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Abstract

Biogenic amines modulate a range of social behaviours, including sociability and mecha-

nisms of group cohesion, in both vertebrates and invertebrates. Here, we tested if the bio-

genic amines modulate honey bee (Apis mellifera) sociability and nestmate affiliation. We

examined the consequences of treatments with biogenic amines, agonists and antagonists

on a bee’s approach to, and subsequent social interactions with, conspecifics in both natu-

rally hive-reared bees and isolated bees. We used two different treatment methods. Bees

were first treated topically with compounds dissolved in the solvent dimethylformamide

(dMF) applied to the dorsal thorax, but dMF had a significant effect on the locomotion and

behaviour of the bees during the behavioural test that interfered with their social responses.

Our second method used microinjection to deliver biogenic amines to the head capsule via

the ocellar tract. Microinjection of dopamine and a dopamine antagonist had strong effects

on bee sociability, likelihood of interaction with bees, and nestmate affiliation. Octopamine

treatment reduced social interaction with other bees, and serotonin increased the likelihood

of social interactions. HPLC measurements showed that isolation reduced brain levels of

biogenic amines compared to hive-reared bees. Our findings suggest that dopamine is an

important neurochemical component of social motivation in bees. This finding advances a

comparative understanding of the processes of social evolution.

Introduction

The biogenic amines (including dopamine, serotonin, octopamine) are involved in many

types of behaviour, including various social behaviours [1–2]. In mammals, mechanistic stud-

ies of sociability (tendency to aggregate [3]) and affiliation have been most extensively studied

in prairie voles (Microtus ochrogaster), as they form life long partnerships and coparent [4].

Part of the prairie vole partnership formation process involves learning the olfactory signature

of the partner and associating the olfactory cue with reward [5]. Inhibiting the dopaminergic

mesolimbic reward system inhibits a partner preference developing [5]. In both male and

female voles, activation of the D2 dopamine receptor in the nucleus accumbens is key to part-

ner preference formation [6–9], as well as dopamine (DA) activity in the basal ganglia [10].

Similarly, increases in DA levels and dopaminergic neuron activity have been linked to bird
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partner preference formation [11], and also correlate with flocking behaviours of larger groups

[12–14]. O’Connell and Hofmann [15] argue that the control of social behaviour by the coor-

dinated activity of the reward system and the ‘social behaviour brain network’–proposed by

Newman [16]–is applicable to all vertebrate lineages. Even more recently, the DA-dense stria-

tum of the basal ganglia has been hypothesised as key to the evolution of human empathy and

altruism [17]. Here, we test for biogenic amine involvement in honey bee (Apis mellifera)

sociability and nestmate affiliation.

Whilst DA signaling is a major component of the mammalian reward system [18], both

octopamine (OA) and DA signaling are involved in the insect reward learning circuitry [19–

22]. Furthermore, OA, DA and serotonin (5-hydroxytrptamine, 5HT) have been implicated in

an array of eusocial insect behaviours, including group organization and coordination, phero-

monal communication, social recognition and resultant interactions [23–33]. For example, OA

systems are involved in honey bee division of labour [23–25], and coordinated defensive action

of honey bees may involve 5HT [26]. Although OA is strongly linked to both honey bee and ant

(Camponotus fellah) social recognition [27–28], DA and 5HT have also been shown to have

modulatory effects on degree of social recognition [29–30]. Similarly, DA is involved in phero-

monal communication between honey bee workers and their queen [31–32], whereas brain OA

levels were regulated by the queen pheromone in an ant (Solenopsis invicta) [33]. The highly

similar pharmacological properties of DA and OA receptors [34] may explain their shared func-

tional roles. Hence, we expect the biogenic amines to play a role in the preferential affiliation to

nestmates of bees, as this choice requires the ability to discriminate between conspecifics.

The biogenic amines are also involved in the development and maintenance of sociable

phenotypes in migratory and desert locusts (Locusta migratoria and Schistocerca gregaria,

respectively) [35–42]. Mechanosensory information from touching conspecifics causes these

locusts to switch from a solitary to a gregarious state [43]. In the absence of triggering sensory

inputs, injection of 5HT into the peripheral nervous system initiates the sociable state in S. gre-
garia [35]. Persistent sociable states in S. gregaria coincide with reduced DA and 5HT levels

compared to solitary conspecifics [36], whereas L. migratoria have sustained high DA levels

during the sociable state [37]. Crowding increases OA brain levels in both S. gregaria and L.

migratoria [36, 38], and the activity of specific receptor subtypes for both OA and DA have

been implicated in modulating locust solitary-sociable states [38–42]. These studies show that

for locusts, biogenic amine systems control the social approach response and the level of socia-

bility expressed. This behaviour is important as it determines whether a group forms or not,

and a group is a prerequisite for social interactions. Sociability is also a readily comparable

social behaviour throughout the animal kingdom. Based on the locust findings, we predict that

the biogenic amines will have an effect on honey bee sociability.

In vertebrate studies, the level of sociability and strength of affiliations are assessed with

two-choice preference assays [44–46]. Recently, a bioassay comparable to vertebrate and locust

preference assays was developed for eusocial insects [47] and revealed that honey bees are

highly sociable and prefer to remain in proximity to nestmates rather than non-nestmates

when given a choice. Rearing animals in isolation and later testing them in assays that measure

their sociability and preferential affiliations has revealed the influence of the developmental

environment on vertebrate sociability and subsequent social behaviours [48–49]. Recently, it

was found that honey bee sociability and affiliation is also experience-dependent, but high lev-

els of sociability could be reinstated by brief exposure to the hive environment even after 5

days of age [47]. Here we combine the insect assay with pharmacological treatments to test for

biogenic amine involvement in bee sociability and nestmate affiliation.

We used two methods to apply treatments to the brain. Topical application using the sol-

vent dimethylformamide (dMF) was used as it has previously been shown to effectively deliver
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biogenic amines to the honey bee brain, but is less invasive than injections [50]. We also

microinjected the biogenic amines and antagonists to the brain via the ocellar tract. Although

more invasive as the lens of the median ocellus must be removed for injection, the solvent is a

bee-specific saline solution [51]. Based on the developmental findings [47], we treated 5-day-

old bees with DA, OA, 5HT, an agonist or antagonist, and tested their sociability and nestmate

affiliation. We treated and tested both isolated and naturally raised honey bees to investigate if

biogenic amine receptor activation or inhibition is important in the initiation of approach and

aggregation in socially naïve bees, as has been reported in locusts [36], or modulates these

behaviours that have already developed in socially experienced bees.

Materials and methods

Subjects

Bees from three honey bee colonies were used, taken from the fauna park at Macquarie Uni-

versity, Sydney, Australia. Frames containing eclosing brood (nibbling their cell cap away)

were pulled from the hive and brushed free of any adult bees. For hive-reared bees, frames

were placed in a dark incubator at 33˚C for several hours. All the newly emerged bees were col-

lected into a container and individually painted on the thorax (uniPOSCA, Mitsubishi pencil

co. UK) for later identification, and returned to their natal colony.

For the isolation treatment, newly emerging bees, from frames brushed free of any already

emerged bees, were gently removed from their cell and placed individually in a falcon tube and

maintained in a dark incubator at 33˚C. They were fed 40% honey-water daily and had no

direct contact with other bees as adults since their cell was capped during the larval stages.

Although bees as young as 5 days old consume pollen as well as honey, no difference in assay

performance was found for isolated bees raised on different diets [47], hence we are confident

the honey diet is sufficient for bees in this assay. All bees were tested at 5 days old.

The same honey bee colonies from the fauna park at Macquarie University were used for

both topical and ocellar treatment experiments, although at least one became queenless and

the queen was replaced. Nonetheless, the same rearing and foraging environments were expe-

rienced by the bees in the two experiments. The rearing procedures for hive-reared and iso-

lated bees were also identical in both the topical and ocellar experiments.

Topical treatment via the dorsal thorax

Each testing day isolated bees were collected from the incubator and the hive-reared bees were

collected from their hive, and all were transported individually in holding tubes (50ml Falcon

tubes). All bees, except those assigned to the control group, were immobilised at 4˚C so they

could be harnessed without injury into metal holders (usually used in probiscus extention

reflex (PER) experiments)[52]. Harnessed bees could freely move their antenna and mouth-

parts, and their dorsal thorax was exposed for topical treatment application. 10–15 minutes

after being harnessed, each bee was tested for their response to honey and allowed to feed for

up to 30 seconds. Approximately 5 minutes after feeding, bees were treated topically by apply-

ing 1μl of the biogenic amine treatment dissolved in dimethylformamide (dMF) to the dorsal

thorax with a glass microcapillary pipette (Drummond Scientific, USA). All the bees were ran-

domly assigned to a treatment and only tested once (Table 1). Treatments were either OA

(1mg/ml), epinastine (OA antagonist, 1mg/ml), (+/-)-2-Amino-6,7- dihydroxy-1,2,3,4-tetra-

hydronaphthalene hydrobromide (6,7-ADTN, DA agonist [53–54], 2mg/ml) or fluphenazine

(DA antagonist, 2mg/ml) and all dissolved in dMF. Chemicals were purchased from Sigma-

Aldrich, Australia, except 6,7-ADTN which was purchased from Abcam, Australia. Vehicle-

controls received 1μl of dMF, sham-controls were immobilised and harnessed but received no
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treatment, and controls were transferred directly from their holding tube to the test arena.

Concentrations and volumes used are based on previous studies [50, 55]. The agonist

6,7-ADTN was used in place of DA as it amplified DA effects on sucrose response [56] and

DA may be unstable in dMF.

Injection via the ocellar tract

Each testing day bees were collected as above, and all bees (except those assigned to the control

group), were also immobilised at 4˚C so they could be harnessed without injury. Once har-

nessed, bees to be injected were allowed to fully awaken and offered a few seconds to feed on

honey. Next the holder was fastened to the dissecting microscope (Olympus) platform using

plasticine and the lens of the median ocellus was gently flicked up using a razor blade [52]. A

1μl Hamilton 7001 syringe was then loaded with 500nl of treatment and moved to the ocellus

opening using a manual micromanipulator (Marishige, Japan). All the bees were randomly

assigned to a treatment and only tested once (Table 2). Treatments were either DA (1mM /

0.2mg ml-1), fluphenazine (DA antagonist, 2mM / 1mg ml-1)[55], OA (1mM / 0.2mg ml-1),

epinastine (OA antagonist, 3.9mM / 1.1mg ml-1)[57], 5HT (5HT, 1mM / 0.2mg ml-1) or a

combination of ketanserin and methiothepin (5HT antagonists (KM), 0.5mM + 0.5mM /

0.2723mg ml-1 + 0.23mg ml-1)[35]. All were dissolved in bee-specific saline solution [51].

Chemicals were purchased from Sigma-Aldrich, Australia. Concentrations were based on pre-

vious studies (DA and OA systems [58] and 5HT system [35]) and 300nl was injected into the

brain via the ocellar tract. Saline-controls received 300nl of bee saline only, sham-controls

were immobilised and harnessed and their lens removed and replaced, and controls were

Table 1. Sample size for each topical rearing-treatment group tested and used for behavioural analysis. Numbers in brackets are the number removed from the data

set for spending more than 1 min on their back during the 5 min test.

Treatment Hive-reared Isolated

Full >1 min on back removed Full >1 min on back removed

Sham control 14 14 17 12 (-5)

Vehicle control 14 14 14 5 (-9)

Control 18 18 14 12 (-2)

6,7-ADTN 26 26 29 19 (-10)

Fluphenazine 25 24 (-1) 25 18 (-7)

OA 24 24 22 15 (-7)

Epinastine 26 26 26 18 (-8)

https://doi.org/10.1371/journal.pone.0205686.t001

Table 2. The number of bees tested, removed for behavioural testing and available brain data for ocellar injection. Bold numbers were used in behaviour and brain

analyses, and grey italics were sampled but not used in BA brain titer analyses.

control sham saline DA OA 5HT FLU EPI KM

Hive-reared Total tested 18 14 14 16 15 16 16 15 15

on back >1 min 0 0 0 0 0 0 0 0 0

Behaviour n 18 14 14 16 15 16 16 15 15

Brain n 18 13 14 15 14 16 16 14 15
Isolated Total tested 20 19 20 17 20 19 na na na

on back >1 min 2 4 4 2 5 3 na na na

Behaviour n 18 15 16 15 15 16 na na na

Brain n 19 18 19 17 20 19 na na na

https://doi.org/10.1371/journal.pone.0205686.t002
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transferred directly from their holding tube to the test arena. All treatment groups were tested

approximately 30 minutes after the ocellus lens was replaced. Approximately 10 minutes prior

to testing, bees were allowed to feed on honey offered on a toothpick for up to 30 seconds or

until satiated to prevent hunger effects. Stimulus bees were also fed honey every 45 minutes for

the same reason.

Sociability and nestmate affiliation test

Each bee was tested individually, and the order of testing was randomized each day to prevent

potential test day and test order effects on the different treatment groups. Bees were released

from the harness or holding tube into the testing arena and allowed to acclimatise for 1 min-

ute. The 5 min test began 13–15 minutes after topical application and approximately 30 min-

utes after injection through the median ocellus.

The arena has been described previously [47]. Briefly, two side chambers (one containing

nestmates (NM) and the other containing non-nestmates (NON)) flank the middle chamber

where the test bee is placed. Mesh sides prevent bees moving between chambers, but the test

bee can interact fully with the stimulus bees through the mesh. To begin testing, the sliding

sides that separated the middle chamber from the two side chambers were removed, leaving

only the mesh between the test bee and stimulus bees. Behavioural scoring was done live,

including the frequency of dyadic interactions. A dyadic interaction is when the test bee and a

stimulus bee rapidly antennate each other face-to-face for 2 seconds or more and/or trophal-

laxis occurred. An observer blind to treatments and which side chamber contained nestmates

recorded sociability (amount of 5 min test time spent on the two mesh sides) and nestmate

affiliation (proportion of time total time on the mesh sides spent on the NM mesh) from vid-

eos of each test. Stimulus bees were fed honey every 45 minutes to prevent hunger effects on

interactions.

Biogenic amine quantification

High performance liquid chromatography (HPLC) measurements of brain biogenic amine lev-

els were used to examine neurophysiological effects of isolation as well as the effectiveness of

treatment methods. Immediately after testing, bees were flash-frozen in liquid nitrogen and

kept on dry ice until storage at -80˚C. Heads were freeze-dried for 55 minutes at less than

-35˚C and under a pressure of less than 300mT (VirTis BenchTop K-series freezedryer).

Whole brains (including the sub-oesophageal gland) were dissected from the head capsule on

dry ice to keep the tissue frozen. Brains were then stored at -80˚C. The amount of OA, DA and

5HT per brain was quantified using an Agilent 1200 series HPLC machine (Agilent Technolo-

gies, Sant Clare, CA, USA) connected to an electrochemical detector (ESA coulechem III) and

dual electrode analytical cell (ESA 5011A, Chelmsford, MA, USA).

Methods for HPLC quantification are similar to Søvik et al., [59] and Nouvian et al., [26].

Briefly, for biogenic amine extraction from brain tissue, samples were removed from -80˚C

storage and centrifuged for 2 minutes at 13200rpm and 0˚C. Kept cold on ice, 80μl of extrac-

tion solution (0.2 mol/L perchloric acid containing 10pg/μl 2,3-dihydroxybenzoic acid, DHBA

(internal standard)) was added to each sample. Samples were then sonicated for 8 seconds to

disrupt the tissue. Following sonication, samples were incubated in the dark at 0˚C for 20 min-

utes, then centrifuged for 14 minutes (13200 rpm and 0˚C). 70μl of the solution was loaded

into the autosampler and 10μl was injected. 7-point standard curves of the external standards

of OA, DA, 5HT and tyramine (all from Sigma-Aldrich, Australia) and the internal standard

DHBA were run before and after each run of 24 samples. Nearly all tyramine measures of the

samples did not reach detection levels and could not be analysed. Biogenic amine amounts
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were calculated from their peak area, which had been normalised to the size of the DHBA

internal-standard peak within the same sample run, and quantified relative to the average of

the two standard curves from before and after the sample run.

Statistical analysis

All analyses were done using R (version 3.3.1) and confidence limits were set at 95% unless

otherwise stated. All behavioural analyses were done on the data sets minus any data points

that spent greater than 1 minute on their back.

Effects of topical treatment and isolation on brain biogenic amine levels. To confirm

that the topical treatments were effective at introducing compounds to the brain, a two-way

ANOVA was performed on the OA brain levels of all rearing-treatment groups. Treatment

and rearing were explanatory variables. HPLC cannot detect the DA agonist, 6,7-ADTN, and

bees were not treated with 5HT. Hence, a one-way ANOVA was done for each of these bio-

genic amines, with rearing group as the explanatory variable, to determine if isolation had an

overall effect on DA and 5HT brain levels. One outlier for OA and two outliers for DA were

removed from analysis (S1 Fig).

The frequency of the test bee interacting with a stimulus bee was converted to a binomial

score of yes or no, and a likelihood (%) to interact calculated. A comparison of the likelihood

of a dyadic interaction occurring between different treatment groups was performed using a

G-test of independence and post hoc pairwise comparisons.

Effects of ocellar injection and isolation on brain biogenic amine levels. To confirm

that ocellus injection was effective at introducing compounds to the brain, a two-way ANOVA

with treatment and the rearing group as explanatory variables was performed on the DA, OA

and 5HT brain levels of all rearing-treatment groups, except antagonist treatments as they

were not given to isolated bees. Treatment and rearing were set as the explanatory variables so

that a comparison of the hive-reared and isolated bees could also be done. All available brain

data was used (Table 2). Any post hoc analyses were done using a Tukey HSD test.

Both sociability and nestmate affiliation behavioural data were not normally distributed

thus non-parametric statistical methods were used. To explore potential rearing-treatment

effects on sociability, a Kruskal-Wallis and Dunn’s (Holm-Bonferroni method) post hoc test

was applied to all the behavioural data except hive-reared antagonist treatments. To determine

if agonist and antagonist injection altered hive-reared bee sociability differently, a Mann-

Whitney U test was used to compare each agonist-antagonist pair. A G-test of independence

and post hoc pairwise comparisons determined if the likelihood of a dyadic interaction differed

between rearing-treatment groups.

To determine if a preference to affiliate with nestmates (NM) over non-nestmates (NON)

was expressed, each rearing-treatment group had their time spent on the NM mesh compared

to their time spent on the NON mesh by a Wilcoxon signed-rank test. A Kruskal-Wallis test

followed by a Dunn’s (Holm-Bonferroni method) post hoc test was then done to compare the

proportion of time spent on the NM mesh by each rearing-treatment group except the hive-

reared antagonist groups. A Mann-Whitney U test was used to compare each agonist-antago-

nist pair. For all statistical tests on nestmate affiliation, any bees that spent no time on either

mesh or only visited one mesh side were removed in case they had not made a choice.

Results

Thoracic topical treatment elevated brain OA levels

OA brain levels were higher in OA-treated bees compared to all other treatment groups

(Table 3), confirming that topical treatment via the thorax resulted in the compounds
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reaching the brain, at least by the end of the 5 minute behaviour test. No treatment effect could

be assessed for the DA agonist since the HPLC machine could not detect 6,7-ADTN. No bees

were treated with 5HT.

Isolation reduced OA, DA and 5HT brain levels

Rearing also had an effect on OA brain titers with hive-reared bees having on average higher

brain OA levels than isolated bees (Table 3). Both DA and 5HT levels were also higher in hive-

reared bees compared to isolated bees (Table 3).

dMF impacted honey bee mobility and interactions

A clear effect on isolated bee mobility was found for the vehicle control group receiving the

solvent dMF (Table 1). 64% of isolated bees topically treated with dMF spent greater than 1

minute of the test on their back. Although fewer isolated bees that received treatments contain-

ing dMF spent greater than 1 minute of the time on their back (28–34%), it was still more than

controls (14%).

Moreover, all treatments containing dMF significantly reduced the likelihood of hive-

reared bees interacting with the social stimuli (Fig 1, G-test of independence: G = 57.10,

df = 13, P< 0.0001). Hive-reared bees normally engage in a social interaction more than iso-

lated bees [17] but only the control and sham-control groups did so in the present study (Fig

1). Hence, no further analysis on the topical data was done.

Table 3. The ANOVA result for brain biogenic brain levels in the topical experiment.

Groups included Amine Factor Df F P values

All HPLC data OA Treatment 6 4.254 <0.001

Rearing 1 4.752 <0.05

Treat�rear 6 0.603 0.727

All HPLC data DA Rearing 1 11.22 �0.001

All HPLC data 5HT Rearing 1 24.12 <0.0001

https://doi.org/10.1371/journal.pone.0205686.t003

Fig 1. Solvent containing treatments reduced the rate of social interactions in hive-reared bees. The likelihood of

hive-reared bees (gold) interacting with a stimulus bee was significantly reduced in treatment groups containing dMF

(G = 57.10, df = 13, P< 0.0001; pairwise comparisons: a> b, p< 0.05–0.0001).

https://doi.org/10.1371/journal.pone.0205686.g001
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Ocellus injections of biogenic amines increased biogenic amine brain levels

To verify that ocellus injection of each biogenic amine resulted in higher levels of the respective

amine in the brain, we compared the brain biogenic amine contents of each rearing-treatment

group except hive-reared antagonists. Injection of DA and 5HT via the median ocellus increased

their brain levels (Table 4), and OA injection was effective in hive-reared bees, but not in isolated

bees (Table 4, Tukey HSD post hoc: (hive reared OA) hr-OA 581pg/brain ± 182.33 vs hr-control

295pg/brain ± 27.53, p = 0.05 and hr-OA vs hr-saline 269pg/brain ± 26.33, p< 0.05). Ocellus

injection was also particularly effective for 5HT in hive-reared bees (Table 4, post hoc: hr-5HT

981pg/brain ± 121.66 vs hr-control 632pg/brain ± 53.55, p< 0.001, hr-5HT vs hr-saline 578pg/

brain ± 53.55, p< 0.0001, and hr-5HT vs hr-sham 774pg/brain ± 53.55, p = 0.330).

Overall, hive-reared bees had higher brain levels than isolated bees for all three amines, but

only significantly higher for DA (Table 4).

Dopamine modulates honey bee sociability

The time spent on the mesh sides in proximity to stimulus bees was compared between each

rearing-treatment group barring hive-reared-antagonist groups. A significant difference in

median values was found across groups (Kruskal-Wallis: χ2 = 47.53, df = 11, P< 0.0001). DA

injected hive-reared bees had high sociability scores (Fig 2), significantly higher than all iso-

lated groups except DA injected isolated bees (Fig 2, Dunn’s post hoc: hr-DA vs (isolated DA)

iso-DA, p = 0.273; hr-DA vs iso-OA, p = 0.06 and hr-DA vs iso-all others, p< 0.05–0.001),

inferring an increase in sociability by DA treatment in both hive-reared and isolated bees. DA

injected hive-reared bees were also significantly more sociable than hive-reared bees injected

with a DA antagonist, fluphenazine (Fig 3, Mann Whitney U test: W = 195, P = 0.01) but not

epinastine (W = 143, P = 0.374) which binds to both OA1α and DOP2 receptors in bees [34].

Furthermore, sociability score positively correlated with brain DA level when hive-reared and

isolated data were combined (Fig 4, Pearson: t = 2.164, df = 245, P< 0.05).

Effects of biogenic amine treatments on social interactions

Hive-reared bees injected with DA or 5HT were the most likely to interact with a stimulus bee,

and no OA-injected hive-reared bees had a dyadic interaction (G-test of independence:

G = 28.30, df = 11, P< 0.01). Comparing hive-reared biogenic amine and antagonist treatments

also revealed differences in their effects (G-test of independence: G = 20.81, df = 5, P< 0.001).

Epinastine injected bees were more likely to interact than OA-treated hive-reared bees (post hoc
pairwise comparison: hr-Epi vs hr-OA, p< 0.05), and less likely to interact than DA-treated

hive-reared bees (post hoc: hr-DA vs hr-Epi, p< 0.05). Fluphenazine and KM injected bees

interacted less than their agonist pair (DA and 5HT, respectively) but not significantly.

Table 4. The two-way ANOVA results for brain biogenic amine levels for the ocellar injection experiment.

Amine Factor Df F P value

DA Treatment 5 2.382 <0.05

Rearing 1 4.235 <0.05

Treat�Rear 5 1.259 0.283

OA Treatment 5 1.117 0.353

Rearing 1 0.253 0.616

Treat�Rear 5 2.344 <0.05

5HT Treatment 5 2.614 <0.05

Rearing 1 0.694 0.406

Treat�Rear 5 4.588 <0.001

https://doi.org/10.1371/journal.pone.0205686.t004
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Possible effects of a DA antagonist on nestmate affiliation

Overall no rearing-treatment groups expressed a significant preference for NM or NON in this

assay. Comparing the time spent on the NM mesh by each rearing-treatment group (except

hive-reared antagonist treatments) also revealed no significant differences between the median

scores (Kruskal-Wallis: χ2 = 16.28, df = 11, P = 0.131). However, comparing each agonist-

antagonist treatment pair showed that fluphenazine significantly increased the time spent with

NON compared to DA-injected bees (Fig 5, Mann Whitney U test: W = 127, P< 0.05). Nei-

ther OA or 5HT treatments differed from their coupled antagonist treatments (Fig 5, OA:

W = 45, P = 0.766 and 5HT: W = 66, P = 0.538).

Discussion

Topical treatment

We successfully increased honey bee brain amine titers by topical application on the thorax, as

evidenced by the OA brain titer data (Table 3). The method has previously proven effective

[50] and is often preferred in studies using freely moving insects [26, 55]. Unfortunately, we

Fig 2. DA modulates honey bee sociability. Hive-reared bees (gold) injected with DA consistently remained on the mesh and in proximity to

conspecifics for the majority of the test time. All isolated bee groups (grey) spent significantly less time interacting with the mesh, except the DA

injected isolated group (Kruskal-Wallis: χ2 = 47.53, df = 11, P< 0.0001). OA injection increased the variation in sociability scores for both hive-

reared and isolated bees and OA-iso was not significantly different to hr-DA (Dunn’s post hoc test: p = 0.063). Boxplots are the median and the 1st

and 3rd quartiles.

https://doi.org/10.1371/journal.pone.0205686.g002
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found that the solvent required to transport the biogenic amines and receptor antagonists

across the cuticle impaired the mobility of 5 day old bees isolated since eclosion (Table 1), and

reduced the likelihood of normally raised bees interacting with stimulus bees (Fig 1). Unhin-

dered movement and social interactions are important components of this assay, thus, our

conclusions from the topical experiments were limited. As topical application of substances

dissolved in dMF is used relatively frequently in insect studies, we felt it important to mention

the deleterious effects on locomotion and behaviour we encountered in the present study.

Even so, analyses of the brain amine levels of bees from this study did show isolated bees

had lower levels of all three measured biogenic amines when compared to hive reared bees.

Similar findings have been reported for comparisons of the solitary and sociable states of

swarming locust species [36], colony-reared and isolated eusocial ants [29–30], and group-

raised and isolated-post-weaning mammals [60].

Ocellar injection

Overall, hive-reared bees had higher DA brain levels than isolated bees (Table 4) and there was

a positive correlation between sociability score and DA brain titers (Fig 4). Activation and

blocking of the DA system had opposing effects on both sociability and nestmate affiliation in

Fig 3. DA antagonist has opposing effect to DA injection. Hive-reared bees injected with DA and a DA antagonist fluphenazine (Blue boxes)

differed in sociability scores (Mann-Whitney U: W = 195, �P = 0.01). OA and the antagonist epinastine (yellow boxes) did not differ in sociability

scores (W = 117, P = 0.868), and neither did 5HT and the double 5HT antagonist treatment of ketanserin and methiothepin (purple boxes,

W = 137, P = 0.527).

https://doi.org/10.1371/journal.pone.0205686.g003
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hive-reared bees that had developed in a normal social environment. DA injection promoted

consistently high levels of sociability (Fig 2), and increased the likelihood of interactions.

Blocking DOP2-like receptors facilitated a preference to affiliate with NON (Fig 5). DA activity

may also be involved in initiating the approach response in a socially naïve bee (Fig 2). OA

injection eliminated the likelihood of a dyadic interaction among hive-reared bees. 5HT had

no effect on the sociability or NM affiliation of both hive-reared and isolated bees, but had the

same positive effect as DA on the likelihood of having an interaction.

Dopamine modulates honey bee sociability and nestmate affiliation. The results of DA

treatment are consistent with the positive correlation between brain DA level and sociability

(Figs 2 and 4 and Table 4). A previous study found manipulation of the DA systems by injec-

tion reduced locomotion in bees due to increased stationary grooming or remaining motion-

less [61]. However, Mustard et al., [61] found the same change in activity when either DA or

Fig 4. Sociability score positively correlates with DA brain levels. A. All brain-behaviour data available was plotted (gold circles = hive reared and grey

triangles = isolated) and there is an overall positive correlation between time spent in proximity to conspecifics and DA brain titers (Pearson: t = 2.164, df = 245,

P = 0.03). B. Removing the two high outlying DA values further increased the correlation (Pearson: t = 2.270, df = 243, P = 0.02).

https://doi.org/10.1371/journal.pone.0205686.g004

Fig 5. DA antagonists promote an affiliation to non-nestmates. Fluphenazine significantly increased the proportion of time spent

with NON when compared to DA-injected bees (blue boxes, Mann Whitney U test: W = 127, P< 0.05). Neither OA or 5HT

treatments differed from their antagonist treatments (yellow boxes, OA: W = 45, P = 0.766 and purple boxes, 5HT: W = 66,

P = 0.538). The red line marks the same amount of time spent with NM and NON.

https://doi.org/10.1371/journal.pone.0205686.g005
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an antagonist was injected, whereas we had opposing effects, suggesting a different cause for

our results. DA activity has also been connected to lowering arousal state in flies [62–63] and

the bees could be ‘asleep’ on the mesh. However, in this study the increased time spent on the

mesh sides coincided with a maximal rate of dyadic social interactions, implying the reduced

mobility is due to increased sociability and not rest.

The role of DA in vertebrate brain reward systems is well established [64], and in honey

bees there is evidence for a role of DA in aversive learning [57]. DA modulation is also implied

in reward learning of flies in highly motivated states, such as thirst and hunger [19–20, 65].

Our data are consistent with the theory of insect sociability enlisting activity of the insect

reward circuitry, and provide evidence for dopaminergic modulation in the honey bee. Alter-

natively, the social stimuli could be a secondary reinforcer to a food reward as bees feed each

other by trophallaxis [66–67]. Both tactile and olfactory stimuli promote reward learning in

bees [68], even after only one trophallactic event [69]. However, we removed any hunger

effects by satiating all bees as this affects both behaviour and physiology [70], and found DA

rather than OA (that has a prominent role in bee sucrose reward learning [19]) promoted the

approach response to the social stimulus and increased the likelihood of a dyadic interaction,

inferring a response to the conspecifics themselves.

Isolated bees injected with DA also expressed higher sociability levels than the other isolated

bee groups, as their score did not differ from DA-injected hive-reared bees (Fig 2). Activation

of specific DA receptor types is involved in the switch from a solitary to a sociable phenotype

in L. migratoria without exposure to the triggering sensory cues [41], and DA may also be

involved in triggering honey bee sociability. Furthermore, different DA receptors in the honey

bee antennae correspond to different responses to queen mandibular pheromone, and are

altered by early life exposure [32].

The hive-reared DA-injection group had a high rate of dyadic interactions, and as no

aggressive interactions were reported in this assay, the increase caused by DA was on positive

social interactions, fitting with the increased level of sociability. Blocking DOP2-like receptors

may have increased interest in the novel bees (NON) or increased avoidance of the familiar

social stimuli (NM), as bees treated with fluphenazine spent significantly more time with NON

compared to DA treated bees (Fig 5). The first scenario fits better with the results of DA on

sociability and absence of aggressive behaviour. There is a parallel here to findings in prairie

vole partnerships, where D2 receptors specifically are activated during formation of a partner

preference in both males and females [7–8].

There were no antagonist effects when compared to controls. This may be due to the recep-

tor subtypes targeted by the antagonists. Fluphenazine blocks DOP2-like receptors in mam-

mals [71] and the bee DOP2-like receptor, AmDOP3, is structurally related to vertebrate

DOP2-like receptors [61, 72]. Epinastine binds to a bee DOP1-like receptor: AmDOP2, as well

as the adrenergic OA receptor: AmOA1 [34]. However, bees have another DOP1-like receptor:

AmDOP1, which may not have been inhibited in the antagonist treatments. Dop1 receptors

are involved in the shift from solitary to sociable in L. migratoria [41], and may explain the

lack of antagonist effects on bee sociability.

Octopamine injection blocked dyadic interactions. OA is implicated in several studies

on social interaction behaviour in social insects [27, 28–30]. Although Robinson et al., [27]

found a bidirectional effect of OA by increased aggression to NON and increased cohesion

with NM, other studies tend to find OA predominantly increases aggression to unfamiliar con-

specifics [28–30]. In this assay we found OA treatment of hive-reared bees led to no social

interactions with stimulus bees. The reaction was towards both familiar and unfamiliar stimuli

implying that in this assay any discriminatory processes were overridden by the OA signal to

avoid contact. OA is similar to noradrenalin in vertebrates, the neurohormone that initiates
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the fight or flight response [73], and may also predominate control under stressful conditions

in bees.

Minimal effects of serotonin injection. 5HT injection in hive-reared bees increased the

likelihood of social interactions, like DA-treatment. However, no other notable effects were

found. The antagonist cocktail had significant effects on S. gregaria sociability at the same con-

centration [35] but not here on bee sociability and affiliation. However, Anstey et al., [35]

injected the treatments peripherally and we injected centrally. The reduction in brain levels of

5HT caused by isolation encourages a revisit to a possible role of 5HT in bee sociability.

In summary, all three biogenic amines altered bee interactions with conspecifics in this

assay. Although several studies have implicated cuticular hydrocarbons as major recognition

cues in ants, work identifying such cues in bees remains inconclusive [74]. To prevent exclu-

sion of potential discrimination cues, we used live NM and NON stimulus bees, separated

from the focal bee by a single-layer mesh screen. Hence, determining the specific stimuli bees

were reacting to when approaching NM or NON in the arena could be a productive direction

for future research. The results of this study provide testable hypotheses that can be explored

using circuit level neuro-imaging methods for further elaboration on the discrimination

modalities used by bees, and whether reward system activation is involved.

Conclusion

We report strong evidence for a causal role of DA in bee sociability and group cohesion, and

corroborate findings connecting OA to eusocial insect social interactions. A strong possibility

is a connection to brain reward systems. This study also illustrates the limitations of neuro-

pharmacological manipulation experiments, either because of the application method or a lack

of antagonists specific to receptor subtypes. Nonetheless, our findings provide a better over-

view of the neurochemical mechanisms driving sociability and group cohesion in eusocial

insects.

Supporting information

S1 Fig. Individual brain levels of OA (A) and DA (B) used in the 2-?way and 1-?way ANOVA

analyses. The black points and error bars are the mean ± S.E. Red points are the outliers

removed for statistical analysis, gold points represent hive-reared and grey points are isolated

bees.
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