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Objective: To construct and validate a nomogram model integrating the magnetic

resonance imaging (MRI) radiomic features and the kinetic curve pattern for detecting

metastatic axillary lymph node (ALN) in invasive breast cancer preoperatively. Materials

and Methods: A total of 145 ALNs from two institutions were classified into negative

and positive groups according to the pathologic or surgical results. One hundred one

ALNs from institution I were taken as the training cohort, and the other 44 ALNs from

institution II were taken as the external validation cohort. The kinetic curve was computed

using dynamic contrast-enhanced MRI software. The preprocessed images were used

for radiomic feature extraction. The LASSO regression was applied to identify optimal

radiomic features and construct the Radscore. A nomogram model was constructed

combining the Radscore and the kinetic curve pattern. The discriminative performance

was evaluated by receiver operating characteristic analysis and calibration curve.

Results: Five optimal features were ultimately selected and contributed to the Radscore

construction. The kinetic curve pattern was significantly different between negative and

positive lymph nodes. The nomogram model showed a better performance in both

training cohort [area under the curve (AUC) = 0.91, 95% CI = 0.83–0.96] and external

validation cohort (AUC = 0.86, 95% CI = 0.72–0.94); the calibration curve indicated

a better accuracy of the nomogram model for detecting metastatic ALN than either

Radscore or kinetic curve pattern alone.

Conclusion: A nomogram model integrated the Radscore and the kinetic curve pattern

could serve as a biomarker for detecting metastatic ALN in patients with invasive

breast cancer.
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INTRODUCTION

Axillary lymph node (ALN) status in patients with invasive
breast cancer is a vital information for guiding therapy and
evaluating prognosis (1–3). Axillary lymph node dissection
(ALND) would be performed for defining ALNs status if the
sentinel lymph nodes were positive for metastasis. However,
ALND is associated with significant complications (4, 5). But
based on the result of a multicenter randomized trial from
the American College of Surgeons Oncology Group (ACOSOG)
Z0011 (6), 2014 American Society of Clinical Oncology guideline
recommended that ALNDmay not be necessary in T1 or T2 stage
breast cancer patients with one or two positive sentinel lymph
nodes who are being treated with breast-conserving therapy and
adjuvant systemic therapy (7). In this context, it is debatable how
aggressively radiologists should perform percutaneous sampling
of axillary nodes to identify axillary metastasis. Cody and
Houssami (8) reported that preoperative axillary sampling should
be reserved for patients with more than 2 abnormal lymph
nodes on imaging, and ALND should be performed directly
during mastectomy if the results were positive. All remaining
patients should undergo sentinel lymph node biopsy (SLNB)
in hopes of meeting Z0011 trial eligibility criteria to avoid
ALND. Therefore, accurate, non-invasive detection approach
may be imperative to distinguish between lymph nodes that
were positive for metastasis (“positive” nodes) and those that
were negative for metastasis (“negative” nodes) and reducing
unnecessary percutaneous sampling of ALNs, or SLNB, or ALND
at a certain extent in the post-ACOSOG Z0011 era.

Magnetic resonance imaging (MRI) can visualize
morphological and contrast-enhanced characteristics of
metastatic lymph nodes. Some qualitative characteristics may
cause inevitable inconsistency due to subjectivity (9–12).
The threshold value of apparent diffusion coefficient showed
inconsistent results in distinguishing between negative nodes
from positive nodes due to the low signal-to-noise ratio and
image distortion of diffusion-weighted imaging (13, 14). Some
quantitative contrast-enhanced parameters (initial enhancement,
peak enhancement, and delayed enhancement) represent the
enhancement characteristics of the single time phase. The
kinetic curve pattern based on dynamic contrast-enhanced
MRI (DCE-MRI), which shows the trend of signal intensity in
the contrast-enhanced process, is commonly used in clinical
settings (15). It had been repeatedly demonstrated to be
significantly different between negative and positive ALNs in
previous studies (16–18). The kinetic curve was calculated by
drawing region of interest (ROI) of focal area. However, large
amounts of quantitative imaging information representing
underlying histologic characteristics could not be acquired by
visual inspection.

Radiomic analysis links quantitative imaging features to
clinical findings by using machine-learning and statistics-
analysis methods (19–22). The quantitative imaging analysis
is expected to identify the imaging features that correlate to
the pathophysiology of lesions more objectively (23–26). At
present, radiomics is mainly used for the single-phase imaging
analysis, which cannot reflect the kinetic characteristics of the

lesion (27–29). In this study, we hypothesized that radiomic
features and kinetic curve pattern could identify the association
between MRI characteristics and the pathophysiology of ALNs
and thus effectively and precisely detected potential metastatic
ALNs in invasive breast tumors. Accordingly, the aim of the
study was to construct a nomogram model based on the
integration of quantitative radiomic parameters and the kinetic
curve pattern. External validation was then performed to assess
the preoperative prediction efficiency of the proposed model,
which might contribute to metastatic ALN detection in the
individualized precision treatment for invasive breast tumors.

MATERIALS AND METHODS

This retrospective study was approved by the medical ethics
committee of our institution and was conducted in accordance
with relevant guidelines. Informed consent was waived. The
workflow of the analysis is summarized in Figure 1.

Study Population and Surgical Strategy
Patients with suspected breast cancer who underwent DCE-MRI
of the breast between January 2018 and December 2019 were
retrospectively collected in two institutions. The final diagnosis
of invasive breast cancer was based on pathological analysis.

On the affected side, the ALN inclusion criteria for the study
were as follows: (1) suspicious node with cortical irregularity (30);
(2) the shortest dimension was no<5mm (10, 30); (3) MRI scans
available for qualitative and radiomic analysis; (4) no previous
chemotherapy or radiation therapy; and (5) complete medical
records including pathological diagnosis and treatment.

The standard of determining negative or positive lymph
nodes was established in three ways: (1) all ALNs of the
patients with negative SLNB were considered negative (31); (2)
the pathological results were confirmed by ultrasound-guided
needle biopsy. The suspicious lymph node in the MRI scan was
located in the ultrasound image by MRI virtual navigation or
by a radiologist and sonographer comparing MRI scans with
ultrasonic image together; (3) when multiple lymph nodes (n >

8) were proven positive formetastasis at ALND, highly suspicious
lymph nodes on MRI (up to three lymph nodes per patient) were
presumed positive for metastasis (32).

Exclusion criteria were as follows: (1) the pathological status of
lymph node cannot be identified in any of these three ways above;
and (2) the tissue for biopsy was damaged and failed to provide
meaningful pathological results.

Imaging Protocol
Dynamic contrast-enhanced MRIs were performed at 3.0-T
systems in both institutions (institution I: MAGNETOM Verio,
Siemens AG, Germany; institution II: MAGNETOM Skyra,
Siemens AG, Germany). Both institutions applied the same
imaging protocols. The patient was in the prone position, with
both breasts naturally and closely fitted in the breast coil. T1-
weighted three-dimensional fluid-attenuated inversion recovery
was applied for dynamic contrast enhancement (repetition
time/echo time, 4.51/1.61; flip angle, 10◦; slice thickness, 1.0mm;
section gap, 0.20mm; field of view, 320 × 320; image matrix,
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FIGURE 1 | Workflow of the study.

420 × 420). Contrast material was injected into the elbow vein
[0.1 mmol/kg of gadodiamide (Omniscan, GE Healthcare)] and
followed by a 20-mL saline flush at a rate of 2.0 mL/s. After the
first precontrast scan, five consecutive postcontrast phases were
obtained starting at 25-s delay after contrast injection. Each phase
took 59 s.

Image Processing
As compared with images of T1-weighted, T2-weighted, and
diffusion-weighted, contrast-enhancement images had relatively
small image noise and distortion, which can more clearly
visualize the delineation of ALNs (11). The first postcontrast
phase images were chosen for feature extraction because the
average peak enhancement at the early postcontrast stage was
significantly different between negative and positive ALNs
(18, 33), and the distribution of the contrast agent in lesions
was more homogeneous in this phase (34). ITK-SNAP software
(version 3.6, http://www.itksnap.org) was utilized to segment
volumes of interest (VOIs) of ALNs on contrast-enhanced
images. Before delineation, gray-level standardization was
applied to reduce the gray-level differences caused by the

imaging procedure. Each layer contour of VOIs was delineated
along the inner margin of the lymph node to avoid the false
heterogeneity caused by the unclear edge. The VOI contours were
superimposed to improve the consistency of node segmentation.
All pixels’ gray scales inside the VOIs were extracted
for analysis.

The kinetic curve was computed using DCE-MRI software
(mean curve: Siemens Healthcare, Germany). A circular ROI
of 20 mm2 was placed at the lymph node with maximal
enhancement determined on the first postcontrast images. The
areas without enhancement in the lymph node, which were
hypointensity both in precontrast phase and subtraction images,
were excluded as necrosis. The kinetic curve pattern was defined
according to changes in pixel values, between the second
contrast-enhanced and delayed contrast-enhanced series, as
follows: persistent type (type I) indicated an increased pixel signal
intensity >10% from the second postcontrast series; washout
type (type III) indicated decreased pixel signal intensity at the
last postcontrast series>10% from the second postcontrast series;
plateau type (type II) indicated pixel signal intensity change in
neither direction by more than 10%.
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Both image segmentation and kinetic curve pattern were
evaluated by two breast radiologists (a chief and a resident with
15 and 3 years of experience, respectively) who were blind to the
pathology of lymph nodes independently.

Feature Extraction, Selection, and
Correlation
A total of 396 radiomic features were extracted in each
VOI using the Artificial Intelligence Kit version 3.0.1.A (Life
Sciences, GE Healthcare, US), including six categories of
parameters: morphology, histogram, texture parameters, gray-
level co-occurrence matrix parameters, gray-level run-length
matrix parameters, and gray-level zone size matrix parameters.
Details of the procedures for extraction of radiomic features are
described in Supplementary Figures 1, 2.

The analysis of variance andMann–WhitneyU test (ANOVA-
MW) were carried out for selecting significant features that were

TABLE 1 | Kinetic curve pattern of ALNs in training cohort and validation cohort.

Kinetic curve

pattern

Training cohort p-value Validation cohort p-value

Negative

(n = 51)

Positive

(n = 50)

Negative

(n = 22)

Positive

(n = 22)

Type I 19 3 <0.01 10 2 0.01

Type II 24 22 8 9

Type III 8 25 4 11

TABLE 2 | Reproducibility analysis of significant features.

Significant feature Feature class ICC (95% CI)

Kinetic curve pattern 0.98 (0.97–0.99)

Uniformity Histogram parameters 0.93 (0.82–0.97)

Correlation_a135_o1 Texture parameters 0.87 (0.78–0.98)

Inertia_a90_o4 Texture parameters 0.90 (0.85–0.96)

CP_all_o1_SD Texture parameters 0.79 (0.69–0.82)

SVR Form factor parameters 0.96 (0.87–0.99)

Correlation_a135_o1, Correlation_angle135_offset1; Inertia_a90_o4,

Inertia_angle90_offset4; CP_all_o1_SD, ClusterProminence_AllDirection_offset1_SD;

SVR, surface volume ratio.

TABLE 3 | Univariate analysis of significant features in the training cohort.

Significant features Negative (n = 51) Positive (n = 50) p

Uniformity 0.38 ± 0.99 −0.39 ± 0.86 <0.01

Correlation_all_o1 −0.43 ± 0.70 0.44 ± 1.07 <0.01

Inertia_a90_o4 −0.41 ± 1.03 −0.42 ± 0.78 <0.01

CP_all_o1 −0.36 ± 1.04 −0.36 ± 0.62 <0.01

SVR 0.46 ± 0.83 −0.46 ± 0.95 <0.01

Correlation_a135_o1, Correlation_angle135_offset1; Inertia_a90_o4,

Inertia_angle90_offset4; CP_all_o1_SD, ClusterProminence_AllDirection_offset1_SD;

SVR, surface volume ratio.

highly correlated. Spearman correlation test with correlation
coefficientmore than 0.90 was applied to remove the redundancy;
radiomic features were further optimally elected. In the final
step, the least absolute shrinkage and selection operator
(LASSO) regression method was applied to identify the most
nonredundant and robust features from the training cohort
in order to improve the class separability and optimize the
representation of lesion heterogeneity. The complexity of LASSO
regression was controlled by a tuning parameter lambda (λ) with
the rule that as the value of λ increases, the penalty for each
variable coefficient also increases, and the relevant features with
nonzero coefficients were selected and contributed to the final
LASSO regression (35). Meanwhile, the best value of λ found by
10-fold cross-validation with a maximum area under the curve
(AUC) was used for constructing the regressionmodel. Radscore,
which was defined by corresponding nonzero coefficients of
features selected by LASSO, was created by a linear combination
of selected features weighted by their coefficients. Respective
Radscore was calculated for each lymph node.

Nomogram Building, Calibration, and
External Validation
Both the Radscore and the kinetic curve pattern were integrated
by a multivariate logistic regression analysis in the training
cohort. Based on this, a nomogram was constructed for detecting
metastatic ALNs. The receiver operating characteristic (ROC)
analysis was applied to evaluate the discrimination performance
of the model. Along with the Hosmer–Lemeshow test measuring
for goodness of fit of the nomogram, the classification accuracy
was assessed via calibration curves. The degree of overlap
between the calibration curve and the diagonal in the graph
reflects the accuracy of the nomogram model. The constructed
nomogram model was validated on external validation cohort
using the same process of capability assessment with the ROC
analysis and calibration curve.

Statistical Analysis
Statistical analysis was conducted by R software (version
3.3.2) and MedCalc (version 19.1). Variables of a normal
distribution were shown as mean ± SD, and variables of a skew
distribution were shown as median (quartile). Statistical group
comparisons of data were analyzed by Wilcoxon using rank-
sum (continuous variables) and χ2 (categorical/dichotomous
variables) tests. Intraclass correlation coefficient (ICC) was
analyzed for estimating reliability of interobserver agreements
including kinetic curve pattern identification and radiomic
analysis, which was defined as good consistency between 0.75
and 1; fair consistency, between 0.4 and 0.75; and poor, <0.4.
The correlation and collinearity of radiomic features were
evaluated using VIF function. The Pearson correlation analysis
was performed to evaluate the correlation between kinetic
curve pattern and Radscore; the pairwise Pearson correlation
coefficients were calculated. The kinetic curve pattern, Radscore,
and nomogram model were, respectively, subjected to ROC
analysis, by using AUC, sensitivity, specificity, and accuracy
to evaluate the stratification efficacy. The comparison of ROC
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FIGURE 2 | Wilcoxon analysis of Radscore for detecting metastatic ALN in the (A) training cohort and (B) validation cohort (p < 0.05).

curves was performed by Delong test. The level of statistical
significance was set at a two-sided p < 0.05.

RESULTS

Patients Characteristics
A total of 145 ALNs from 102 patients (age range, 27–83 years;
mean age, 52.45 ± 11.78 years) with invasive breast cancer were
selected in the final cohort. Seventy-six cases of 101 ALNs (51
negative nodes, 50 positive nodes) from institution I were taken
as the training cohort, and the other 34 cases of 44 ALNs (22
negative nodes, 22 positive nodes) from institution II were taken
for external validation. Table 1 shows the kinetic curve pattern of
ALNs in two cohorts. It was significantly different in both cohorts
(p < 0.001).

Reproducibility Analysis
For identifying the kinetic curve pattern, the ICC was
0.98 between two breast radiologists, indicating satisfactory
consistency. Based on the result of reproducibility analysis by
two radiologists, 363 of 396 (91.7%) radiomic features had good
consistency (ICC ≥ 0.75). The numbers of features with fair
consistency (0.75> ICC≥ 0.4) and poor consistency (ICC< 0.4)
were 19 (4.8%) and 14 (3.5%), respectively.Table 2 shows the ICC
value of significant features.

Radscore Model Building, Kinetic Curve
Pattern Analysis, Correlation, and
Validation
After dimensionality reduction, which included ANOVA and
MW (251 features), Spearman correlation test (96 features),
and the LASSO algorithm with the optimal regulation
weight λ [log(λmin) = −2.46], five radiomic features with
nonzero coefficients were finally selected by 10-fold cross
validation to ensure robustness and preventing overfitting.
To demonstrate the effectiveness of radiomic features model
at the individual scale, the quantitative values of radiomic

features for each lymph node the classification of negative
and positive groups in training cohort are shown in Table 3,
which included uniformity, Correlation_angle135_offset1
(Correlation_a135_o1), Inertia_angle90_offset4 (Inertia_a90
_o4),ClusterProminence_AllDirection_offset1_SD (CP_all
_o1_SD), and surface volume ratio. A Radscore model was
further constructed based on five features with respective
nonzero coefficients selected through LASSO regression method.
There was no collinearity between the five features after being
verified by VIF function. The complete details are shown in
Supplementary Figure 3.

Radscore = −0.028− 0.692× Uniformity+ 0.188

×Correlation_all_o1− 0.267× Inertia_a90_o1

+0.522× CP_all_o1− 0.954× SVR

Differences of the Radscore value between the negative and
positive ALNs in training and validation cohort were statistically
significant (Figure 2).

The pairwise Pearson correlation analysis revealed that the
Radscore was moderately correlated to kinetic curve pattern
(Figure 3).

Further validation was carried out through ROC analysis for
the detection performance of Radscore, kinetic curve pattern,
and the nomogram model in the training cohort. A favorable
classification capability was observed with a good AUC in the
training cohort (Figure 4A).

Nomogram Building
The nomogram based on both Radscore and kinetic curve pattern
was constructed to visualize the results of multivariable logistic
regression analysis for detecting ALN metastasis (Figure 4B).

Nomogram = −2.250+ 0.932× Radscore+ 1.090

×kinetic curve pattern
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FIGURE 3 | Correlation between the kinetic curve pattern and the Radscore

based on Pearson correlation analysis. The mean absolute correlation

coefficient was 0.36.

The total points accumulated by the various variables correspond
to the metastasis probability for a ALN (36). The complete details
are shown in Figure 4B.

The calibration curves and the Hosmer–Lemeshow test
of nomogram in the training cohort demonstrated a high
accuracy of the model in the stratification capability (Figure 4C).
Compared to the Radscore and the kinetic curve pattern
alone, the nomogram model yielded a better performance in
detecting ALN metastasis including an increased AUC and
higher sensitivity, specificity, and accuracy in the training
cohort (Table 4). Specifically, the nomogram showed a significant
improvement than the Radscore and the kinetic curve pattern
along in the Delong test (p < 0.05). The details are shown in
Supplementary Table 1.

Validation on External Cohort
The performance of the nomogram model was validated using
the external dataset collected from the other institution. The
nomogram yielded a favorable AUC value in the validation
cohort (Figure 5A). The calibration curves and the Hosmer–
Lemeshow test of the proposed nomogram model based
on the validation cohort suggested a favorable stratification
performance (Figure 5B). The nomogram showed a significant
improvement than kinetic curve pattern (p < 0.05), but no
significant difference vs. Radscore in the Delong Test (p = 0.36).
The details are shown in Supplementary Table 2.

DISCUSSION

In this study, we established and validated a nomogram model to
detect metastatic ALNs in patients with invasive breast cancer,
which incorporated the kinetic curve pattern and five robust
radiomic features extracted from contrast-enhanced MRI. The
nomogrammodel achieved a better performance in both training
cohort and external validation cohort with a larger AUC value
than the radiomic model or the kinetic curve pattern alone,

FIGURE 4 | Nomogram (A); ROC curves for the kinetic curve pattern, the

Radscore, and the nomogram model (B); and corresponding calibration

curves based on the nomogram model (C) in the training cohort.

suggesting the reliability of the improved model in detecting
metastatic ALNs.

The kinetic curve pattern is a dynamic feature reflecting
the changes of capillary permeability and hemodynamics in the
lesion. The infiltration of tumor cells into lymph node promotes
the abnormal angiogenesis, damages the normal vessel wall, and
forms arteriovenous fistula. These accelerate the efflux of the
contrast agent in the delayed phase, and type III kinetic curve
is suggestive of positive node. Compared with positive node,
the contrast agent circulates slowly in negative node because of
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TABLE 4 | Performance of the kinetic curve type, Radscore, and the nomogram models.

Model Training cohort Validation cohort

AUC (95% CI) SEN SPEC ACC AUC (95% CI) SEN SPEC ACC

Kinetic curve pattern 0.78 (0.69–0.85) 0.98 0.42 0.69 0.74 (0.58–0.86) 0.91 0.45 0.68

Radscore 0.86 (0.78–0.92) 0.86 0.71 0.78 0.81 (0.67–0.91) 0.68 0.91 0.79

Nomogram 0.91 (0.83–0.96) 0.82 0.86 0.84 0.86 (0.72–0.94) 0.73 0.91 0.82

AUC, area under the ROC curve; SEN, sensitivity; SPEC, specificity; ACC, accuracy.

FIGURE 5 | Performance of the kinetic curve pattern, the Radscore and the nomogram model on external validation cohort. (A) Receiver operating characteristic

curve for the three models with AUCs of 0.74, 0.81, and 0.86, respectively. (B) Calibration curve of the nomogram model in the validation cohort.

the normal capillary network and lower capillary permeability.
Type I kinetic curve is suggestive of negative node (37). In this
study, the kinetic curve pattern showed significant differences
between negative and positive nodes with high sensitivity, but the
specificity was relatively low, which leads to the weak diagnostic
efficiency that in agreement with previous studies (16, 18, 33, 38).
We speculated that the necrosis excluded from the ROI of kinetic
curve is a prominent feature for positive node. The kinetic curve
pattern focuses on the trend of signal intensity in the contrast-
enhanced process, but fails to reflect the heterogeneity of the
whole lymph node, which contains large amounts of quantitative
features that cannot be observed with the naked eyes.

As previously reported, several imaging findings have been
observed for assessing ALN metastasis. Irregularly increased
cortical thickness, an absence of the hilum, reduced ratios
of the longest to the shortest dimension, and heterogeneous
enhancement were suggestive of metastatic lymph node using
univariate analysis (9, 10, 33). However, the imaging findings
were still a subjective judgment that involved interobserver
disagreement, such as the interpretation of morphological
and contrast-enhanced characteristics, which had different
scoring system in different studies (9–12, 39, 40). Radiomic
features, as objective quantitative imaging biomarkers, reflected
the heterogeneity of the whole lymph node objectively and

could be imperative complementation for detecting the
metastatic ALNs. In this study, five radiomic features of
396 radiomic features were selected including uniformity,
Correlation_angle135_offset1 (Correlation_a135_o1), Inertia_
angle90_offset4 (Inertia_a90_o4), Cluster Prominence_All
Direction_offset1_SD (CP_all_o1_SD), and surface volume
ratio, suggesting their vital roles in detection. Uniformity reflects
the regularity of gray scale image texture. The texture parameters
of correlation, inertia, and cluster prominence represent the
distribution and relationship of pixel gray scale in the image. The
four optimal features mentioned above indicated the complexity
and heterogeneity of the positive node in different categories of
textures. It verified that the positive node appeared to be more
heterogeneity in the layout of histologic internal components
than negative node in contrast-enhanced images because of the
infiltration of tumor cells, abnormal angiogenesis, and necrosis.
Surface volume ratio is a morphological parameter that reflects
the shape and roundness of the lesion. Tumor cells proliferated
in the lymph node. The irregular increased cortical thickness and
the absence of the hilum led to the transformation of positive
node from renal to spherical. The surface volume ratio of lymph
node reflects the extent of this transformation. The Radscore of
positive nodes was higher than that of negative nodes in both
two cohorts, which suggested that positive nodes had greater
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heterogeneity, as evidenced by the uneven distribution of gray
scales and unorganized local texture on the MRI scans. The
AUCs of Radscore in training and validation cohorts were 0.86
and 0.81, respectively.

To our knowledge, some studies reported radiomics-related
methods for detecting metastatic lymph node (41, 42). However,
these models were built based on radiomic features of one phase,
which did not include radiomic dynamic features. Up to now,
most of the image registration methods of DCE sequences were
based on pixel gray level, and they were predominantly counted
on the general character of image gray level (43). After contrast
agent injection, the gray scale of the lesion changes dramatically,
which was significantly different from the surrounding tissues,
resulting in a certain extent of distortion in the lesion contour.
The enhanced lesion was different from the actual size and shape.
Some studies had carried out a certain extent of optimization;
however, the precondition of these optimal methods is that
ROI has a clear boundary, and the internal tissue gray scale
is relatively uniform (44). Therefore, image registration has
become the key of dynamic radiomics, which is still controversial
at present.

Radiomic features represented underlying histologic
characteristics that could not be acquired by visual inspection.
Meanwhile, the kinetic curve pattern represented the kinetic
process of contrast-enhancement, which could not be extracted
by radiomic analysis. Owing to the complement of radiomics
and the kinetic curve pattern, the nomogram model represented
more effective and reliable than the radiomic model or the
kinetic curve pattern alone according to the results of the
ROC and calibration analysis. The detection performance of
the nomogram model was validated using an external cohort,
demonstrating a strong confirmation of reproducibility by a
satisfactory AUC of 0.86. Because of the detection of ALNs with
high possibility of metastasis before surgery, the nomogram
incorporates five selected radiomic features, and the kinetic
curve pattern could offer a clinically translatable paradigm easy
to implement in the clinical setting.

Although the two radiologists who worked on radiomic
analysis differed significantly in their years of experience, the
contouring results were relatively consistent (ICC > 0.75). The
advantage of a fully quantitative radiomic assessment method
is that a wealth of experience in imaging diagnosis is not
required. Even a junior physician can accurately delineate
ALNs on contrast-enhanced images and preliminarily detect the
metastatic ALNs.

There were several limitations in current study that still
needs to be further investigated. (1) This was a retrospective
study with a relatively small dataset in both training cohort and
external validation cohort, and further prospective studies are
expected to verify the conclusions. (2) In the process of ALN
segmentation, it was prone to cause inaccurate delineation when
it abuts the blood vessel andmuscle, because of the partial volume
effect. (3) The kinetic curve reflects the focal dynamic contrast-
enhancement characteristic of the lymph nodes. (4) The feature
extraction software made the displacement vectors 1, 4, and 7
to describe the relationship between the gray scale of pixels of

the texture as default setting. In light of different set point that
could possibly influence the quantity and category of radiomic
features extraction, a future radiomic analysis based on various
displacement vectors is required. (5) The reproducibility of
radiomics in MRI scans with different magnetic field intensities
or different brands of MR equipment is expected to be verified in
future studies.

CONCLUSION

Nomogram-integrated radiomic features and the kinetic curve
pattern can be a reliable and effective model for detecting
metastatic ALNs in patients with invasive breast cancer. The
nomogram could serve as a reliable and convenient tool for ALNs
management, suggesting great potential for clinical applications.
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