to have an 
active viral infection if genome copies per ml of serum were >3.2 
log10. Thus, one individual was removed from the study as serum 
qRT-PCR results never exceeded >3.2 log10 genome copies/ml of 
serum.

Non-specific markers of inflammation were measured via 
sandwich ELISA per manufacturers’ instructions (Haptoglobin: 
Life Diagnostics 2410; Serum amyloid A: Life Diagnostics SAA-11;  
TNF-α: Ray-Bio ELB-TNFa; IFNγ: Bio-Rad MCA5638KZZ).  
All NSMI ELISAs were run within 1 month of collection.

Importantly, FMDV experimental buffalo were monitored for 
exposure to seven common respiratory pathogens, however, no 
animals seroconverted during the experiment. Pathogens tested 
for, and methods used to estimate, sero-conversion are identi-
cal to methods outlined below (Methods, laboratory methods, 
cohort buffalo).

Cohort Buffalo
Identical to the FMDV experiment, APP were measured via sand-
wich ELISA per manufacturers’ instructions (Haptoglobin: Life 
Diagnostics 2410; Serum amyloid A: Life Diagnostics SAA-11;  
TNF-α: Ray-Bio ELB-TNFa; IFNγ: Bio-Rad MCA5638KZZ).

Sero-conversion, a proxy for incidence, of seven common  
viral and bacterial respiratory pathogens (Figure  1) was 
measured for each capture period via sandwich ELISAs per 
manufacturers’ instructions [Adenovirus (AD-3), parainfluenza 
virus (Pi-3), bovine herpes virus, Mannheimia hemolytica, 
Mycoplasma bovis (MB): Bio-X IPAMM; bovine diarrhea virus 
(BVDV): Bio-X BVDV; bovine respiratory syncytial virus: 
Bio-X BRSV]. Samples were considered positive for pathogen 
antibodies if antibody titers exceeded threshold absorbance  
values calculated using the quality control procedures outlined 
in each Bio-X kit. Incidence was calculated as a binomial vari-
able. Incidence was assigned a 1 if an animal seroconverted from 
t0 to t1 (i.e., absorbance values were below threshold concentra-
tions at t0 but above threshold absorbance at t1) and 0 if the 
animal had not seroconverted.

With the exception of SAA, all NSMI and respiratory patho-
gen ELISAs were run within 2 weeks of capture periods. All SAA 
ELISAs were run in September 2016.

statistical analyses
FMDV Experimental Buffalo
Mathematical modeling was carried out using R [R Core Team 
(27)]. To evaluate the response of each NSMI to FMDV infection, 
we calculated (i) the time to NSMI peak from initial FMDV expo-
sure (i.e., from the first day FMDV serum genome copies/1 ml of 
serum >3.2 log10), and (ii) the period for which NSMI remained 
elevated after the host cleared the virus. In addition, mean peak 
concentration and baseline concentration were calculated for 
each NSMI.

The period for which NSMI remained elevated past viral clear-
ance was calculated as follows: first, an exponential decay curve 
Eq. 1 was fit starting from peak NSMI concentration (Figure 1):

 y aekt= . (1)

Next, decay rate (k) and intercept (a) were extracted from 
individual exponential decay equations, and baseline NSMI (yBL) 
levels were estimated from averaging day-2 and day-14 NSMI 
concentrations. The time when NSMI returned to baseline levels 
after their peak, (tBL), was calculated using Eq. 2:

 
t y a

kBL
BLlog log

=
−( ) ( ) .

 
(2)

Time at viral clearance (tVC) was assigned based on the first-day 
FMDV genome copies dropped below 3.2 log10/ml of serum after 
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TaBle 1 | Foot-and-mouth disease virus (FMDV) experiment: mean (±SE) 
baseline non-specific marker of inflammation (NSMI) concentration, peak NSMI 
concentration, days from FDMV incidence to peak concentration and days 
elevated from viral clearance for the FMDV virus.

nsMi #Buffalo that 
responded

Baseline 
concentration 

(ng/ml)

Peak concentration  
(ng/c)

Mean se Mean se

Haptoglobin 11 401.26 22.38 491,891 22,722.45
Serum amyloid A 
(SAA)

11 273.46 20.02 13,806.5 135.45

TNF-α 3 0.88 0.45 3.18 1.61
IFNγ 11 0.52 0.08 7.3 0.49

nsMi Days to peak Days elevated post 
viral clearance

Mean se Mean se

Haptoglobin 5.4 0.29 21.23 0.39
SAA 3.33 1.17 11.18 2.66
TNF-α 6.67 0.19 7.75 2.56
IFNγ 4.4 0.3 16.51 1.74

Animals were considered to have mounted a NSMI response if NSMI concentration 
exceeded 2× baseline concentration after FMDV infection; with a total of 11 animals 
participating in the study. Days to peak was calculated by counting the number of 
days between the first day FMDV RNA copies exceeded 3.2 copies/5 μl of serum and 
the day NSMI reached peak concentration. Days elevated from viral clearance was 
calculated by estimating the time it took for NSMI to return to baseline concentrations 
after viral clearance (when FMDV RNA copies were less than 3.2 copies/5 μl serum 
post FDMV incidence). If peak concentrations were only reached on day 30, animals 
were excluded from mean calculations of days to peak and days elevated from viral 
clearance. Notably, mean peak concentration for haptoglobin was approximately 1,226 
times higher than mean baseline levels, 50 times higher for SAA, 14 times higher for 
IFNγ, and four times higher for TNF-α.
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initial incidence. Days’ NSMI was elevated past viral clearance 
which was calculated by Eq. 3:

 t t tNSMI elevated from vc BL VC= − . (3)

Animals in which the NSMI concentration did not exceed 
twofold baseline levels were determined not to have mounted  
that particular NSMI response and removed from future analysis 
(for that NSMI). If NSMI concentrations did not peak until 
30 days post FMDV challenge these animals were removed from 
the analysis as their exponential decay curve would have been fit 
to only one data point. Final sample sizes included in each NSMI 
analysis are included in Table 1.

Raw data of NSMI concentration by day is presented in SF1.

Cohort Buffalo
Statistical analyses for cohort buffalo were performed in R using 
lme4 (28) and lmerTest (29).

Mixed effects logistic regressions were used to evaluate the 
effect of NSMI on respiratory disease incidence. Multiple samples 
per individual were used for all analyses, thus Animal ID was 
included as a random intercept to avoid pseudo-replication. Host 
traits (body condition, age, sex) and season may influence respira-
tory disease incidence (30); therefore, they were included as fixed 
effects within each model. A model was run for each combination 

of respiratory pathogen × NSMI (mixed effects logistic regression 
model example Eq. 4):

 

logit
incidence |NSMI
Body Condition sex age

P ij j

j j j j

=1 1

2 3 4

,
, , ,ς






















= + ∗ + ∗

+ ∗ +

β β β

β β
0 1 1 2

3

NSMI Body Condtion
sex

j

44 5
∗ + ∗ +age seasonβ ς j  

(4)

where ς ψj N~ ,( )0  represents Animal ID as a random intercept.
The association of NSMI with respiratory disease incidence 

was evaluated post sero-conversion. Our models asked whether 
prior disease incidence between [t0 and t1] was associated with 
elevated NSMI at t1. Thus, each model was run with explanatory 
variables corresponding to the t1 time step, and disease incidence 
measured for the preceding capture interval.

Haptoglobin and SAA spanned several orders of magnitude 
and were severely right skewed, thus were log2 transformed to 
increase model stability and avoid issues with influential data 
points.

To prevent errors that can arise from multiple testing, statisti-
cal significance of each dependent variable was defined using 
significance levels corrected via the Benjamini and Hochberg’s 
false discovery rate controlling procedure (31). Benjamini and 
Hochberg’s false discovery rate controlling procedure assigns a 
significance level based upon rank of p-value within the family  
of tests; therefore, the particular significance level for each model 
is specified within Table 2. The test statistic and resulting p-value 
were calculated using Satterthwaite’s approximation of degrees of 
freedom (29).

For significant associations between pathogen incidence and 
NSMI, average marginal predicted probabilities for given levels 
of NSMI concentration and area under the curve (AUC) were 
calculated using R packages lme4 (28) and pROC (32). Marginal 
predicted probabilities were calculated using models described 
in Eq. 4. 1,000 marginal predicted probabilities of pathogen inci-
dence were calculated for 100 fixed values of NSMI and randomly 
selected (from the data) values of age, sex, body condition, season, 
and animal id. Average marginal predicted probability and 95% 
CI intervals for pathogen incidence were then constructed from 
the 1,000 values calculated for each fixed NSMI concentration. 
AUC, or the area under the receiving operating characteristic 
curve, is a standard diagnostic analysis used to measure how well 
a parameter can distinguish between two diagnostic groups based 
upon the specificity (true negative rate) and sensitivity (true posi-
tive rate) of the test.

resUlTs

FMDV experiment Buffalo
Buffalo mounted robust NSMI responses to FMDV infection, as 
evidenced by differences between mean peak and baseline NSMI 
concentrations (Table 1; Figure 2).

The mean time from FMDV incidence to peak NSMI concen-
tration was 3–7 days for all NSMI (Table 1; Figure 3). On average, 
viral clearance occurred at 4.72 (±0.20) days after initial FMDV 
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TaBle 2 | Cohort study: results of logistic regression models examining the non-specific markers of inflammation (NSMI) as indicators of recent (2–3 months) parasite 
exposure after accounting for body condition, sex, age, season, and animal id.

nsMi Pathogen β se Test statistic FDr sig level p-Value

log2 (haptoglobin)

Bovine herpes virus (BHV) −0.06307 0.038 −1.66 0.021 0.09695
PI-3 0.12049 0.03749 3.214 0.007 0.00131
Bovine respiratory syncytial virus (BRSV) −0.05834 0.05671 −1.029 0.043 0.655834
Bovine diarrhea virus (BVDV) −0.03116 0.03953 −0.788 0.029 0.4309
AD-3 0.01374 0.03651 0.376 0.05 0.707
Mycoplasma bovis (MB) 0.19008 0.0598 3.178 0.014 0.00148

 Mannheimia hemolytica (MH) −0.02125 0.03593 −0.592 0.036 0.55414

log2 (serum amyloid a)

BHV −0.04368 0.02235 −1.954 0.007 0.0507
PI-3 0.003432 0.019632 0.175 0.05 0.86123
BRSV −0.03458 0.03394 −1.019 0.036 0.308322
BVDV −1.32E–01 8.95E−02 −1.471 0.029 0.14131
AD-3 0.01316 0.02144 0.614 0.043 0.53946
MB 0.3577 0.19031 1.88 0.014 0.060174

 MH −0.04644 0.02661 −1.745 0.021 0.0809

TnF-α

BHV −0.19076 0.3101 −0.615 0.036 0.5384
PI-3 −0.32148 0.26095 −1.232 0.007 0.21798
BRSV −0.62706 71187 −0.881 0.021 0.378
BVDV −0.24408 0.35926 −0.679 0.029 0.496886
AD-3 −0.099964 0.212616 −0.47 0.043 0.638
MB 0.277238 0.22845 1.192 0.014 0.233131

 MH −0.064314 0.235515 −0.273 0.05 0.784793

iFnγ

BHV −0.77378 0.58834 −1.315 0.029 0.18844
PI-3 0.20225 0.18011 1.123 0.043 0.26148
BRSV −3.63397 2.19124 −1.658 0.021 0.0972
BVDV 0.17317 0.1457 1.189 0.036 0.234609
AD-3 0.34937 0.18254 1.914 0.014 0.0556
MB −2.23E+00 1.03E + 00 −2.157 0.007 0.031
MH 0.26631 0.29246 0.125 0.05 0.900229

FDR significance levels are false discovery rate significance levels, which avoid issues for false positives that can occur when using multiple testing procedures.
Bold values indicate statistically significant relationships.
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infection (i.e., the first-day FMDV RNA copies >3.2 log10/ml of 
serum). Haptoglobin remained elevated for the greatest number 
of days past viral clearance (21 days on average), with the lowest 
interindividual variation in time elevated, followed by IFNγ, 
SAA, and TNF-α (Figures 1 and 3; Table 1).

All individuals showed increases in haptoglobin, SAA, and 
IFNγ, however, only 3/11 contact buffalo mounted detectable 
TNF-α responses. Haptoglobin displayed the greatest difference 
in mean peak and baseline concentration, followed by SAA, 
IFNγ, and TNF-α.

cohort Buffalo
For each NSMI, we tested whether elevated levels of the marker 
were indicative of infection by a range of respiratory pathogens 
during the preceding 2–3 months. Haptoglobin was a significant 
indicator of two respiratory pathogens: MB and Pi-3 (Table  2; 
Figure 4). After controlling for animal traits and season, for every 
twofold increase in haptoglobin there was a 21% increase in the 
odds of prior MB incidence and a 13% increase in the odds of 
prior Pi-3 incidence. As expected for NSMI, the sensitivity and 
specificity of haptoglobin as a marker of each particular pathogen 

was significant (Lower CI of AUC > 0.5) but moderate. The AUC 
for haptoglobin as a classifier of MB was 0.67 (95% CI 0.52–0.77) 
and Pi-3 was 0.586 (95% CI 0.53–0.64) (Figure 5).

Although not significant by standards of the Benjamini and 
Hochberg’s false discovery rate controlling procedure, there was 
suggestive evidence (p-value <0.05) that IFNγ was an indicator 
of MB incidence (Table 2). For every unit increase in IFNγ, there 
was an 11% decrease in the odds of prior MB incidence.

DiscUssiOn

Mitigating disease outbreaks and identifying pathogen presence 
is crucial in evaluating ecosystem health (33, 34), creating effec-
tive wildlife conservation plans (35–37) and improving global 
health (38–40). Current techniques to detect pathogen exposure 
are primarily limited to (1) tests that are highly specific to both 
pathogen and host and (2) pathogens that cause detectable 
pathology in humans and economically important animals; yet, 
the diversity of pathogen communities in natural populations is 
only beginning to be uncovered (41, 42) with specific diagnostic 
tools for novel infections generally unavailable.

http://www.frontiersin.org/Immunology/
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FigUre 2 | Foot-and-mouth disease virus experiment: mean baseline and peak NSML. Y axes are log transformed for ease of visual comparison between 
non-specific markers of inflammation peak and baseline concentrations. Haptoglobin peak and baseline concentrations displayed the greatest difference and least 
variability followed by serum amyloid A (SAA), IFNγ, and TNF-α. The horizontal bands represent the 25, 50, and 75% quartiles whereas the vertical lines represent 
1.5 times the interquartile range above the upper quartile and below the lower quartile, and dots represent outliers.
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Given the current surge in infectious disease emergence (43), 
new diagnostic approaches, which can detect diverse pathogens, 
over an extended time frame within a broad range of hosts, are 
urgently needed. Our study demonstrates a possible approach 
to detecting infections non-specifically, using inflammatory 
molecular.

Despite the overwhelming diversity of pathogen species that 
can infect a given host, early stages of immunological response 
are considered evolutionarily conserved, and primary defenses are 
similar for a diversity of pathogens (44) within many hosts (45). 
Consequently, tracking first-line immune response has potential 
as a non-specific diagnostic approach for monitoring the burden of 
disease in a population of interest. Invertebrate and vertebrate hosts 
initially respond to pathogen challenge by mounting an inflam-
matory response (45). Due to the ubiquity of the inflammatory 
response, proteins upregulated during this initial stage of infection 
may hold promise as non-specific markers of pathogen exposure.

In this study, we used experimental and observational 
approaches to explore the utility of four NSMI in detecting patho-
gen exposure. We included two APP (haptoglobin and SAA) and 
two cytokines involved in inflammatory responses (IFNγ and 
TNF-α).

Buffalo mounted quick and robust acute phase responses to 
experimental challenge with FMDV, with the magnitude of NSMI 

responses similar to those reported in cattle (46). We found that, 
in response to FMDV infection, haptoglobin remained elevated 
the greatest number of days past viral clearance with the smallest 
degree of interindividual variation. Haptoglobin reached peak 
concentrations within a week of FMDV incidence and remained 
elevated for more than 3 weeks past FMDV clearance. Elevated 
haptoglobin levels were, thus, detectable both during and for 
several weeks after FMDV infection. Complementary to this, 
we found in our cohort study that haptoglobin was a significant 
indicator of recent natural incidence by two out of seven viral and 
bacterial respiratory pathogens.

Within the last 20 years, haptoglobin has been used to study 
inflammation in domestic animals (46) but has been more strongly 
associated with bacterial infections (47). We found haptoglobin 
to be significantly associated with both a viral (Pi-3) and a bacte-
rial (MB) pathogen. Abnormal haptoglobin concentrations have 
been found in cattle infected with FMDV (48, 49) and Pi-3 (50).

All buffalo included in the experimental study mounted SAA 
and IFNγ responses to experimental FMDV infection within a 
week, however, on average, SAA remained elevated for just under 
2 weeks and IFNγ remained elevated for just over 1 week. IFNγ 
was also a suggestive indicator of MB in our cohort study. TNF-α 
responses were detectable in one-fourth of our experimentally 
FMDV-infected buffalo, were short-lived for animals that 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 3 | Foot-and-mouth disease virus experiment: time from initial FMDV incidence to peak non-specific markers of inflammation concentration and time NSMI 
elevated from viral clearance. On average, all NSMI concentrations reached peak in 3–7 days. Haptoglobin concentrations remained elevated the longest past viral 
clearance, with the least variability, followed by serum amyloid A (SAA), IFNγ, and TNF-α. Individuals where NSMI concentrations peaked on day 30 were excluded 
from calculations as this was thought to be due to a secondary infection. The horizontal bands represent the 25, 50, and 75% quartiles, whereas the vertical lines 
represent 1.5 times the interquartile range above the upper quartile and below the lower quartile, and dots represent outliers.

8

Glidden et al. Pathogen Detection Using Non-Specific Markers

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1944

mounted a response, and showed no associations with respiratory 
pathogens we monitored in our cohort study. Our results for SAA 
and IFNγ, especially IFNγ, suggest potential of NSMI for disease 
monitoring. Perhaps, inflammatory cytokines, particularly TNF-
α, responses are mounted quickly, either very localized or low in 
magnitude, and short lived because of the collateral damage they 
elicit (51, 52). Haptoglobin contributes to “cleaning up” products 
of inflammation (19) and, thus, should cause significantly less 
immunopathology. The function of haptoglobin may, thus, 
explain the comparatively long lived, high magnitude responses 
we observed.

We found haptoglobin to be a significant classifier of MB and 
Pi-3, however, specificity would be considered low by veterinary 
and human medical diagnostic standards. Low specificity is 
expected, given that haptoglobin responds to multiple inflam-
matory processes including exposure to unknown pathogens, 
stress, trauma, and autoimmune disorders (46); and indeed, the 
goal here was to find non-specific markers indicative of pathogen 
exposure. Although sensitivity and specificity was low, and hap-
toglobin only detected two out of seven respiratory pathogens, 
our results are particularly encouraging because we are likely to 

be underestimating the true sensitivity of haptoglobin and other 
NSMI in the cohort study, due to the “mismatch” between capture 
interval (2–3  months) and NSMI response (e.g., haptoglobin: 
3 weeks). This is likely cause an increased number of false nega-
tives—animals that were exposed to a given pathogen, but have 
no detectable elevation in NSMI at time of capture. More frequent 
captures should thus improve the performance of NSMI in detect-
ing pathogen exposures. In addition, using a combination of 
NSMI may help to tease apart sources of inflammation, allowing 
researchers to filter out non-infectious processes and improve test 
specificity.

Our work points to the possibility of defining markers for 
non-specific disease surveillance, but raises many new questions 
about discovering which combinations of markers can potentially 
work in different host species, and for detection of different suites 
of pathogens.

For example, future research could investigate a broader range 
of cytokines, such as inflammatory cytokines, Il-6 and Il-1beta, 
and additional APP, such as fibrinogen or C-reactive protein, 
and negative APP such as albumin or transferrin. Dugovich et al. 
(53) recently described the utility of natural antibodies (nAbs), 

http://www.frontiersin.org/Immunology/
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FigUre 4 | Cohort study: elevated haptoglobin was associated with Mycoplasma bovis (MB) and Parainfluenza virus III (PI3) exposure during the preceding 
2–3 months. Y axes show average marginal predicted probabilities of pathogen incidence. Marginal predicted probabilities were calculated using models described 
in Eq. 4. 1,000 marginal predicted probabilities of pathogen incidence were calculated for 100 fixed values of NSMI and randomly selected (from the data) values of 
age, sex, body condition, season, and animal id. Average marginal predicted probability and 95% CI intervals for parasite incidence were then constructed from the 
1,000 values calculated for each fixed NSMI concentration. Due to large seasonal variation, the lower confidence interval of MB is small.

FigUre 5 | Cohort study: area under the curve (AUC) for detection of 
Mycoplasma bovis (Mb) and Parainfluenza Virus (PI3) based on elevated 
haptoglobin. AUC, or the area under the receiving operating characteristic 
(ROC) curve, is a standard diagnostic analysis used to measure how well a 
parameter can distinguish between two diagnostic groups based on the 
specificity (true negative rate) and sensitivity (true positive rate) of the test. 
The gray line represents the trend the diagnostic parameter would follow if 
the AUC was equal to 0.5. The blue line represents the observed trend; the 
closer the curve follows the left and top border of the graph, the more 
accurate the test. If the blue line falls below the gray line (AUC < 0.5), it 
indicates that the test is not significantly better than random.
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antibodies that associate with the innate immune response and 
bind to multiple microbial agents, in assessing immunological 
status of desert bighorn sheep. In addition, in mammals, toll-like 
receptors (TLRs), proteins integral in recognition of infection, are 
highly conserved to recognize broad groups of pathogens (54).  
As such, the utility of nABs and TLR expression as disease sur-
veillance tools warrants future research.

A systematic approach could follow host responses to patho-
genic challenge, from pathogen recognition to inflammation, 
and define effectors that typify responses to different groups of 
pathogens. Immunologists could potentially tailor NSMI panels 
for detecting different groups of parasites, such as hemoparasites 
or gastro-intestinal infections—and explore whether taxonomic 
relatedness of parasites, or similarity of infection sites are most 
important in selecting appropriate NSMI.

Assays for APP and pro-inflammatory cytokines have been 
developed for domestic animals and laboratory model species, 
including cows, sheep, goats, horses, dogs, cats, mice, and rats. A 
handful of studies have used serum and urine based assays to moni-
tor health and disease incidence in wildlife species including Grant’s 
zebra (55), European mouflon (56), Przewalkski’s horses (57), rhe-
sus macaques (58). As such, the tools for beginning to define panels 
of NSMI for disease monitoring, already exist for a broad range of 
mammalian host species. Due to the devastation that emerging 
infectious diseases have elicited in amphibian (59) and marine 
invertebrate (60, 61) systems, identifying inflammatory markers 
that detect pathogen exposure in non-mammalian vertebrates and 
invertebrates could prove invaluable to conservation biologists.

http://www.frontiersin.org/Immunology/
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For NSMI that are stable in stored samples, such as frozen 
sera, the utility of NSMI could extend beyond current surveil-
lance to include retrospective studies—biobanks are a commonly 
available but underused resource for human, animal, and wild-
life studies. Beechler et  al. (62) demonstrated that haptoglobin 
concentrations in stored serum remain stable for at least 4 years, 
and (63) documented stability of haptoglobin, nAbs, and total 
immunoglobulins during extended storage, suggesting that 
undertaking retrospective evaluations of populations is a feasible 
and viable option for future studies.

Developing non-specific diagnostic tools is essential to detect 
emerging infections in animal and human populations and effec-
tively tracking the burden of infection in natural populations. 
In the face of the vast diversity of pathogens and host species, 
an approach that tracks conserved inflammatory responses to 
a range of infections may provide a tractable pathway toward 
recognizing changes in disease burden that can then be followed 
up with specific diagnostic testing. Our study on infections in 
African buffalo provides a proof of concept, showing that APP 
and/or pro-inflammatory cytokines can provide useful informa-
tion about pathogen exposures. It is our hope that this work will 
open opportunities for investigating suites of NSMI as indicators 
for pathogen exposure, potentially transforming how we measure 
disease in natural populations.
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