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Introduction

Abstract

Pristionchus pacificus has been developed as a model system in evolutionary de-
velopmental biology, evolutionary ecology, and population genetics. This species
has a well-known ecological association with scarab beetles. Generally, Pristionchus
nematodes have a necromenic association with their beetle hosts. Arrested dauer
larvae invade the insect and wait for the host’s death to resume development. Only
one Pristionchus species is known to frequently associate with a non-scarab beetle.
Pristionchus uniformis has been isolated from the chrysomelid Leptinotarsa decem-
lineata, also known as the Colorado potato beetle, in Europe and North America,
but is also found on scarab beetles. This unusual pattern of association with two
unrelated groups of beetles on two continents requires the involvement of geo-
graphical and host range expansion events. Here, we characterized a collection of
81 P. uniformis isolates from North America and Europe and from both scarab
beetles and L. decemlineata. We used population genetic and phylogenetic analyses
of the mitochondrial gene nd2 to reconstruct the genetic history of P. uniformis and
its beetle association. Olfactory tests on beetles chemical extracts showed that P.
uniformis has a unique chemoattractive profile toward its beetle hosts. Our results
provide evidence for host range expansion through host-switching events in Europe
where P. uniformis was originally associated with scarab beetles and the nematode’s
subsequent invasion of North America.

diversity, such as that associated with trading and tourism.
Species invasion and host-switching often result in the ex-

The expansion of the host or the geographic range of an
organism can be favored by host-switching events (Secord
and Kareiva 1996). Host-switching is defined as the hori-
zontal transfer from one host to another and represents a
process that has attracted increasing consideration in ecol-
ogy and evolutionary biology in recent times (Ricklefs and
Fallon 2002; Page 2003; Zarlenga et al. 2006). Host-switching
by parasites refers to colonization of “foreign” host species
in which it did not occur previously (Clayton et al. 2003),
although host-switching as a concept is not restricted to par-
asites. One process that often involves host-switching events
is species invasions (Sax et al. 2005). The invasion of a host can
favor host-switching for two reasons. First, an invasive host
can carry microorganisms that can infest new hosts. Second,
an invasive host species can be infected by new microor-
ganisms in the invaded area. There is a growing awareness on
species invasion that turned a major threat to native biological

tinction of native organisms, particularly on islands, making
these processes tremendously important for the sustainability
of biodiversity (Sax et al. 2005).

Nematodes are ubiquitous, mostly small animals that have
successfully invaded marine, freshwater, soil, and parasitic
habitats. Several nematode species have been developed as
important model systems in biology, including Caenorhab-
ditis elegans, which is one of the best-studied model organ-
isms in modern biology (The C. elegans Research Community
2011) and Pristionchus pacificus, a model organism in evo-
lutionary biology and ecology (Hong and Sommer 2006a;
Herrmann et al. 2007, 2010; Zauner et al. 2007; Brown
et al. 2011). Field studies revealed that Pristionchus nema-
todes have a necromenic association with their beetle hosts,
in such a case, arrested dauer larvae invade the insect, wait for
the host to die naturally, and resume development by feeding
on growing microorganisms on the carcass (Herrmann et al.
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Figure 1. Worms resume development on beetle carcass. Pristionchus
uniformis adult nematodes feeding on a Leptinotarsa decemlineata car-
cass. Image courtesy of Andreas M. Weller.

2006a; Weller et al. 2010; Bento et al. 2010) (Fig. 1). More
than 20 Pristionchus species have been identified in world-
wide samplings in association with scarab beetles, whereas
other beetle and insect groups (with two exceptions, see be-
low) do not harbor Pristionchus nematodes on a regular basis
(Herrmann et al. 2006a, b, 2007, 2010; Weller et al. 2010).
The phylogeny of Pristionchus nematodes has been studied by
detailed molecular investigations indicating the existence of
three clades, a European, a North American, and a basal Asian
clade (Mayer et al. 2007, 2009). Several Pristionchus—beetle
associations have been characterized, such as the oriental
beetle (Exomala orientalis) with P. pacificus, the cockchafer
(Melolontha melolontha) with P. maupasi, and dung beetles
(Geotrupes spp.) associated with P. entomophagus (Herrmann
et al. 2006a).

So far, only one Pristionchus species could also be fre-
quently recovered from a non-scarab beetle. Pristionchus uni-
formis has been isolated from the chrysomelid Leptinotarsa
decemlineata, also known as the Colorado potato beetle, in
Europe and North America (Herrmann et al. 2006a, b). In-
terestingly, P. uniformis also shows an association with scarab
beetles on both continents. The gonochoristic species P. uni-
formis is unique in the genus Pristionchus for two reasons.
First, it has stable associations on two continents with mem-
bers of two ecologically disparate families of beetles. Second,
while scarab beetles are commonly associated with numer-
ous nematode species, L. decemlineata does not harbor other
nematodes suggesting that P. uniformis has evolved specific
traits that allow the identification, infestation, and survival
on this chrysomelid beetle.

A potential correlation between host-switching and species
invasion also exists in P. uniformis. While most Pristionchus
species are restricted to single continents, P. uniformis is one
of three species in this genus that was found on several con-
tinents (Herrmann et al. 2006a, b). Pristionchus pacificus is

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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a true cosmopolitan species that associated with different
scarabs on different continents (Herrmann et al. 2010), P.
entomophagus is a species that is found in association with
multiple insects (Herrmann et al. 2010; Herrmann and Som-
mer, pers. comm.), whereas P. uniformis is the only species
of that genus that is frequently found on two groups of bee-
tles. Interestingly, one of the beetle hosts of P. uniformis, L.
decemlineata, is an example of a biological invasion from the
United States to Europe (Balachowsky 1963). Given the P.
uniformis—L. decemlineata association, it is therefore tempt-
ing to speculate that their invasions into Europe might be
correlated. However, phylogenetic analysis of Pristionchus
nematodes clearly indicates that P. uniformis is part of the
European clade of the genus and not the North American
clade (Mayer et al. 2007). Therefore, a simple coinvasion of
nematode and beetle seems unlikely.

Despite the growing awareness of species invasion and
host-switching, little is known about the genetic conditions
and the population genetic structures associated with these
processes. The major economic pest of potato crops, L. de-
cemlineata, is an interesting exception, as recent molecular
studies indicate that European L. decemlineata populations
contain only a small fraction of the genetic variability known
from North America (Grapputo et al. 2005).

Here, we describe a population genetic study on an in-
vasive nematode. The aim of this study was to analyze the
directionality of both biological invasion and host-switch
during geographic and host range expansion events. Based
on a collection of 81 P. uniformis isolates from North Amer-
ica and Europe, both from scarab beetles and L. decemlineata,
we used population genetic and phylogenetic analyses of the
mitochondrial gene nd2 to reconstruct the genetic history of
the obligate outbreeding species P. uniformis and its beetle
association. Our results provide evidence for host-switching
events in Europe where P. uniformis was first associated with
scarab beetles. Population structure of European P. uniformis
strains show a much higher genetic diversity than Ameri-
can strains arguing for an invasion from Europe to North
America.

Materials and Methods
Nematode sampling and breeding conditions

Strains used in this study are the result of various collec-
tions from diverse localities (see Table S1). Nematodes were
isolated from insects collected during field trips or sent to
our Institute from other laboratories. Some strains were iso-
lated from soil samples. The nematode lines used in the study
were obtained using the standard procedure to isolate Pris-
tionchus nematode from the field (Herrmann et al. 2006a).
The insect or the soil samples were transferred to the lab-
oratory and placed on nematode growth medium (NGM)
agar plate. The insects were sacrificed by cutting them in
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half. Using a dissecting scope, the plates were checked daily
over a period of 1-3 weeks for emerging and reproducing
nematodes. From the emerging nematodes, we established
isofemale lines: gravid females were transferred to new plates
to establish laboratory lines. For taxonomic determination,
morphological and molecular methods were used (see next
paragraph). For breeding and maintenance of P. uniformis,
we followed standard culture methods described previously
for C. elegans (Brenner 1974). Stock maintenance, fecundity,
and generation time tests were done on NGM agar plates with
Escherichia coli OP50 lawns and kept at 20°C. Mating exper-
iments for species identification and fecundity tests between
P. uniformis strains were performed on plates with one virgin
female together with five males.

Biological properties of P. uniformis

To study the population genetics of P. uniformis and the
potential patterns of species invasion and host-switching,
we sampled a total of 81 isolates of P. uniformis in differ-
ent locations in Europe and North America. Twenty-one of
these strains have been collected from different scarab beetles,
32 from L. decemlineata, whereas the remaining strains were
obtained from various sources including soil and rotten
plants (Table S1). To study the biology of P. uniformis, we
have first observed if major difference in the life-history traits
was detectable among the different 81 strains. We checked
brood size, generation time, and sex ratio between strains
from scarab beetles, from L. decemlineata, isolated in Europe
and North America, performing crossing in plates with one
virgin female together with five males.

Hypotheses to be tested

In P. uniformis, we can test hypotheses about geographic
and host range expansion. Different hypotheses are possi-
ble. Concerning how species invasion might have occurred,
P. uniformis could have been primarily present in North
America and subsequently invaded Europe (Fig. 2A1) or
vice-versa (Fig. 2A2). A European origin of P. uniformis is
supported by the observation that this species is part of a
European clade of Pristionchus species (Mayer et al. 2007).
In the context of P. uniformis beetle association origin, we
could also test the direction of the host-switching between
the two major host, scarabs and L. decemlineata (Fig. 2B).
Under both of these circumstances (Fig. 2A and B), invasion
and host-switching, the genetic variability in P. uniformis iso-
lates obtained from the receiver location and host might have
resulted in a reduction, similar to what has been described
for the L. decemlineata (Grapputo et al. 2005). A final, al-
ternative scenario would be that no genetic structure exists
between material from different beetle hosts and geographic
origins due to multiple independent switches and invasions
(Fig. 2C).
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a) Species invasion direction

Figure 2. Pristionchus uniformis geographical and host origin hypothe-
ses. Pristionchus uniformis possible migration direction, from North
America toward Western Europe (A1) or vice-versa (A2). (B) Primary P
uniformis host association and following host-switch hypotheses: from
scarab spp. to Leptinotarsa decemlineata (B1) or vice-versa (B2). (C)
When no clear P uniformis genetic structure is found, neither species
invasion nor host-switch direction can be detected. Big arrows size is
proportional to the P uniformis population genetic diversity. Darker car-
toon represents a scarab spp. host and the striped cartoon represents
the L. decemlineata. World map modified after Graphic Factory CC.

Sequencing

For species identification, DNA was prepared from single
individual nematodes per strain, and species identity was as-
sessed by their having identical small subunit ribosomal RNA
(SSU) sequences as described in Herrmann et al. (2006a).
To evaluate the genetic variability between P. uniformis iso-
lates, by conducting BLAST searches of the P. pacificus mito-
chondrial sequence to an early version of the P. entomopha-
gus genome, a species closely related to P. uniformis (Mayer
etal. 2009), we then obtained the mitochondrial genes for nd2
and cyt b. The following polymerase chain reaction (PCR)
primers were designed: IS12109 CGCAAAAGATATACGC-
CAAT and 1512120 TTCTCCCAAAGGAACTTTACC. The
nd2 mitochondrial gene fragment of 789 bp was cloned and
sequenced from both ends in all 81 P. uniformis strains used

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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in this study. Genomic DNA was prepared from three over-
grown 6-cm NGM plates. Plates were washed three times in
distilled water. DNA was isolated with a genomic DNA ex-
traction kit (MasterPure™ DNA Purification from Epicentre
Biotechnologies, Madison, WI, USA). The DNA was diluted
to approximate 25 ng/ul for the PCRs. PCR was performed in
25-ul 1x PCR buffer (Amersham Biosciences [currently GE
Healthcare Europe Gmbh], Munich, Germany) containing
1 U Taq DNA Polymerase (Amersham Biosciences [currently
GE Healthcare Europe Gmbh], Munich, Germany), 0.5 uM
of each primer, 0.2 mM of each deoxynucleotide triphos-
phate, and 4 pl of DNA lysate. PCR experiments were per-
formed as follows: initial denaturation at 94°C for 2 min,
followed by 35 cycles of denaturation at 94°C for 30 sec,
primer annealing at 50°C for 30 sec, and extension at 72°C for
60 sec. A final incubation step at 72°C was performed for 7
min. PCR products were diluted 1:20 with ddH,O and se-
quenced without further purification from both ends (Big
Dye terminator protocol, Applied Biosystems, CA, USA,
ABI373xl capillary platform).

Data analyses

Sequence trace files were visualized with the software Seq-
Man (DNAStar Inc.) and aligned with Bioedit version 7.0. 5.
3; (Hall 1999). The sequences have been deposited in Gen-
Bank and can be retrieved by their accession code JN555657-
JN555737 (P. uniformis) and JN562471 (P. maupasi). For
phylogenetic analyses, the best-fit substitution model and the
parameter settings were determined in Find Best-Fit Substi-
tution Model (ML) in MEGA version 5 (Tamura et al. 2011)
using the Akaike information criterion (Akaike 1974; Posada
and Crandall 1998). The parameters for the selected model
HKY+I+T" were as follows: estimated base frequencies: A =
0.331,C=0.081,G=0.109, T = 0.479; proportion of invari-
able sites (I) = 0.40. Phylogenetic relationship among the P.
uniformis strains was assessed based on 789 bp of the nd2 mi-
tochondrial gene with in MEGA 5 (Tamura et al. 2011), and
heuristic search using maximum likelihood (ML) as optimal-
ity criterion. The bootstrap consensus tree was inferred from
10.000 replicates. The tree was edited using Dendroscope
(Huson et al. 2007). Divergence parameters, values for neu-
trality tests, and haplotype data were obtained with the pro-
gram DNASP version 5.10.01, (Librado and Rozas 2009). The
population parameter 6 was calculated from the number of
segregating sites. Haplotypes variation output file, with par-
sim informative sites highlighted, was generated with MEGA
5 (Tamura et al. 2011). Haplotypes distribution among host
and Fgr statistics were calculated with Arlequin version
3.5. 1. 2; (Excoffier et al. 2005). Network analyses of the
mitochondrial sequences were performed with Network ver-
sion 4.6.0.0 available at fluxus-engineering.com (Bandelt
etal. 1999).

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Beetle extracts and chemotaxis assays

The attraction of Pristionchus nematodes toward specific
compounds in chemotaxis assays might recapitulate their be-
havioral response in nature toward their preferred host (Hong
and Sommer 2006b). Chemical extracts from the insect host
of P. uniformis were used to investigate attraction profiles of
two P. uniformis strains. Feeding adult males of the scarab
Phyllophaga anxia were collected with pheromone traps in
Geneva (NY), USA in May 2007. Pupae of L. decemlineata
were derived from our laboratory culture that was initiated
in 2006 from a group of beetles collected in Tiibingen (Ger-
many). For the cuticular hydrocarbon extract, three P. anxia
adults and 25 L. decemlineata pupae were placed in glass sam-
ple tubes. The beetles were then soaked in dichloromethane
(CH,Cl,) for 24 h at 23°C. The washes were then vacuum
dried at 30°C in small glass sample tubes, then resuspended
in 150 pul of pure ethanol. Dichloromethane without a beetle
specimen but processed the same way served as a counter-
attractant control. Chemotaxis assays were performed on
8.5-cm @ NGM agar plates, as previously described for Pris-
tionchus species (Hong and Sommer 2006b). The host odor-
ants have been tested on two P. uniformis strains (RS5167 and
RS5303) and for comparison on P. pacificus (PS312). Mixed
stage nematodes containing mostly adults were washed three
times in M9 buffer and then loaded onto the agar plates,
which had been prepared with two point sources of odors. As
attractant, the host extract and control a solvent and sodium
azide to anesthetize the nematodes on opposite sides of each
plate. The chemotaxis index is defined as [the number of
worms at the attractant site — worms at control site]/total
number of worms scored. At least two separate experiments
were conducted for each strain, and each experiment con-
sisted of 6-10 replicates. On average, each replicate repre-
sented the outcome for 30-100 worms. Only the highest
chemotaxis index was recorded, which peaked between 15
and 16 h at 23°C. Two-tailed two-sample Student’s ¢-test was
done in Microsoft Excel.

Results
Life-history traits variation in P. uniformis

First, we analyzed the biological properties of 11 representa-
tive strains of P. uniformis (the reference strain and isolates
from different host association and with different geographic
origin) to evaluate if different host associations were corre-
lated with differences in life-history traits. No obvious differ-
ences among P. uniformis isolates were found. For example,
the sex ratio was close to 50% males in all strains. Similarly,
the generation time was between 3 and 4 days and fecundity
was between 91 and 170 (Table S2), which is typical for the
genus Pristionchus. These findings suggest that the different
host association of P. uniformis did not result in adaptive
differences in life-history traits.
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Phylogenetic and network analyses for
P. uniformis

To determine the genetic variance of P. uniformis, we ana-
lyzed all strains by comparing the rapidly evolving mitochon-
drial marker nd2. A total of 789 bp were compared among
the 81 strains isolated from various localities, sources, and
hosts. The nd2 sequences were used to construct a phylogeny
based on the genotypes of these 81 strains. As outgroup,
the sequence of P. maupasi RS0143 was included. Figure 3
shows a rooted, ML tree of the phylogenetic relationship
between the mitochondrial nd2 gene genotypes of P. uni-
formis isolates. The majority of the strains fall into a derived
monophyletic group of strains that are genetically very sim-
ilar to each other. In this clade, there is no clear separation
between strains associated with scarab or chrysomelid bee-
tles (Fig. 3A). Similarly, strains from North America and
Europe are interspersed, and several P. uniformis strains
with identical haplotypes, such as RS5303 and RS5255, were
found on scarab beetles and L. decemlineata in the United
States and Germany, respectively (Fig. 3A). Similarly, multi-
ple P. uniformis strains, that is, RS5287, RS5312, RS5323, and
RS5308, as well as RS5048, RS5256, RS5245, and RS5240 were
collected from the same site, but are genetically unrelated
(Fig. 3B). The major findings of the phylogenetic analysis
can be summarized as follows. First, North American strains
always share a clade with European strains. Second, there are
three clades formed by European strains only. Third, there
are no deeper clades and there is no support for grouping the
clades together. Taken together, these data suggest a European
origin of P. uniformis and multiple colonization events from
Europe to North America. Also, no population genetic struc-
ture that would completely dissociate hosts and localities can
be detected.

In Figure 4, the nd2 gene network defines 32 haplotypes
in a selection of 53 strains isolated from scarab spp. and L.
decemlineata. Each haplotype is restricted to one of the four
predefined groupings (L. decemlineata from Europe; L. de-
cemlineata from North America; scarab from Europe; scarab
from North America) except for eight haplotypes that are
shared between the two beetle groups and three cases also
between continents (Fig. 4A; Table S3). Genetic diversity of
scarab derived P. uniformis (;r = 0.102) was nearly twice that
of the L. decemlineata derived strains (7 = 0.056) (Table 2).
Additionally, the estimation of the genetic differentiation be-
tween these two host association subgroups of P. uniformis
resulted to be significant (Fsy = 0.091 £ 0.000, P-value =
0.000).

Population structure for P. uniformis

The deep sampling of P. uniformis and the availability of type
material from Europe and North America make it possible to
study the ancestral origin of this species. The nd2 gene analysis
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suggests that the P. uniformis strains collected in Europe are
more genetically diverse than the strains from North America.
As mentioned in the previous paragraph, North American P.
uniformis are always found in clades together with European
strains. In contrast, European strains are found in all major
clades covering a higher sequence divergence and occupying
more basal positions in the rooted phylogeny with three clades
formed by European sequences only.

Only one group of American isolates, R§5505, RS5500,
and RS5506, has a more basal position in the phylogeny
(Fig. 3B). This group is clearly distinct from the other Ameri-
can strains, supporting the hypothesis of multiple expansions
from Europe to North America.

The European origin of P. uniformis is confirmed by
considering the nucleotide diversity found between P. uni-
formis strains from North American and Europe. Specifically,
North American strains show a lower nucleotide diversity
(7r) of 0.04, whereas the European strains show a 7 of 0.10
(Table 2). The nucleotide diversity of P. uniformis is sub-
stantially higher than the diversity of related hermaphroditic
species (Tables 2 and S4). Specifically, the comparison of
P. pacificus strains from North America, Europe, and La
Réunion in the Indian Ocean revealed diversity values that
were a factor of two to three times lower than those observed
for P. uniformis (Table 2). Furthermore, the estimated genetic
differentiation (Fsr) was significant between the two geo-
graphic subgroups of P. uniformis (Europe vs. North Amer-
ica) (Fst = 0.103 = 0.000; P-value = 0.000).

P. uniformis host recognition

Previous studies found that Pristionchus species associated
with different beetles have distinct chemotaxis profiles to-
ward insect compounds (Hong and Sommer 2006b). To test
whether P. uniformis strains show specificity in their host
recognition, we performed chemotaxis experiments on two
American P. uniformis strains, one isolated from L. decem-
lineata (RS5167) and one from P. anxia (RS5303). Both of
these strains fall genetically in the derived clade A (Fig. 3A).
Chemotaxis profiles obtained from exposing nematodes to
cuticular extracts of the two beetles provide three important
observations. First, the P. anxia derived strain RS5303 shows a
stronger attraction to P. anxia beetle extract than L. decemlin-
eata derived RS5167 (t-test, P-value = 0.018) (Fig. 5A). Sec-
ond, RS5303 and RS5167 show similar attraction to washes
of the “novel” beetle host L. decemlineata and both are signif-
icantly more attracted than P. pacificus, which has never been
found associated with any of the test-hosts (Fig. 5B) (¢-test,
P-value = 0.000). These results suggest that, first, chemoat-
traction mechanisms evolve rapidly, and second, that some
P. uniformis strains have lost the ability to recognize certain
scarab beetles as potential hosts.

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Host and geographic origin
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Figure 3. Phylogenetic relationship of 81 Pristionchus uniformis strains. The maximum likelihood (ML) tree was reconstructed from aligned mitochon-
drial gene nd2 sequences. Robustness of the tree topology was evaluated by 10.000 ML replications. The support values are shown at the nodes.
Branch lengths are proportional to genetic divergence. Geographical origin (EU = European; NA = North America) and host association are color

coded at the taxon label. Strains with “other” origin were isolated from soil or non-scarab or non-Leptinotarsa decemlineata beetles. Letters indicate
geographical subgrouping.
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Figure 4. Median joining network for a selection of 53 mitochondrial haplotypes of the nd2 gene amplified in Pristionchus uniformis strains collected
in scarab spp. or Leptinotarsa decemlineata. Circles represent unique haplotypes. The areas of the circles are proportional to the number of samples
sharing each haplotype. Different colors represent different geographic origin (EU = European; NA = North American) and host associations as

indicated on the figure. Letters indicate subgroups detected also in Figure 3.

Discussion

Growing interest in invasion biology has mirrored the escala-
tion of species invasion. (Elton 1958; Richardson and Pysek
2007). While species invasions are often a problem in agri-
culture, recent studies also focus on the basic biogeography
of species invasion to gain insight into the factors and pro-
cesses that control diversity and distribution at different scales
(Richardson and Py$ek 2007). Here, we investigated the bio-
geography of the nematode P. uniformis that has been found
tightly linked to one of the most famous insect invaders of
Europe, the Colorado potato beetle (L. decemlineata).
Nematode associations with other organisms are common
and numerous entomophilic nematodes have associations
with their hosts, ranging from loose phoresy to strict species-
specific parasitism (Sudhaus 2008). Many insect hosts spend
most parts of their life cycle in habitats that facilitate nema-
tode attachment. For example, scarab beetle females usually
deposit eggs in the soil and grubs feed on roots often for
several years, for example, the American May beetle P. anxia
and the European cockchafer M. melolontha. The beetle L.
decemlineata has a different and much shorter life cycle ap-
proximately 30 days long. After hatching from eggs on potato
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leaves, larval instars feed on leaves, only entering the soil
during the last instar to pupate. Thus, scarab beetles and
L. decemlineata are in the soil where they can get into con-
tact with nematodes, during overlapping but distinct parts
of their life cycles. However, a quantitative assessment of the
soil-beetle exchange of Pristionchus nematodes awaits fur-
ther study, which may be considerably advanced by involving
transgenic technology, available for Pristionchus nematodes,
for monitoring the movement of nematodes.

Numerous studies on parasite—host associations have de-
scribed a horizontal transfer from one host to another, de-
fined as host-switching (Page 2003). The switch to a new host
is considered one of six types of events that are commonly
found in host—parasite evolution (Page 2003). A host-switch
involves an initial “expansion” of the parasite’s host range
and often, the parasite persists on the original host. Success-
ful “colonization” of foreign hosts requires that the parasite
“disperse” to that host and is able to “establish” a viable
breeding population on it.

Our results revealed that Europe is the likely native area
of P. uniformis because genetic diversity is greater in Eu-
rope than in North America. Thus, P. uniformis most likely
expanded to a new continent, namely from Europe to North

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Figure 5. Chemoattraction assay of Pristionchus uniformis strains com-
pared to P pacificus. (A) Nematode attraction toward dichloromethane
extraction of Phyllophaga anxia adults. *Significant difference between
P uniformis (RS5167), Leptinotarsa decemlineata derived, and (RS5303)
P anxia derived, P < 0.05 by two-sampled t-test. (B) Nematode attrac-
tion toward dichloromethane extraction of Leptinotarsa decemlineata
pupae When compared to P pacificus (PS312), both P. uniformis strains
(RS5167 and RS5303) are significantly more attracted towards the L.
decemlineata extract, ***P < 0.001 by two-samples t-test. Error bars
denote 95% confidence intervals and each bar represents 10-15 repli-
cates.

America and succeeded in colonizing a “new” insect host,
the Colorado potato beetle (Table 1). We found eight cases,
in which a mitochondrial haplotype is shared between the
two hosts, supporting the hypothesis that P. uniformis can
successfully associate and reproduce on both beetle groups
(Fig. 4; Table S3). Assuming that identical mitochondrial se-
quences did not originate independently in different hosts or
locations by parallel (or convergent) mutations, these find-
ings provide evidence for host-switching during recent P.
uniformis evolution.

© 2011 The Authors. Published by Blackwell Publishing Ltd.
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Table 1. Divergence estimates in host-associated subgroups based on
the mitochondrial gene nd2.

P uniformis (length = 789 bp)

n S H Hd T 0
Total 53 278 32 0969 0.078 0.097
Scarab spp. 21 250 19 0990 0.102 0.109

Leptinotarsa decemlineata 32 241 21 0.960 0.056 0.093

S = number of segregating sites, H = number of haplotypes, Hd =
haplotype diversity, = = nucleotide diversity, & = level of polymorphisms
from S.

Our analysis of a collection of 81 P. uniformis genotypes
from North America and Europe favors scenario 2 of the
potential biological invasions offered in Figure 2A. We pro-
vide clear evidences for a European origin of P. uniformis
based on the basal positions of European clades and much
higher genetic diversity of strains found in Europe (Table 2).
Colonization has probably happened at least twice, apparent
from a clade of North American nematodes (RS5505, RS$5500,
RS5506) distinct from that of the highly related clade (Fig.
3B). This finding is supported by the phylogenetic position
of P. uniformis in the European group of species within the
genus Pristionchus (Herrmann et al. 2007; Mayer et al. 2007).
Given the recent invasion of L. decemlineata to Europe, host-
switching event might have occurred in Europe. Under these
circumstances, P. uniformis most likely has invaded North
America from Europe. However, it remains unknown if P.
uniformis invaded North America in association with a host
beetle or by another way of transportation. Also, our results
do notallow to exclude the potential scenario that P. uniformis
has been introduced to North America prior to the invasion
of Europe by L. decemlineata. Data presented herein, provide
the first molecular support to characterize the complexity of
species invasion and host-switching events of a Pristionchus

Table 2. Divergence estimates in geographic subgroups based on the
mitochondrial gene nd2.

n S H Hd T 0 Tajima’s D
P uniformis
Total 81 319 49 0.979 0.083 0.105 -0.515
Europe 49 316 41 0.991 0.105 0.117 -0.515
North America 32 156 14 0.915 0.038 0.055 -0.923
P pacificus
Total 22 126 19 0983 0.037 0.049 -0.605

North America 7 28 5 0.857 0.013 0.015 -0.474
Europe, Asia, 12 133 12 1.000 0.046 0.053 -0.207
La Réunion

S = number of segregating sites, H = number of haplotypes, Hd =
haplotype diversity, = = nucleotide diversity, & = level of polymorphisms
from S, Tajima’s D test for the assumption of neutral sequence selection
evolution. Pristionchus uniformis sequence length = 789 bp and P paci-
ficus length = 777 bp. Data for P, pacificus are from Zauner et al. 2007
and Molnar et al. 2011.
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nematode. The ease with which these nematodes can be iso-
lated and characterized might make them a useful system
to further investigate the biogeography of insect associated
nematodes.

So far P. uniformis is the only Pristionchus species that
is found consistently on disparate families of hosts among
more than 20 species collected worldwide (Mayer et al. 2009).
These observations suggest that host-switching is exceptional
in Pristionchus evolution and might require special genetic
features. The adaptation to the new ecological niche requires
anew host-seeking behavior, special chemoattractive proper-
ties, and novel survival attributes. Among these adaptations,
chemoattraction can be studied under laboratory conditions
by using chemoattraction assays. We were able to show that
P. uniformis has a species-specific preference for its beetle
hosts’ odor profile. Pristionchus uniformis significantly di-
verged from the model species P. pacificus in its chemoattrac-
tion profiles toward the extract of the scarab P. anxia and the
chrysomelid L. decemlineata. Interestingly, we observed also
an intraspecific discrepancy in chemotaxis when testing the
two P, uniformis strains on P. anxia extracts. The P. anxia odor
was attractive only for the P. anxia derived P. uniformis strain.
These findings suggest that chemoattraction mechanisms can
evolve rapidly, and that some P. uniformis strains have lost the
ability to recognize certain scarab beetles as potential hosts.
It is important to note that this finding might be influenced
by the high diversity of scarab beetles. In particular in North
America, the group of scarab beetles is very diverse (Arnett
et al. 2002) and investigations about the species specificity of
Pristionchus with these North American scarab beetles await
future analysis.

One other, crucial factor for successful host-switchingis the
ability to overcome competitive exclusion by other residents
of the new host (Barker 1994). Interestingly, the “new” P. uni-
formishost L. decemlineata is well protected against predators
by the secretions of defensive glands (Dalzoe et al. 1986) and
by the toxic substances present in the haemolymph (Hsiao
and Fraenkel 1969). Indeed, L. decemlineata is poor in associ-
ated nematodes, most likely because toxic substances prevent
a successful invasion by nematodes. Therefore, the switch of
P. uniformis toward L. decemlineata was not influenced by
competition from resident nematodes and might have been
favored by low predation rates. At the same time, P. uniformis
must have evolved a mechanism to overcome the toxicity as-
sociated with the L. decemlineata habitat. However, we have
so far been unable to identify such mechanisms; our inves-
tigations of the L. decemlineata haemolymph did not show
any evidence for resistant mechanisms of P. uniformis, when
compared to other nematode species.
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