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Bayesian learning of chemisorption for bridging the
complexity of electronic descriptors
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Building upon the d-band reactivity theory in surface chemistry and catalysis, we develop a

Bayesian learning approach to probing chemisorption processes at atomically tailored metal

sites. With representative species, e.g., *O and *OH, Bayesian models trained with ab

initio adsorption properties of transition metals predict site reactivity at a diverse range of

intermetallics and near-surface alloys while naturally providing uncertainty quantification

from posterior sampling. More importantly, this conceptual framework sheds light on the

orbitalwise nature of chemical bonding at adsorption sites with d-states characteristics

ranging from bulk-like semi-elliptic bands to free-atom-like discrete energy levels, bridging

the complexity of electronic descriptors for the prediction of novel catalytic materials.
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Adsorption of molecules or their fragments at transition-
metal surfaces is a fundamental process for many tech-
nological applications, such as chemical sensing, mole-

cular self-assembly, and heterogeneous catalysis. Because of the
convoluted interplay between electron transfer and orbital cou-
pling, chemical bonding can be formidably complex. Recent
decades have brought major advances in spectroscopic tools1,2,
which reveal orbitalwise information of chemisorbed systems and
concurrently in predicting chemical reactivity at sites of interest
via electronic factors, e.g., the number of valence d-electrons3,
density of d-states at the Fermi level4, d-band center5, and d-band
upper edge6,7. Compared with a full quantum-mechanics treat-
ment of many-body systems, the simplicity of physics-inspired
descriptors comes at a cost of limited generalization, particularly
for high-throughput materials screening. Incorporation of mul-
tifidelity site features into reactivity models with machine learn-
ing (ML) algorithms has shown early promise for the prediction
of adsorption energies, with an accuracy comparable to the
typical error (~0.1−0.2 eV) of density functional theory (DFT)
calculations8–16. However, the approach is largely black-box in
nature, prohibiting its physical interpretation. Developing a the-
ory-based, generalizable model of chemisorption that bridges the
complexity of electronic descriptors, and predicts the binding
affinity of active sites to key reaction intermediates with uncer-
tainty quantification represents one of the biggest challenges in
fundamental catalysis.

Here, we present a Bayesian inference approach to probing
chemisorption processes at metal sites by learning from ab initio
datasets. The model is built upon the basic framework of the d-
band reactivity theory5, while employing a Newns–Anderson-
type Hamiltonian17,18 to capture essential physics of adsorbate-
substrate interactions. Such types of simplified Hamiltonians were
originally used for describing magnetic properties of impurities in
a bulk metallic host17, and later extended with success by Newns
and Grimley to chemisorption at surfaces18,19. A basis set of
orbitals consisting of the adsorbate and substrate states was used
for solving the hybridization problem within a self-consistent
Hartree–Fock scheme18. Despite a remarkable success in advan-
cing the basic understanding of adsorption phenomena at sur-
faces, particularly for d-block metals6, its application in materials
design remains limited due to the lack of accurate model para-
meters and meaningful error estimates. Bayesian inference pro-
duces the posterior probability distribution of model parameters
under the influence of observations and prior knowledge20. With
representative species, e.g., *O and *OH, we demonstrate the
predictive performance and physical interpretability of Bayesian
models for chemical bonding at a diverse range of intermetallics
and near-surface alloys, bridging the complexity of electronic
descriptors in search of novel catalytic materials.

Results
The d-band reactivity theory. Within the basic framework of the
d-band reactivity theory for transition-metal surfaces, the for-
mation of the adsorbate-metal bond conceptually takes place in
two consecutive steps5, as illustrated in Fig. 1. First, the adsorbate
frontier orbital (or orbitals) aj i at ϵ0a couples to the delocalized,
free-electron-like sp-states of the metal substrate, leading to a
Lorenzian-shaped resonance state at ϵa. Second, the adsorbate
resonance state interacts with the localized, narrowly-distributed
metal d-states, shifting up in energies due to the orthogonaliza-
tion penalty for satisfying the Pauli principle, and then splitting
into bonding and antibonding states. The first step interaction
contributes a constant ΔE0 albeit often the largest part of che-
mical bonding. The variation in adsorption energies from one
metal to another is determined by the metal d-states. This part of

the interaction energy ΔEd can be further partitioned into orbital
orthogonalization and orbital hybridization contributions21. To a
first approximation, the orbital hybridization energy can be
evaluated by the changes of integrated one-electron energies. The
orbital orthogonalization cost is considered simply as propor-
tional to the product of interatomic coupling matrix and overlap
matrix, VS, or equivalently αV2, where α is the orbital overlap
coefficient. The absolute value of V2 can be written as βV2

ad, in
which the standard values of V2

ad relative to Cu are readily
available on the Solid State Table22. The overall adsorption energy
ΔE can then be written as the sum of the energy contributions
from the sp-states ΔE0 and the d-states ΔEd, with the latter
depending on the symmetry and degeneracy of adsorbate frontier
orbitals. Another important information from this framework is
the evolving density of states projected onto the adsorbate orbital
(s) upon adsorption, ρa. A full account of the theoretical frame-
work is presented in the “Methods” section.

There are a number of unknown parameters within the basic
framework of the d-band reactivity theory as discussed above and
detailed in “Methods” section, including the energy contribution
from the sp-band ΔE0, adsorbate resonance energy ϵa relative to
the Fermi level, sp-band chemisorption function Δ0, orbital
overlap coefficient α, and orbital coupling coefficient β. By least-
squares fitting of the adsorbate density of states and the integrated
one-electron energy changes to those from DFT calculations23,24,
the Schmickler model of electron transfer has been developed to
understand H2 evolution/oxidation and OH− adsorption at
metal–electrolyte interfaces. However, the deterministic fitting
of adsorption properties from a single surface is prone to
overfitting or trapping into a locally optimal region, limiting its
application in catalysis.

Bayesian learning. We instead employ Bayesian learning to infer

the vector of model parameters θ
!¼ ðΔE0; ϵa;Δ0; α; βÞ0 from the

evidence, i.e., ab initio adsorption properties, along with prior
knowledge if available20. In Bayes’ view, those parameters are not
deterministic point values, but rather probabilistic distributions
reflecting the uncertainty of physical variables. The use of para-
meter distributions as opposed to computationally-derived point
values has obvious advantages for uncertainty quantification. In
the chemical sciences, Bayesian learning has been used for cali-
bration and validation of thermodynamic models for the uptake
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Fig. 1 Illustration of chemical bonding at transition-metal surfaces within
the d-band reactivity theory. An adsorbate A with a valence electron at a
discrete energy level ϵ0a first interacts with the free-electron-like sp-states
of the substrate M, forming a broadened resonance at ϵa accompanied with
electron transfer. Conceptually, it further overlaps and hybridizes with the
narrowly distributed d-states, which leads to a splitting into bonding and
antibonding states. The work function ϕ and Fermi level ϵF of M are marked.
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of CO2 in mesoporous silica-supported amines25, designing the
Bayesian error estimation functional with van der Waals corre-
lations26, and identifying potentially active sites and mechanisms
of catalytic reactions27, just to name a few. The Bayesian
approach allows one to infer the posterior probability distribution

Pð θ!jDÞ for latent variables based on the prior Pð θ!Þ as well as
the likelihood function PðDj θ!Þ subject to the observation D. The
mathematical relationship between the prior, observation, and

posterior is given by the Bayes’ theorem20, Pð θ!jDÞ ¼
PðDj θ!ÞPð θ!Þ=PðDÞ. Our initial belief about likely parameter
values is provided by weakly informative priors to minimize
potential bias. For example, ΔE0 and ϵa can be estimated from
DFT calculations of the adsorbate on a simple metal, e.g., sodium
(Na) at the face-centered cubic (fcc) phase. Specifically, we took
Normal for floating-point variables unrestricted in sign, Log-
Normal for non-negative parameters, and Uniform for others (see
the details of Bayesian learning and parameter choices in the
“Methods” section). Computing the normalizing constant PðDÞ,
denominator of the posterior distribution, is impossible in most
practical scenarios. To avoid this complication, the Markov chain
Monte Carlo (MCMC) method28, whose sampling criterion only
depends on the relative posterior density of the newly explored
point and its preceding point, is used. To compute the transition
probability of each MCMC step, we define the sum of the
(negative) logarithm of the likelihood functions corresponding to
binding energies and projected density of states onto each
adsorbate orbital with a hyperparameter λ adjusting the weight of
two contributing metrics, see details in the “Methods” section.
After a large number of MCMC samplings, burning (discard) of
the first half of the trajectory and then thinning (1 out of
5 samplings) were performed before extracting converged values
from the joint posterior distributions. The convergence of the
MCMC sampling is checked by using parallel chains with dif-
ferent starting parameter sets such that the variance of interchain
samplings is close or within 1.2–1.5 times to that of intrachains28.
The complete code, named Bayeschem, is now available at a
Github repository https://github.com/hlxin/bayeschem for public
access.

Model development. In Fig. 2a, we are showing the co-variance
of the joint posterior distribution for each parameter pair and the
1D histogram of model parameters (ΔE0, ϵa, Δ0, α, and β) from
MCMC simulations for *O adsorption at the fcc-hollow site of
the {111}-terminated transition-metal surfaces (Cu, Ag, Au, Ni,
Pd, Pt, Co, Rh, Ir, and Ru). We assume three degenerate O2p

orbitals as used before29 for demonstration of the approach, while
later extend it to multiorbital models. To attain converged pos-
terior distributions, 200k MCMC sampling steps with the
Metropolis–Hastings algorithm were performed in a multi-
dimensional parameter space illustrated in Fig. 2b. In Fig. 2, the
approximate contours for 68, 95, and 99% confidence regions are
shown at the lower triangle, showing little to no correlation
between latent-variable pairs.

With the converged Bayesian sampling, in Fig. 3a, it shows the
model-predicted adsorption energies of *O at the fcc-hollow site
of transition-metal surfaces, with a mean absolute error (MAE)
~0.17 eV compared to DFT calculations. The standard deviation
of model prediction using the posterior distribution of model

parameters ( θ
!
; σ!) is overlaid, providing for the first time

uncertainty quantification of adsorption energies within the d-
band reactivity theory. Figure 3b shows DFT-calculated and
model-constructed projected density of states onto the O2p orbital
using the posterior means of model parameters, taking Pt(111) as
an example (see all the surfaces in Supplementary Fig. 1). The

chemisorption function Δ(ϵ) and its Hilbert transform Λ(ϵ) along
with the straight adsorbate line (ϵ − ϵa) are shown for the
graphical solution of the Newns–Anderson model18. The
intersects indicated by solid circles in Fig. 3b represent the
O2p–Pt5d bonding and antibonding states, with the latter above
the Fermi level, suggesting a strong covalent interaction of *O at
Pt(111). Given the simplicity of the model, the clearly captured
electronic structure of the adsorbate–substrate system and the
reactivity trend are satisfying.

To extend the approach for adsorbates with multiple valence
orbitals that possibly contribute to bonding, we have explicitly
treated O2p states with the doubly degenerate pxy orbitals and the
single pz orbital in Bayesian learning. We infer model parameters
(ϵa, Δ0, and β) corresponding to each non-equivalent adsorbate
orbital together with an orbital-independent α29 and a global
parameter ΔE0. The posterior parameter distributions are shown
in Supplementary Fig. 2. From the posterior means of model
parameters, we can see that the orbital coupling coefficient β of
pxy (1.67 eV−1) is smaller than that of pz (1.77 eV−1), consistent
with the symmetry analysis, that the pxy orbitals that are parallel
to a surface form π bonds with the d-states, while the pz orbital
can interact through a stronger σ bond. A weaker coupling
manifests itself in a narrower orbital splitting of π/π* than that of
σ/σ*, which has been previously observed using the angle-resolved
photoemission spectroscopy on Cu and Ni30. In Supplementary
Figs. 3 and 4, it shows that the model-constructed projected
density of states onto symmetry-resolved orbitals closely resemble
the DFT-calculated distributions and the predicted values of *O
adsorption energies have a MAE ~0.17 eV. To demonstrate the
robustness and generalizability of the approach, we have also
optimized the Bayeschem model of *O at the atop configuration,
see Supplementary Figs. 5–7. In this model scheme, an individual
set of parameters is obtained for the adsorbate at a given site.
Compared to the linear adsorption-energy scaling relations31 that
link adsorption energies of different adsorbates, Bayeschem
creates the connection between the electronic structure of a
surface site and the adsorption energy.

To test the prediction capability of the Bayeschem model for
unseen systems, we took the *OH species at the atop adsorption
configuration as a case study because of its fundamental
importance in understanding the nature of chemical bonding32,
and practical interests as a key reactivity descriptor in transition
metal catalysis33–35. Three frontier molecular orbitals, i.e., 3σ, 1π,
and 4σ*, are assumed to be involved in chemical bonding32.
Symmetry-resolved, molecular orbital density of states projected
onto OH along with adsorption energies are used as the DFT
ground truth Y in Eq. (6). With the Bayeschem model developed
here (see Supplementary Figs. 8–10 for posterior parameter
distributions, model-predicted adsorption energies and projected
density of states on training samples), we predict *OH binding
energies at a diverse range of intermetallics and near-surface
alloys. Specifically, we included A3B, A′@AML, A-B@AML,
A3B@AML, A@A3B, and A@AB3, where A (A′) represents ten
fcc/hcp metals used in the model development and B covers d-
metals across the periodic table (see ref. 36 for structural details
and tabulated data). The coupling matrix element Vad for alloys is
assumed to be constant from the Solid State Table22. Its
dependence on the local chemical environment can be incorpo-
rated into the model using the tight-binding approximation33.
The A sites of above-mentioned surfaces exhibit diverse
characteristics of the metal d-states ranging from bulk-like
semi-elliptic bands to free-atom-like discrete energy levels37, as
illustrated in Fig. 4a using Pt and Ag3Pt as examples. Similar to
previous observations of single-atom alloys with coinage metal
hosts37,38, a reactive guest metal often exhibits peaky signatures
within the d-band due to the energy misalignment of coupling d–
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d orbitals7. A direct consequence of such diverse electronic
properties of adsorption sites is that no single electronic
descriptor can capture the local chemical reactivity accurately.
Encouragingly, the Bayeschem model, parameterized using ten
pristine transition-metal data, predicts *OH adsorption energies
on 512 alloy surfaces with a MAE 0.16 eV, see Fig. 4b. The
standard deviation of predicted *OH adsorption energies from
the posterior distribution of model parameters is marked for
uncertainty quantification. It shows a similar performance to
data-driven ML models8–11 while outperforming the state-of-the-
art electronic descriptors, e.g., the d-band center ϵd (MAE:
0.20 eV) and upper edge ϵu (MAE: 0.23 eV). The approach can be
easily extended to more complex adsorbates than *O and *OH,
e.g., *OOH, without losing its generalizability in the development
workflow.

Orbitalwise interpretation of chemical bonding. More impor-
tantly, the Bayesian framework with built-in physics allows us to
quantitatively interrogate the underlying mechanism of chemical
bonding, that is difficult to obtain from purely data-driven
regression models. Taking *OH adsorption at the M (10 fcc/hcp
metals) site of {111}-terminated Ag3M intermetallics as examples,
Fig. 4c shows the partition of *OH adsorption energies resulting
from the 2nd step interaction (ΔEd) into orbital orthogonalization

and hybridization. As we can see, for 3d, 4d, and 5d series of the
guest metal M, the orthogonalization and hybridization con-
tributions decrease in magnitude from left to right across the
periodic table, while the hybridization dominates the reactivity
trends. The changes in ΔEhyb

d can be understood from the sim-
plified d-band model, with the position and occupancy of
adsorbate–substrate antibonding states tracking with the d-band
center or upper edge. The orthogonalization energy is propor-
tional to the filling f and V2

ad (see Eq. (4)), which are offsetting
each other to a certain extent (V2

ad decreases while f increases
across 3d, 4d, and 5d series), leading to a less dominant role
than the hybridization. The orbitalwise contributions shown in
Fig. 4c with different fill patterns suggest that the sole contribu-
tion of *OH adsorption at d-metal surfaces is from the 1π orbital,
while those from 3σ and 4σ* are too small to be visible. This
is supported by projected molecular orbital density of states
in Supplementary Fig. 7, which shows that 3σ and 4σ* are
forming resonance states after their interactions with the sp-states
of the metal site without noticeable splitting due to d-states. Thus,
they do not contribute to the observed trend of *OH adsorption.
The Bayesian-optimized orbital coupling coefficients of 3σ
and 4σ* are rather small (0.12 and 0.001 as shown in Supple-
mentary Fig. 5, respectively), supporting unfavorable orbital
overlaps with the d-states. This rationalizes the observation that
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Fig. 2 Bayesian parameterization. a The co-variance of the joint posterior distribution for each parameter pair and the 1D histogram of model parameters
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*OH prefers the nearly-parallel adsorption geometry on most of
the d-metals to maximize the interaction of the 1π orbital with
metal d-states, while *OH on Na(111) adsorbs more strongly in a
up-straight orientation because of a lack of such directional
interactions. This orbitalwise insight of chemical bonding could
provide guidance in tailoring orbital-specific characteristics of the
metal d-band for desired catalytic properties through site engi-
neering. Despite an exclusive discussion about the d-metals, it is
possible to extend the Bayeschem framework to p-block metals
and alloys see Supplementary Fig. 11, unifying the reactivity
theory of metal surfaces.

To conclude, we present the first Bayesian model of
chemisorption by learning from ab initio adsorption properties.
The model leverages the well-established d-band reactivity theory
and a Newns–Anderson-type Hamiltonian for capturing essential
physics of chemisorption processes. We demonstrated that the
Bayeschem models of descriptor species, e.g., *O and *OH,
optimized with pristine transition-metal data predicts adsorption
energies at a diverse range of atomically-tailored metal sites with
a MAE ~0.1–0.2 eV while providing uncertainty quantification.
Incorporation of physics-based models into data-driven ML
algorithms, e.g., deep learning, might hold the promise toward
developing highly accurate while interpretable reactivity models.
Furthermore, this conceptual framework can be broadly applied
to unravel orbital-specific factors governing adsorbate–substrate
interactions, paving the path toward design strategies to go
beyond adsorption-energy scaling limitations in catalysis.

Methods
DFT calculations. Spin-polarized DFT calculations were performed through
Quantum ESPRESSO39 with ultrasoft pseudopotentials. The exchange-correlation
was approximated within the generalized gradient approximation (GGA) with
Perdew–Burke–Ernzerhof (PBE)40. {111}-terminated metal surfaces were modeled
using (2 × 2) supercells with four layers and a vacuum of 15 Å between two
images. The bottom two layers were fixed while the top two layers and adsorbates
were allowed to relax until a force criteria of .1 eV/Å. A plane wave energy cutoff of
500 eV was used. A Monkhorst-Pack mesh of 6 × 6 × 1 was used to sample the
Brillouin zone, while for molecules and radicals only the Gamma point was used.
Gas phase species of O and OH were used as the reference for adsorption energies
of *O and *OH, respectively. The projected atomic and molecular density of states
were obtained by projecting the eigenvectors of the full system at a denser k-point
sampling (12 × 12 × 1) with a energy spacing 0.01 eV onto the ones of the part, as
determined by gas-phase calculations. The convergence of DFT calculations was
thoroughly tested to be within 0.05 eV. Further details and tabulated data can be
found in the ref. 9.

The d-band reactivity theory. To revisit the d-band theory of chemisorption
along with new developments, let’s consider a metal substrate M in which electrons
occupy a set of continuous states with one-electron wavefunctions kj i and eigen-
energies ϵk, and an isolated adsorbate species A with a valence electron described
by an atomic wavefunction aj i at ϵ0a , see Fig. 1. When the adsorbate is brought close
to the substrate, the two sets of states will overlap and hybridize with each other.
The strength of such interactions is determined by the coupling integral
Vak ¼ hajĤjki, where Ĥ is the system Hamiltonian. Within the Newns–Anderson
model of chemisorption17–19, Ĥ is defined as,

Ĥ ¼
X
σ

ϵaσnaσ þ
X
k

ϵknkσ þ
X
k

ðVakc
y
kσcaσ þ H:c:Þ

( )
; ð1Þ

where σ denotes the electron spin, n is the orbital occupancy operator, and c† and c
represent the creation and annihilation operator, respectively. The first two terms
in Eq. (1) are the one-electron energies from the adsorbate and the substrate when
they are infinitely separated in space. The last term captures the coupling, or
intuitively electron hopping, between the adsorbate orbital aj i and a continuum of
substrate states kj i. If the one-electron states of the whole system can be described
as a linear combination of the unperturbed adsorbate and substrate states, the one-
electron Schrödinger equation can be solved using the Green’s function
approach18. In Fig. 1, we illustrate the chemisorption process of a simple adsorbate
onto a d-block metal site characterized by delocalized sp-states and localized d-
states21. The interaction of the adsorbate state at ϵ0a with the structureless sp-states,
typically accompanied with electron transfer from/to the Fermi sea, results in a
broadened resonance (or so-called renormalized adsorbate state) at an effective
energy level ϵa. Conceptually viewing chemical bonding as consecutive steps in
Fig. 1, the renormalized adsorbate state then couples with the narrowly distributed
d-states, shifting up in energies due to orbital orthogonalization that increases the
kinetic energy of electrons and splitting into bonding and antibonding states. One
important information from this framework is the evolving density of states pro-
jected onto the adsorbate orbital aj i upon adsorption

ρaðϵÞ ¼ 1
π

ΔðϵÞ
ϵ� ðϵa þ ΛðϵÞÞ½ �2 þ ΔðϵÞ2 ; ð2Þ

in which spin is neglected for simplicity. The effective adsorbate energy level, ϵa, is
determined by the image potential of a charged particle in front of conducting
surfaces and the Coulomb repulsion between electrons in the same orbital18. The
chemisorption function Δ(ϵ) includes contributions from the sp-states and the d-
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states

ΔðϵÞ ¼ π
X
k

V2
akδðϵ� ϵkÞ ¼ Δ0 þ Δd: ð3Þ

To simplify the matter, only the 2nd step interaction, i.e., the coupling of the
renormalized adsorbate state with the substrate d-states, is explicitly considered in
Eq. (2). As a new development in our approach, we include an energy-independent
constant Δ0 along with Δd as the chemisorption function Δ(ϵ). The inclusion of Δ0

provides a lifetime broadening of the adsorbate state, serving as a mathematical
trick to avoid burdensome sampling of the resonance, i.e., the Lorentzian dis-
tribution ~ρa from the 1st step interaction in Fig. 1. Accordingly, ϵa represents the
renormalized adsorbate state. Attributed to the narrowness of a typical metal d-
band, Δd can be simplified as the projected density of d-states onto the metal site
ρd(ϵ) modulated by an effective coupling integral squared V2, i.e., Δd ≃ πV2ρd(ϵ). Λ
(ϵ) is the Hilbert transform of Δ(ϵ). In this framework, the interaction energy
between the adsorbate and the substrate can be partitioned into two contributions,
i.e., ΔE0 and ΔEd. ΔE0 is the energy change due to the interaction of the unper-
turbed adsorbate orbital(s) with the delocalized sp-states, while ΔEd is the energy
contribution from further interactions with the localized d-states of the substrate.
Since all d-block metals have a similar, free-electron-like sp-band, ΔE0 can be
approximated as a surface-independent constant albeit the largest contribution to
bonding21. To calculate ΔEd, we include both the attractive orbital hybridization

ΔEhyb
d and repulsive orbital orthogonalization ΔEorth

d
29,41:

ΔEhyb
d ¼ 2

π

R ϵF
�1 tan�1 ΔðϵÞ

ϵ�ϵa�ΛðϵÞ
h i

dϵ� 2
π

R ϵF
�1 tan�1 Δ0ðϵÞ

ϵ�ϵa

h i
dϵ

ΔEorth
d ¼ 2ðh~nai þ f ÞαβV2

ad:
ð4Þ

The constant 2 considers spin degeneracy of the orbital, h~nai is the occupancy of
the renormalized adsorbate state by integrating the Lorentzian distribution ~ρa up to
the Fermi level ϵF (taken as 0), and f is the idealized d-band filling of the metal
atom. The tan�1 is defined to lie between −π to 0 since Δ0 is a nonzero constant
across the energy scale [−15, 15] eV. Thus there is no need to explicitly include
localized states even if present below or above the d-band. In Eq. (4), α is termed
the orbital overlap coefficient, i.e., S ≈ α∣V∣, in which the overlap integral S is
linearly proportional to the coupling integral V for a given orbital. Similarly, the
effective coupling integral squared V2 can be written as βV2

ad, where β denotes the
orbital coupling coefficient and V2

ad characterizes the interorbital coupling strength
when the bonding atoms are aligned along the z-axis at a given distance42. Its
values of d-block metals relative to that of Cu are readily available on the Solid
State Table22. It is important to note that β is in the chemisorption function, which
determines both the adsorption energy and adsorbate density of states, whereas α
only affects the orbital orthogonalization energy since overlap was not explicitly
considered.

Bayesian learning. Due to the computationally intensive nature of the MCMC
algorithm, there is a need for a more efficient implementation of the
Newns–Anderson model than what is obtained by Python and standard libraries
like SciPy and NumPy. We make extensive use of Cython, a C++ extension to the
standard Python, to speed up the performance (10–1000 times) of some CPU-
intensive functions in the model, e.g., Hilbert transform. To perform MCMC
sampling, we use PyMC, a flexible and extensible Python package which includes a
wide selection of built-in statistical distributions and sampling algorithms43, e.g.,
Metropolis-Hastings. A “burn-in” of the first half of the samplings and then
thinning (1 out of 5 samplings) was performed to ensure that subsequent ones are
representative of the posterior distribution. Convergence of our MCMC-based
sampling was verified using parallel chains28. The MCMC sampling results can be
directly visualized using corner, a open-source Python module. We took Normal
for floating-point variables unrestricted in sign, LogNormal for non-negative
parameters, and Uniform for others. ΔE0 and ϵa can be estimated from DFT
calculations of the adsorbate on a simple metal, e.g., sodium (Na) at the face-
centered cubic (fcc) phase. Specifically, for *O, we used ΔE0 ~ N(−5.0, 1), ϵa ~ N
(−5, 1), Δ0 ~ LN(1, 0.25), β ~ LN(2, 1), and α ~ U(0, 1). For *OH, we used ΔE0 ~ N
(−3.0, 1), ϵ3σa � Nð�6; 1Þ, ϵ1πa � Nð�2; 1Þ, and ϵ4σ

�
a � Nð4; 1Þ. We assume that

the predicted adsorption properties from Eqs. (2) and (4) are subject to indepen-
dent normal errors. Specifically, for the property Y and the surface i we have

Y i ¼ Ŷ ið θ
!Þ þ σϵi; i ¼ 1; 2; ¼ ; n; ð5Þ

where ϵi is an independent and standard normal random variable and σ is the

standard deviation, allowing for a mismatch between the model prediction Ŷ ið θ
!Þ

and the DFT ground truth Yi. In this approach, we define the likelihood function of
the property Y from n observations44

PðY j θ!; σÞ / σ�n exp � 1
2σ2

Xn
i¼1

Y i � Ŷ ið θ
!Þ

n o2
" #

; ð6Þ

where the sum runs over n training samples for the property Y, which is either the
projected density of states onto an adsorbate orbital or adsorption energies. For
adsorption energies, Yi and Ŷ i are scalar values with no ambiguity. For projected
density of states, it is a vector of paired values, i.e., the one-electron energy of a state

and its probability density, thus deserving a clarification. The mean squared resi-

duals of model prediction from Eq. (2) for the surface i is used as fY i � Ŷ ið θ
!Þg2 in

Eq. (6). To compute the transition probability of each MCMC step, we define the
sum of the (negative) logarithm of the likelihood functions corresponding to pro-
jected density of states onto each adsorbate orbital and binding energies with a
hyper parameter λ adjusting the weight of two contributing metrics, i.e.,
�ln ðPΔEÞ � λ

P
ln ðPρa

Þ. To optimize this parameter, we varied it on a grid of 1.0e
−3, 1.0e−2, 1.0e−1, and 1, and found that 1.0e−2 is the optimal value to obtain the
best performance in adsorption energy prediction.

Data availability
The training data of metal surfaces used for model development is available at the Github
repository https://github.com/hlxin/bayeschem while the test data are from the article
https://doi.org/10.1039/C7TA01812F10.1039/C7TA01812F.

Code availability
The complete code of Bayeschem is available at a Github repository https://github.com/
hlxin/bayeschem for public access.
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