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Abstract The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the

nuclear envelope. How the NPC assembles into this double membrane boundary has remained

enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell

imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates

were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and

depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence

microscopy revealed the molecular maturation of the intermediates, which initially contained the

nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament

component Nup358. EM particle averaging showed that the evagination base was surrounded by

an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-

shaped density was continuously associated with the deforming membrane. Quantitative structural

analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of

the INM.

DOI: 10.7554/eLife.19071.001

Introduction
The nuclear pore complex (NPC) is the largest non-polymeric protein complex in eukaryotic cells,

embedded in a double membrane called the nuclear envelope (NE), and mediates all macromolecu-

lar transport across the NE. The NPC has an octameric structure and is composed of multiple copies

of over 30 different proteins termed nucleoporins (Nups) (Grossman et al., 2012; Schwartz, 2013;

Strambio-De-Castillia et al., 2010). In metazoan cells NPCs are assembled in two cell-cycle stages,

during nuclear assembly post anaphase and during nuclear growth in interphase. Both assembly

pathways have distinct properties and are usually referred to as postmitotic and interphase NPC

assembly (Schooley et al., 2012; Wandke and Kutay, 2013). In postmitotic assembly, the double

nuclear membrane and the NPC channel assemble concomitantly onto chromatin, and postmitotic

formation of import competent nuclei with sealed nuclear membranes and functional NPCs is com-

pleted very rapidly within 15 min after anaphase onset (Dultz et al., 2008; Haraguchi et al., 2000;

Lu et al., 2011; Otsuka et al., 2014).

By contrast, interphase NPC assembly occurs only after the NE is fully sealed in late anaphase.

This second assembly mechanism proceeds throughout telo- and interphase resulting in a doubling

of the number of NPCs for the next division. In the context of the closed nucleus, NPCs must be

formed by an insertion into the NE that fuses the outer and inner nuclear membranes (ONM and

INM). Interphase assembly is much slower compared to postmitotic assembly and shows differences
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in the molecular requirements and the order of recruited components (D’Angelo et al., 2006;

Dultz and Ellenberg, 2010; Schellhaus et al., 2015). Several molecular requirements for interphase

assembly have been reported in different model systems. Studies using in vitro assembled nuclei

with Xenopus egg extracts have shown the requirement of RanGTP on both sides of the NE

(D’Angelo et al., 2006) and the import of Nup153 to recruit the Nup107-160 complex to the INM

(Vollmer et al., 2015). In mammalian cells, the membrane curvature-sensing domain of Nup133

(Doucet et al., 2010), the INM protein Sun1 (Talamas and Hetzer, 2011), and the targeting of the

transmembrane nucleoporin Pom121 to the INM (Funakoshi et al., 2011) have been reported to be

required. Although some of these studies as well as a study on the evolution of eukaryotic cells

(Baum and Baum, 2014) have suggested that interphase NPC assembly may initiate from the

nuclear side, how and by what membrane deformation and fusion process NPC assembly takes place

has remained enigmatic (Doucet and Hetzer, 2010; Rothballer and Kutay, 2013). Interestingly,

INM deformations have been observed in yeast mutants lacking several nucleoporins, membrane

proteins Apq12 and Brr6, and the AAA-ATPase VPS4 and, while sometimes interpreted as pleiotro-

pic consequences of transport defects, have also been suggested to be involved in nucleoporin qual-

ity control or NPC assembly (Chadrin et al., 2010; Hodge et al., 2010; Makio et al., 2009;

Meszaros et al., 2015; Murphy et al., 1996; Scarcelli et al., 2007; Webster et al., 2014;

Wente and Blobel, 1993). However, it has remained unclear how NPC assembly takes place in wild-

type cells and what the normal assembly intermediates might look like. Pioneering studies that used

in vitro assembled and inhibitor treated nuclei (Goldberg et al., 1997) could unfortunately not

establish the physiological nature of the partial NPC structures since they only examined the cyto-

plasmic side of the NE and were not able to analyze INM deformations.

Despite this significant amount of indirect evidence and several competing hypotheses for inter-

preting it regarding NPC assembly (Rothballer and Kutay, 2013), progress in the field has been

slow largely due to the experimental challenge of capturing the rare and sporadic interphase NPC

eLife digest The nucleus is the compartment within our cells that contains most of our genetic

material. It is separated from the rest of the cell by a boundary called the nuclear envelope, which

consists of two layers of membrane. All transport in and out of the nucleus has to pass through

channels in the envelope, formed by large protein assemblies called the nuclear pore complexes.

Each nuclear pore complex is composed of multiple copies of over 30 different proteins termed

nucleoporins and there are several hundred proteins per pore.

Before a cell divides in two, the nucleus has to grow and new nuclear pore complexes must be

assembled into the double membrane barrier of the nuclear envelope. The assembly process would

require the two nuclear membranes to fuse. However, exactly how nuclear pore complexes are

assembled has been controversially debated for over 15 years, because no one has directly

observed any of the intermediate stages during the assembly process.

Now, Otsuka et al. have captured images of the different steps involved in assembling a nuclear

pore complex in a human cell. This was achieved by observing living human cells in which the

nucleus was growing and then studying them using advanced techniques such as high-resolution

three-dimensional electron tomography and super-resolution microscopy. Otsuka et al. saw dome-

shaped bumps or protrusions in the inner nuclear membrane that grew wider and deeper until they

fused with the flat outer nuclear membrane. A ring of proteins surrounded the base of these

protrusions from the beginning, and the membrane was deformed by a mushroom-shaped

collection of proteins. Analysis of the molecules involved in these stages showed that assembly

intermediates initially contained nucleoporins that face into the nucleus, and only later were

nucleoporins that face into the rest of the cell added to the complex.

The discovery that nuclear pore complexes assemble via an inside-out mechanism in human cells

provides a new conceptual framework to interpret existing genetic and biochemical data. The

findings also provide a new approach to explore the assembly process in much more detail and ask

how nuclear pores first evolved.

DOI: 10.7554/eLife.19071.002
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assembly events and imaging them at single pore resolution in order to reliably distinguish newly-

assembling from already-formed NPCs (D’Angelo et al., 2006; Dultz and Ellenberg, 2010). To

overcome this challenge and study the mechanism of interphase assembly in whole cells more effec-

tively, we focused on the NPC-poor NE islands present in telophase nuclei that are populated with

NPCs during nuclear expansion in the G1 phase of the cell-cycle (Maeshima et al., 2006). These

islands result from the so called ’core regions’ where nuclear membrane sealing is locally delayed in

mitosis due to removal of dense spindle microtubules from the DNA surface (Vietri et al., 2015) and

therefore largely devoid of postmitotic NPC assembly, resulting in a low NPC density in the mem-

brane of the core regions (Dechat et al., 2004; Haraguchi et al., 2000). Core regions therefore pro-

vide an almost ’virgin’ double membrane surface, where de novo interphase NPC assembly is easier

to observe. By systematically recording electron tomograms of core regions at different times of

nuclear growth, using correlation with live imaging to determine the precise cell-cycle stage of each

cell, we were indeed able to reliably capture intermediates of interphase NPC assembly. Three-

dimensional (3D) analysis of temporally ordered intermediates revealed that interphase NPC assem-

bly proceeds by an inside-out INM evagination followed by fusion with the flat ONM. Averaging the

structure of assembly intermediates at the same stage of membrane deformation showed that an

eightfold symmetric nuclear ring underneath the INM already surrounds the base of the earliest

detectable evaginations and that a mushroom-shaped density appears to drive the membrane defor-

mation until fusion with the ONM.

Results and discussion

Correlative electron tomography captures intermediates of interphase
NPC assembly
Deformation and fusion of the nuclear membranes that must be present during interphase NPC

assembly can only be reliably detected by high-resolution 3D electron microscopy (EM). To target

such EM observations, we established an assay that allowed us to estimate the position of the core

region in the NE of telophase and G1 nuclei at any time during nuclear expansion post anaphase. To

this end, we used 3D live confocal time-lapse imaging of the core marker Lap-2a tagged with YFP

(Dechat et al., 2004) together with the chromatin marker histone 2B tagged with mCherry (Fig-

ure 1—figure supplement 1A). 3D reconstruction of the core region surface in late anaphase

allowed us to calculate the core regions at later times in the cell-cycle by modeling it onto the overall

growth of the nuclear surface measured using histone 2B (Figure 1—figure supplement 1B--H).

With this assay in hand, we then systematically imaged live cells after exiting mitosis on EM compati-

ble sapphire disks with carbon coated landmarks (Figure 1A), and natively fixed them by rapid high

pressure freezing at defined times during G1 nuclear expansion. After cryo-substitution, we acquired

high-resolution electron tomograms from sections cut through the core regions. The single cell cor-

relation with live imaging allowed us to precisely determine the stage of nuclear expansion of each

cell sampled by electron tomography and therefore temporally register all our samples (Figure 1A,

Figure 1—figure supplement 2).

In the resulting 158 tomograms, we consistently found approximately 50 nm evaginations of the

INM (Figure 1B, Table 1, and Video 1) filled with electron dense material, that were clearly distinct

from the ~200 nm nuclear egress structures transporting ribonucleoproteins and viruses reported

recently (Mettenleiter et al., 2013; Speese et al., 2012). Immuno-EM showed that the evaginations

were specifically enriched with at least one of the nucleoporins recognized by mAb414 (Nup62,

Nup153, Nup214, and Nup358) (Figure 1C,D, and Figure 1—figure supplement 3A), suggesting

that they are pore assembly intermediates. Similar INM evaginations filled with electron dense mate-

rial were also found in cryo-electron tomograms of vitrified isolated NEs (Figure 1E), ruling out that

they are artifacts of dehydration, heavy metal staining or resin-embedding during cryo-substitution,

and demonstrating that they are stable membrane structures that persist even after in vitro isolation

of the NE (Bui et al., 2013; Ori et al., 2013). Indistinguishable evaginations of the INM were also

observed in U2OS (human bone osteosarcoma epithelial) and NRK (normal rat kidney) cells (Fig-

ure 1—figure supplement 3B), ruling out that their occurrence is cell type, cancer or species

specific.
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Figure 1. Interphase assembly intermediates of nuclear pore complexes (NPCs). (A) Correlative live-cell imaging with electron microscopy (EM). Cell-

cycle progression of HeLa cells was monitored by confocal microscopy and the same cell was subjected to electron tomography. Tomograms were

collected from different regions of the nuclear envelope (NE). Inferred non-core, inner-core and outer-core regions are indicated in light blue, light

green and dark green, respectively. C, cytoplasm; N, nucleoplasm. Scale bar, 1 mm. (B) An electron tomographic slice of the NE. An assembly

intermediate and a mature pore are indicated by a red arrow and a blue arrowhead, respectively. Insets show enlarged images in which membranes are

traced by white dotted lines. ONM, outer nuclear membrane; INM, inner nuclear membrane. Scale bars, 100 nm. (C,D) Immuno-EM with mAb414

antibody and 10 nm-gold particles. (C) The profile of the NE and the positions of gold particles are denoted in the bottom panel. A mature pore and

an intermediate are indicated as in (B). Scale bar, 100 nm. (D) The number of gold particles per assembly intermediate (‘observed’) and the one

calculated assuming a random distribution of the particles (‘if random’). 31 particles were found on 13 intermediates, whereas the random distribution

estimated 1.6 particles to be on 13 intermediates. The p-value (probability that the distribution is due to chance alone) <10–100; a chi-square goodness

of fit test. (E) Cryo-EM tomographic slices of isolated NEs of HeLa cells. A mature pore and an intermediate are indicated as in (B). Other examples of

intermediates are also indicated. Scale bars, 100 nm.

DOI: 10.7554/eLife.19071.003

The following figure supplements are available for figure 1:

Figure supplement 1. Estimation of core regions.

Figure 1 continued on next page
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Assembly intermediates grow inside-out
To test if the evaginations displayed a progression of structural changes consistent with the forma-

tion of mature NPCs, we analyzed their membrane shape in cells captured at different time points

after the completion of postmitotic nuclear assembly. Quantitative analysis of 135 INM evagination

membrane profiles from a time course of cells captured at 19, 28, and 53 min post anaphase

revealed that evaginations progressively grow inside-out (Figure 2). Evagination depth increased

significantly from 16 to 22 nm within 9 min (19 to 28 min post anaphase; Figure 2C) and evagination

diameter continuously and significantly increased from 51 to 58 nm within 34 min (19 to 53 min post

anaphase; Figure 2D). Among the 279 total evaginations we found in 154 mm2 NE surface area

(Table 1), we capture only five ONM/INM fusion events (Figure 2), where the INM evagination had

reached the flat ONM surface. These fusion intermediates had an average evagination depth of 28

nm, similar to the ONM/INM distance and an average diameter of 61 nm, intermediate between late

evaginations and mature nuclear pores (Figure 2C,D), as expected for NPC assembly. The low num-

ber of fusion intermediates indicates that the fusion step must be very short-lived.

Abundance of intermediates matches increase in mature pores during
nuclear growth
If the assembly intermediates we observed mature into fully assembled NPCs, their abundance

should quantitatively explain the increased number of mature pores observed after nuclear expan-

sion. To address this, we quantified the changes in density of intermediates and mature pores over

time in EM tomograms of a time course of 12 cells correlatively fixed from 19 to 120 min post ana-

phase (Figure 3 and Figure 1—figure supplement 2, and Table 1). This data showed that assembly

intermediates are most abundant in core regions during the first hour, when this sealed membrane

area still has a low density of mature pores due to the lack of postmitotic assembly (Figure 3B). By

Figure 1 continued

DOI: 10.7554/eLife.19071.004

Figure supplement 2. Live-cell and EM images of cells analyzed by EM tomography.

DOI: 10.7554/eLife.19071.005

Figure supplement 3. Galleries of interphase NPC assembly intermediates.

DOI: 10.7554/eLife.19071.006

Table 1. Summary of EM tomography. A data table shows the surface area of the NE analyzed by EM tomography and the number of

mature pores, assembly intermediates, and the outer and inner nuclear membrane (ONM and INM) fusion events found in each cell at

a different time point after anaphase onset. The data obtained in non-core, inner- and outer-core regions are indicated separately. In

total, 154 mm2 NE surface area was analyzed, and 279 intermediates and 1322 mature pores were found.

Time after anaphase onset (min) 19.2 24.4 28.4 36.3 42.0 53.2 61.0 65.6 73.6 82.9 100 116 >180 >180

Non-core Analyzed surface area (mm2) 5.29 4.04 5.06 3.99 5.17 5.54 4.04 3.72 3.06 3.73 3.32 3.17 4.03 2.80

Number of mature pores 82 45 48 42 62 51 53 33 33 39 33 31 45 31

Number of intermediates 2 4 6 3 5 8 3 3 2 1 5 5 4 1

Number of ONM/INM fusion

Inner-core Analyzed surface area (mm2) 5.77 5.06 4.16 4.74 6.75 4.33 3.61 4.57 4.07 3.53 4.61 3.46

Number of mature pores 24 16 3 18 30 16 34 27 27 39 53 32

Number of intermediates 21 13 12 8 35 12 1 3 4 3 2 3

Number of ONM/INM fusion 2 1

Outer-core Analyzed surface area (mm2) 4.22 4.15 3.83 2.55 4.78 4.41 3.59 3.68 2.71 2.67 2.77 2.68

Number of mature pores 29 40 27 17 44 35 38 28 30 34 25 28

Number of intermediates 23 10 19 9 13 11 1 4 1 3 5 1

Number of ONM/INM fusion 2

DOI: 10.7554/eLife.19071.007
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contrast and as expected, non-core regions

already exhibited a high density of mature pores

that arose from postmitotic NPC assembly

(Figure 3B). Later than one hour post anaphase,

the ratio of assembly intermediates to mature

pores in the core regions had equilibrated to a

similar level as found in non-core regions or fully

grown nuclei (Figure 3A,B), indicating that a

period of frequent interphase pore assembly

events during the first hour of G1 nuclear expan-

sion populates the core regions of the NE with

NPCs until the steady state interphase density is

reached.

To test if the high abundance of assembly

intermediates in core regions quantitatively

explains the number of mature pores found in

the same region at later times, we formulated a

simple mathematical model for nuclear pore assembly. In this model, assembly intermediates are

produced, enter a maturation phase, become mature pores after a typical maturation time, and are

ultimately degraded (Figure 3—figure supplement 1A and Materials and methods). NPC produc-

tion and degradation rates were estimated from the measured steady state density of 11 NPCs/mm2

(Figure 3B) and a reported NPC lifetime of ~40 hr in cells with a similar cell-cycle duration

(Rabut et al., 2004; Schwanhausser et al., 2011) and are in line with the rare and rapid pore disas-

sembly events that have been observed in mammalian cells (Dultz and Ellenberg, 2010). We mod-

eled different scenarios for the appearance of intermediates (Figure 3—figure supplement 1B,C).

Provided that intermediates start to be initiated shortly after anaphase onset the model fits the

experimental data of the core regions from 19--120 min post anaphase well (Figure 3C,D, and Fig-

ure 3—figure supplement 1D,E, Variant 2, 3), confirming that the abundance of assembly inter-

mediates we observed at the beginning of nuclear growth quantitatively explains the number of

mature NPCs observed one hour later. For the best model, where the majority of intermediates are

initiated 10 starting minutes after anaphase onset (Figure 3—figure supplement 1B,C, Variant 3)

we can estimate the typical maturation time for interphase assembly to be 44 min (95% confidence

interval [41--50]). Similar average maturation time was obtained for alternative models where matura-

tion steps are explicitly included (Figure 3—figure supplement 1F,G) or where the maturation time

has a broader distribution (Figure 3—figure supplement 1H,I), demonstrating the robustness of our

results. The obtained maturation time is in good agreement with previous reports based on fluores-

cence microscopy (~25 min, D’Angelo et al., 2006; ~60 min, Dultz and Ellenberg, 2010).

Abundance of inside-out evaginations accounts for NPC formation
throughout interphase
It is important to note that inside-out evaginations were present at lower density in non-core regions

(Figure 3B ’Non-core’) and that we found no significant difference in the increase in depth or diame-

ter of evaginations between non-core and core regions during G1 expansion (Figure 2E,F). This

rules out that inside-out assembly intermediates are specific to the core regions, or that core regions

are delayed in their maturation. In addition, identical evaginating structures were also found at low

density in fully grown nuclei sampled at later cell-cycle stages (Figure 3B ’Mature NE’) indicating

that the inside-out assembly mechanism is not specific to G1 but occurs throughout interphase.

Assuming the maturation time of 44 min, our model shows that the steady state abundance of

assembly intermediates we observed in non-core regions and interphase nuclei would be sufficient

to maintain the constant NPC density during nuclear growth in interphase that we observed

(Figure 3B “model”, and Figure 3—figure supplement 1, 2) consistent with previous reports

(Dultz and Ellenberg, 2010; Maeshima et al., 2010). Taken together these results suggest that the

assembly intermediates are present across the NE surface, and that the kinetics of NPC assembly

are similar across the nuclear surface and throughout interphase. Most importantly, the abundance

of intermediates can quantitatively explain both the increase in mature NPCs in the core regions

Video 1. EM tomographic slices of the nuclear

envelope of a cell at 53 min post anaphase. One of the

mature pores and an assembly intermediate are

indicated by blue and red arrows, respectively. Scale

bar, 100 nm.

DOI: 10.7554/eLife.19071.008
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Figure 2. Quantitative structural comparison of assembly intermediates. (A) Electron tomographic slices of assembly intermediates in cells captured at

53, 28, and 19 min after anaphase onset (AO) and ONM/INM fusion events. Profiles of ONM (gray) and INM (blue) in black and white boxes on EM

images are depicted in the right panels. For the fusion, ONM is also depicted in blue. The image marked with a white asterisk was acquired on a

differently embedded sample for enhancing membrane contrast (see Materials and methods). Scale bar, 100 nm. (B) Membrane profiles of all the fusion

events and intermediates at selected time points (53, 28, and 19 min). The bold lines indicate the averaged profiles. (C–F) Quantification of the

evagination depth of INM (C,E) and the diameter of intermediates (D,F) as indicated by red bidirectional arrows in the left panels. (C,D) The plots are

from 47, 44, and 39 intermediates at 19, 28, and 53 min, respectively, 5 ONM/INM fusions, and 45 mature pores. The ONM/INM distance was

quantified near mature pores (C). The median is depicted as a horizontal line and the whiskers show the 25th and 75th percentiles. *p<0.02, **p<0.001;

unpaired t-tests. (E,F) The depth and the diameter of intermediates in non-core, inner-core, and outer-core regions were indicated in light blue, light

green and dark green, respectively. The median is depicted as a horizontal line. No statistical difference of the intermediate shape was observed

between different regions of the NE at each time point (p>0.1; unpaired t-tests).

DOI: 10.7554/eLife.19071.009

The following source data is available for figure 2:

Source data 1. Depth and diameter values used for Figure 2C–F.

DOI: 10.7554/eLife.19071.010
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during the rapid nuclear expansion in G1 as well as the homeostatic NPC assembly during nuclear

growth later during interphase.

Live imaging of the core region reveals progressive maturation of
intermediates
The high abundance of intermediates in the core region during the first hour of G1 (Figure 3C,D)

and their progressive increase in depth and diameter during this time (Figure 2) indicates that the

assembly process is relatively synchronous while the NPC-poor core region is populated to the same

Figure 3. Abundance of mature pores and assembly intermediates at different cell-cycle stages. (A) Measurement of nuclear pore density. Gray sheets

are the NEs segmented from EM tomograms. Blue and red dots indicate the positions of mature pores and intermediates, respectively. Inner-core

regions of cells at 19 and 100 min post anaphase are shown as examples. (B) Density of mature pores (dark blue) and intermediates (red) in non-core

and core (inner- plus outer-core) regions of cells at different times. Error bars represent the s.d. from 6, 6, and 2 cells at <1, 1–2, and >3 hr post

anaphase, respectively. **p<0.001; unpaired t-tests of the density difference of mature pores (blue) and intermediates (red) between core regions at <1

hr and the others. The modeled density of mature pores (light blue) and intermediates (light red) at >3 hr is also indicated (see Figure 3—figure

supplement 1 and Materials and methods for details). (C,D) Density of mature pores and intermediates in inner- (C) and outer-core (D) regions of cells

at different time points. 3–7 tomograms were obtained in each region at each time point (data are summarized in Table 1). Dashed lines indicate the

modeled density of mature pores and intermediates.

DOI: 10.7554/eLife.19071.011

The following source data and figure supplements are available for figure 3:

Source data 1. Density values used for Figure 3B–D.

DOI: 10.7554/eLife.19071.012

Figure supplement 2—Source data 1. Surface area values used for Figure 3— figure supplement 2C.

DOI: 10.7554/eLife.19071.013

Figure supplement 1. Modeling the density of nuclear pores.

DOI: 10.7554/eLife.19071.014

Figure supplement 2. Nuclear surface area measurement for the modeling.

DOI: 10.7554/eLife.19071.015
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density as the rest of the nuclear surface (Figure 3B). We should therefore be able to observe the

maturation of assembly intermediates directly, by imaging nucleoporin accumulation in the NPC-

poor core region in real time. To test this, we performed fast 3D live confocal time-lapse imaging

and monitored the concentration of GFP-tagged nucleoporins in the core region during the first

hour of G1, the same time window we observed by correlative EM (Figure 4A). Since the intermedi-

ates in inner- and outer-core regions grow in a similar manner (Figure 2E,F) and show similar abun-

dance (Figure 3C,D), we measured only the inner-core region where the proportion of

intermediates to mature pores is much higher than in the outer-core region.

Since our EM analysis suggested an inside-out mechanism, we selected the nuclear and cyto-

plasmic ring component Nup107 (Belgareh et al., 2001) and the cytoplasmic filament component

Nup358 (Wu et al., 1995; Yokoyama et al., 1995) as candidate nucleoporins for genomic GFP-tag-

ging (Figure 4—figure supplement 1) and live imaging. As predicted, the accumulation kinetics dif-

fered substantially between core and non-core regions of the NE for both proteins (Figure 4B,C).

Since the non-core regions and inner-core regions contained 8% and 50% assembly intermediates in

early G1 respectively (Figure 3B,C), we used them to determine the postmitotic and interphase rates

of accumulation that explain the different accumulation kinetics of the core region for both Nups

resulting from the combined rates (Figure 4B,C, and Materials and methods). Kinetic comparison of

interphase accumulation of both Nups in the core region clearly revealed that Nup107, a component

of the nuclear and cytoplasmic ring, is recruited very early (t1/2 = 15 min, see Materials and methods

for details), while Nup358, a component of the cytoplasmic filaments, is recruited only after a signifi-

cant lag phase (t1/2 = 51 min) (Figure 4D). The kinetically distinct and continuously increasing accu-

mulation of two components of the NPC in the core region strongly support a maturation process of

assembly intermediates into full pores. In addition, the late recruitment of the cytoplasmic Nup358 is

consistent with an inside-out assembly mechanism on the molecular level.

Single pore assembly intermediates contain Nup107 but not Nup358
The kinetic analysis of bulk Nup accumulation across the inner-core region predicts that single NPC

intermediates in early G1 cells should contain Nup107 but not Nup358. To resolve single intermedi-

ates with bi-molecular labeling, we used live imaging to stage cells in G1 and then correlatively per-

formed two-color super-resolution imaging using stimulated emission depletion (STED) microscopy

with specific antibodies to detect Nup107 and Nup358 (Materials and methods). This analysis indeed

revealed many pore-sized discrete localizations of Nup107 in optical sections of the inner-core

region NE in early G1 cells, which did not have significant Nup358 labeling (Figure 5A,B ’24 min,

inner-core’), while non-core regions in the same nucleus contained only double labeled localizations

with Nup358 appearing on top of the Nup107 labeling on the outside of the NE (Figure 5A,B

’24 min, non-core’), indicative of mature pores. After G1 expansion, also the inner-core region had

almost only double-labeled structures (Figure 5A,B ’108 min’), consistent with the maturation of

intermediates into mature pores. Quantification of the signal in segments along the NE profile

allowed us to estimate the frequency of intermediates by the ratio of Nup107/Nup358 (Figure 5C),

showing that they are specific to the core region and occur only transiently during the first hour of

G1. These results are fully consistent with the EM observations that interphase NPC assembly inter-

mediates populate the core region of NEs with an abundance that matches the number of mature

pores found in this region an hour later after nuclear expansion (Figure 3A,B), and suggest that

cytoplasmic nucleoporins such as Nup358 are only recruited at the end of the maturation process,

presumably after the growing INM evagination has fused with the ONM.

INM evaginations are surrounded by an 8-fold rotationally symmetric
nuclear ring and filled with a mushroom-shaped cap
Nup107 is a component of the eight-fold rotationally symmetric cytoplasmic and nuclear rings of the

NPC. Its early presence in assembly intermediates and their inside-out nature suggested that the

nucleoplasmic ring might be one of the first structural elements to form during NPC assembly. To

test this, we performed particle averaging of the electron densities of single INM evaginations iso-

lated from tomograms, staged by time during G1 and picked by similarity of their membrane profile

depth and diameter. Averaging of 11–36 intermediates revealed a ring structure composed of eight

regularly spaced subunits underneath the INM (Figure 6B and Figure 6—figure supplement 1),
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Figure 4. Live imaging of nuclear pore assembly in core regions. (A) Time-lapse three-dimensional (3D) imaging of GFP-Nup107 and GFP-Nup358

genome-edited cells. DNA was stained with silicon–rhodamine (SiR) Hoechst (Lukinavicius et al., 2015). Single confocal sections of SiR and GFP

channels are shown in the top and bottom panels, respectively. Segmented chromosomes (light blue) and inferred inner-core regions (green) are shown

in the middle panels. Time after anaphase onset is indicated. Scale bars, 20 mm. (B,C) Quantification of Nup107 (left) and Nup358 (right) assembly in

Figure 4 continued on next page
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which was strikingly similar to the nuclear ring of the mature NPC (compare top views (ii) of the

mature pore and intermediates in Figure 6B) (Bui et al., 2013; Maimon et al., 2012). These eight-

fold symmetric rings were already present in the shallowest evaginations we could detect during

early G1 and could also be seen in individual tomograms (Figure 6A,B, and Figure 6—figure sup-

plement 1). Interestingly, side views of the averaged particles revealed a progressive growth also of

the mushroom-shaped protein density, whose cap closely matched the growing membrane evagina-

tion in depth and diameter and whose stalk was located centrally inside the nuclear ring and grew in

length as the cap moved towards the outer membrane (Figure 6B). The structure revealed by

Figure 4 continued

inner-core (B) and non-core (C) regions. The population of postmitotic and interphase NPC assembly measured in Figure 3A--C is indicated in the left

panels. Total intensities of Nup107 (left) and Nup358 (right) were quantified, normalized, and fitted with a sequential model of NPC assembly that

allows for different rate constants for postmitotic and interphase assembly, respectively (Equations 16--18 in Materials and methods). Dots and shaded

areas represent the average and s.d. of measurements from 30 cells for Nup107 and 25 cells for Nup358, respectively. Black dashed and solid lines

indicate the postmitotic and interphase assembly kinetics and gray solid lines show the combined kinetics. (D) Normalized densities of interphase

Nup107 (brown) and Nup358 (orange) assembly. The density was measured by dividing the intensity obtained in (B) by the nuclear surface area.

DOI: 10.7554/eLife.19071.016

The following source data and figure supplement are available for figure 4:

Source data 1. Intensity values used for Figure 4B,C.

DOI: 10.7554/eLife.19071.017

Figure supplement 1. Characterization of genome-edited cell lines expressing GFP-Nup107 and GFP-Nup358.

DOI: 10.7554/eLife.19071.018

Figure 5. Stimulated emission depletion (STED) imaging of assembly intermediates. GFP-Nup107 genome-edited cells were stained with anti-GFP and

anti-Nup358 antibodies. (A) STED images of cells at 24 and 108 min after anaphase onset. Scale bar, 10 mm. (B) Flattened and enlarged images of the

inferred non-core and inner-core regions indicated by white lines and arrows in (A). The intensity ratios of Nup107 to Nup358 were quantified in every

300 nm segments along the NE and are shown in cyan-black-pink heat maps in the bottom panels. Scale bars, 1 mm. (C) The frequency of the segments

with the Nup107/Nup358 ratio of >2.0 in non-core and inner-core regions at different times. The data are from 14 cells at <1 hr, 6 cells at 1–2 hr, and 4

cells at >3 hr after anaphase onset. Error bars represent the s.d.. **p<0.001; unpaired t-tests of the frequency difference between the inner-core region

at < 1 hr and the others.

DOI: 10.7554/eLife.19071.019

The following source data is available for figure 5:

Source data 1. Frequency values used for Figure 5C.

DOI: 10.7554/eLife.19071.020
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particle averaging of assembly intermediates is thus consistent with the observation that Nup107 (a

component of the nuclear ring) assembles at an early stage and reveals a very interesting mushroom

shaped density that might be the driving force of the membrane evagination.

Taken together, we can conclude that the observed INM evaginations represent partially assem-

bled NPCs, which contain minimally the nuclear ring with Nup107 and at least one of the central or

nuclear O-glycosylated FG-repeat nucleoporins labeled by mAb414, Nup62 and/or Nup153, do not

contain Nup358, and are unlikely to contain the cytoplasmic filament base protein Nup214 due to

their inside out nature and the lack of Nup358.

Inside-out model of interphase NPC assembly
Our quantitative structural analysis of the membrane profiles and protein densities of a temporally

ordered series of NPC assembly intermediates allowed us to reveal a novel mechanism for NPC bio-

genesis in intact nuclei of interphase cells by an inside-out extrusion of the NE (Figure 6C). The first

clearly detectable NPC intermediate is a shallow INM evagination surrounded at its base by an 8-

fold rotationally symmetric nuclear ring complex, in whose center a dome-shaped density with a

short stalk is embedded into the INM evagination. Subsequently, this shallow dome matures into a

Figure 6. 3D structural comparison of assembly intermediates. (A,B) Electron tomographic slices of single (A) and averaged (B) mature pores and

intermediates at selected time points (53, 28, and 19 min). The averaged images are from 36 mature pores and 14, 11, and 24 intermediates picked by

similarity of their membrane profile depth and diameter at 53, 28, and 19 min, respectively. Red arrowheads i and ii on side-view images indicate the

locations of the planes which are inclined at 90˚ in top views i and ii. The 8-fold symmetric rings observed in top views i and ii of the averaged mature

pore are the spoke ring and the nuclear ring complexes, respectively (Bui et al., 2013; Maimon et al., 2012). Scale bars, 100 nm. (C) A schematic

model of interphase nuclear pore assembly. The assembly intermediate is comprised of the nuclear ring and the central mushroom-shaped density. The

assembly of the mushroom drives the INM deformation and it grows progressively inside-out. Once the ONM and INM fuse, it undergoes rapid and

drastic structural rearrangements and finally becomes a mature pore.

DOI: 10.7554/eLife.19071.021

The following figure supplement is available for figure 6:

Figure supplement 1. Stability of the subtomogram averaging.

DOI: 10.7554/eLife.19071.022
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curved mushroom cap, always in direct contact with the growing evagination of the INM and sup-

ported by an elongating stalk on the nucleoplasmic side located in the center of the nuclear ring.

We speculate that the mushroom-shaped density may use the membrane-attached nuclear ring to

determine the site of NPC formation. It is further tempting to speculate that the mushroom-shaped

density, potentially through connections to the nuclear ring, might generate the mechanical force

needed for INM deformation and eventual fusion with the ONM. Interestingly, the mushroom-

shaped structure is clearly distinct from the scaffold architecture of the mature NPC, indicating that

interphase assembly cannot be explained by a simple collection of NPC subcomplexes over time but

likely involves major structural rearrangements. Given that it had so far been unclear how interphase

NPC assembly occurs, this inside-out extrusion mechanism, demonstrated in situ in human cells, pro-

vides a new framework to interpret existing genetic (yeast) and biochemical (Xenopus) data and to

investigate the detailed molecular mechanism regulating the assembly process in the future.

Materials and methods

Cell culture
Wildtype HeLa kyoto cell line was from Prof. Narumiya in Kyoto University (RRID: CVCL_1922), and

the genome was sequenced previously (Landry et al., 2013). Wildtype NRK (RRID:CVCL_3758) and

U2OS (RRID:CVCL_0042) cell lines were purchased from ATCC (Wesel, Germany). HeLa and NRK

cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma Aldrich, St. Louis, MO)

supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, 1 mM sodium pyruvate, and 100

mg/ml penicillin and streptomycin. U2OS cells were grown in McCoy’s 5A Medium (Sigma Aldrich)

supplemented with 10% fetal calf serum (FCS), 1X non-essential amino acids solution (Gibco, Wal-

tham, MA), 5 mM glutamine, 1 mM sodium pyruvate, and 100 mg/ml penicillin and streptomycin. A

plasmid carrying Lap-2a fused with YFP (Dechat et al., 2004) was introduced into HeLa cells with

the transfection reagent, Fugene6 (Promega, Madison, WI), according to the manufacturer’s proto-

col. A HeLa cell line stably expressing histone H2b-mCherry (Neumann et al., 2010) was maintained

at 500 ng/ml puromycin (Invitrogen, Carlsbad, CA). The mycoplasma contamination was tested by

PCR every 2 or 3 months and was always negative. Cells were cultured on 2-well Lab-Tek Cham-

bered Coverglass (Thermo Fisher Scientific, Waltham, MA) for live-cell imaging. For correlative light–

electron microscopy, cells were grown on sapphire disks (0.05 mm thick, 3 mm diameter; Wohlwend

GmbH, Sennwald, Switzerland), which had been carbon-coated in order to relocate cells on electron

microscopy (EM) grids, and synchronized by double thymidine arrest (Harper, 2005).

Live-cell imaging
At least 30 min before imaging, the medium was replaced by imaging medium (IM; CO2-indepen-

dent medium without phenol red (Invitrogen) containing 20% FCS, 2 mM l-glutamine, and 100 mg/

ml penicillin and streptomycin). Imaging was performed at 37˚C in a microscope-body-enclosing

incubator. Cells on carbon-coated sapphire disks were observed by confocal microscopy

(LSM510Meta or LSM780; Carl Zeiss, Oberkochen, Germany) using 10 � 0.3 NA Plan-Neofluar or 20

� 0.8 NA Plan-Apochromat objective (Carl Zeiss). The cell division process was monitored every 24 s

by time-lapse imaging. For three-dimensional (3D) time-lapse imaging, cells were observed by con-

focal microscopy (LSM780) using 63 � 1.4 NA Plan-Apochromat objective (Carl Zeiss). For Figure 1—

figure supplement 1, fluorescent chromatin and Lap-2a were recorded under the following condi-

tions: 25 optical sections, section thickness of 2.0 mm, z-stacks of every 1.0 mm, the xy resolution of

0.13 mm, and a time-lapse interval of 30 s. For Figure 3—figure supplement 2, fluorescent chroma-

tin was monitored under the following conditions: 40 optical sections, section thickness of 1.4 mm,

z-stacks of every 0.7 mm, the xy resolution of 0.13 mm, and a time-lapse interval of 10 min. For Fig-

ure 4, DNA was stained with 0.2 mM silicon–rhodamine Hoechst (Lukinavicius et al., 2015), and the

nucleus and nucleoporins were monitored under the following conditions: 25 optical sections, sec-

tion thickness of 2.5 mm, z-stacks of every 1.25 mm, the xy resolution of 0.25 mm, and a time-lapse

interval of 1 min. Fluorescence images were filtered with a median filter (kernel size: 0.25 � 0.25 mm)

for presentation purposes.
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Segmentation of the nucleus and core regions
A 3D computational pipeline was developed in MATLAB (The MathWorks Inc., Natick, MA) that seg-

ments chromosomes and core regions from H2B-mCherry and Lap-2a-YFP channels, respectively

and extracts different parameters. Original stacks were interpolated along z axis to obtain isotropic

resolution and facilitate true 3D image analysis. A 3D Gaussian filter was applied to reduce the

effects of high frequency noise. To detect chromosome regions, H2B-mCherry and SiR-Hoechst

channels were binarized first using a multi-level thresholding method as described in Heriche et al.

(2014). Then, chromosome region of interest typically in metaphase in the first time point of the

sequence was detected by analyzing the volume and location information of the connected compo-

nents in the binary image. The detected chromosome was then tracked over the subsequent time

points of the sequence and both of the daughter chromosomes were tracked after the division. The

surface area of the chromosome was computed applying the method described in Legland et al.

(2007). For Lap-2a-YFP channel, a reference threshold was estimated by analyzing the intensity over

time. This reference threshold was then adapted with a second threshold obtained from individual

time points in order to segment the protein. The portion of the nuclear surface where Lap-2a local-

izes was marked to estimate the surface area of the core regions. Inner- and outer-core regions

within nuclei were determined by dividing each nucleus with a cutting plane. The cutting plane was

constructed from two vectors where the first one was directed towards the maximum elongation of

nucleus and the second one was orthogonal to the first vector and was directed towards the upward

z direction. These axes were determined by Eigen vector analysis on the pixel coordinates of the

detected nucleus. For the measurement of the Nup intensity on the NE, segmented nuclear volume

was dilated and eroded in 3D to define a nuclear membrane rim with 0.75 mm width. The areas of

inner- and non-core regions were adjusted in individual time points based on the total surface area

of the nuclei. Visualization of the chromosome surface in 3D was done in the Amira software pack-

age (Pruggnaller et al., 2008).

Sample preparation for electron microscopy
Cells at different cell-cycle stages were instantly frozen using a high-pressure freezing machine (HPM

010; ABRA Fluid AG, Widnau, Switzerland). Just before freezing, cells were immersed in IM contain-

ing 20% Ficoll (PM400; Sigma Aldrich) for protecting cells from freezing damage. Freeze substitution

into Lowicryl HM20 resin (Polysciences Inc., Warrington, PA) was performed as described in a previ-

ous report (Kukulski et al., 2011), with the following modifications: Frozen cells were incubated with

0.1% uranyl acetate (UA) in acetone at -90˚C for 20–24 hr and, after infiltration into Lowicryl resin

and UV-polymerization, samples were further polymerized by sunlight for 3–4 days. The cells were

also embedded in EPON resin (Serva, Heidelberg, Germany) for enhancing membrane contrast as

follows: Frozen cells were incubated with 1.0% osmium tetroxide (OsO4), 0.1% UA, and 5% water in

acetone at �90˚C for 20–24 hr. The temperature was raised to �30˚C (5˚C/hour), kept at �30˚C for

3 hr, and raised to 0˚C (5˚C/hr). Samples were then washed with acetone, infiltrated with increasing

concentrations of EPON in acetone (25, 50 and 75%), embedded in 100% EPON and polymerized at

60˚C for 2 days. Sections of 300 nm and 50 nm thickness were cut with a microtome (Ultracut UCT;

Leica, Wetzlar, Germany) and collected on copper–palladium slot grids (Science Services, München,

Germany) coated with 1% Formvar (Plano, Wetzlar, Germany).

Electron tomography
As fiducial markers, 15 nm of gold-conjugated Protein A (CMC university Medical Center Utrecht,

Utrecht, Netherlands) was absorbed on both sides of 300 nm sections. Sections were post-stained

with 2% UA and lead citrate. Single or dual axis tilt series were acquired with a TECNAI TF30 trans-

mission EM (TEM; 300 kV; FEI, Hillsboro, OR) equipped with a 2k x 2k Eagle camera (FEI) by using

the Serial EM software (Mastronarde, 2005). The samples were pre-irradiated by an electron beam

to minimize sample shrinkage during tilt series acquisition. Images were recorded over a �60˚ to 60˚
tilt range with an angular increment 1˚ at a pixel size of typically 0.75 nm or 1.0 nm. Tomograms

were reconstructed using R-weighted backprojection method implemented in the IMOD software

package (version 4.5.6) (Kremer et al., 1996). Dual axis tilt series were aligned using gold fiducial

markers while single axis tilt series were aligned by patch tracking. It should be noted that tomo-

graphic resolution permits great advantages over classical approaches in which the thickness of a
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section is in the range of the diameter of a nuclear pore and it is thus not clear which parts of it are

within the section and into which exact direction they are projected into in the electron micrograph.

In contrast, 3D data permit a much more accurate mapping of orientation, membrane topology and

substructures for each individual NPC, which is essential to study rare intermediates.

Immuno-electron microscopy
Grids carrying 50 nm sections were pretreated with 0.1% Trition X-100 (Sigma Aldrich) in phosphate-

buffered saline (PBS) for 10 min and blocked with 1% BSA and 0.1% fish skin gelatin (Sigma Aldrich)

in PBS for 1 hr. Sections were then incubated with a primary antibody mAb414 (Covance, Princeton,

NJ; RRID:AB_10063490), which recognizes four nucleoporins (Nups 358, 214, 153, and 62), for 2 hr,

a rabbit anti-mouse secondary antibody (Cat. No. Z0259; Dako, Hamburg, Germany; RRID:AB_

2532147) for 1 hr, and 10 nm of gold-conjugated Protein A (CMC university Medical Center Utrecht)

for 30 min. The antibodies and Protein A beads were diluted in PBS with 0.2% BSA and the sections

were washed for five times with PBS containing 0.2% BSA between steps. After multiple washes with

PBS, sections were fixed in 2.5% glutaraldehyde in PBS for 20 min in order to immobilize the anti-

bodies and Protein A-gold beads on sections. After washing with water, sections were post-stained

with 2% UA and lead citrate for contrast enhancement. All steps were carried out at room tempera-

ture. Images were taken on a TEM (CM 120 Biotwin; Phillips, Hillsboro, OR). For specificity analysis

of immuno-EM labeling, the number of gold particles on assembly intermediates and ones nonspe-

cifically attached within 50 nm under the inner nuclear membrane was counted.

Cryo-electron tomography of isolated nuclear envelope
The nuclear envelope of HeLa cells was isolated and cryo-fixed as described previously (Bui et al.,

2013; Ori et al., 2013). Tilt series of cryo-EM images were acquired using a Titan Krios TEM (FEI) at

a pixel size of 0.34 or 0.43 nm and tomograms were reconstructed using the IMOD software pack-

age as described in (Bui et al., 2013).

Membrane profile analysis and measurement of nuclear pore diameter
The outlines of outer and inner nuclear membrane (ONM and INM) were manually marked by click-

ing points within the tomographic volume in the IMOD software package. The sets of clicked points

were aligned to share an x-axis corresponding to INM and interpolated using a spline fit, and the

resulting coordinates were fitted locally using a second degree polynomial fit as described in

Kukulski et al. (2012). The maximum depth of the INM evagination was determined from these

two-dimensional profiles. For the ONM/INM distance, the median of the distance at 50 points

between 45 and 90 nm away from mature pores was measured. The alignment, the interpolation,

and the extraction of the parameter were done in MATLAB 7.4. The maximum diameter of assembly

intermediates and mature pores was measured manually from the top view images as illustrated in

Figure 2D. The mature pores used for the measurement were the ones found in cells at >3 hr post

anaphase. Unpaired t-tests with the assumption of equal variances were performed to compare two

groups.

Measurement of nuclear pore density
The number of mature pores and intermediates was counted manually in the tomograms. The

nuclear surface area was measured in each tomogram by manually tracing the NE using the IMOD

software package. The shrinkage of the specimen was corrected by comparing the diameter of

mature pores in EM tomograms of plastic resin with the one in cryo-EM tomograms. The shrinkage

was 22 ± 2.7% (the average and standard deviation, N = 13 sections) and 15 ± 2.8% (N = 11 sec-

tions) in Lowicryl and EPON resin, respectively. Since non-core and core regions are hard to distin-

guish in the matured NE after late G1, the pore density in cells >3 hr post anaphase was measured

in any regions of the NE. Kinetic modeling of nuclear pore density is described in Materials and

methods.

Kinetic modeling of nuclear pore densities
We modeled pore maturation using delay equations (Figure 3—figure supplement 1A). Assembly

intermediates are generated with a rate V(t) and enter maturation with a rate constant kM . After a
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time interval KM an intermediate becomes fully matured to a NPC. We denote by tS the time

required post anaphase to seal the NE and end the postmitotic assembly of the NPC. The simulation

time t is related to the time after anaphase onset tAO by t ¼ tAO � tS. For the data shown in

Figure 3C,D we took tS = 10 min by assuming a start of interphase assembly to be 10 min after ana-

phase onset when the NE is sealed (Dultz et al., 2008; Otsuka et al., 2014). We simulated the pro-

cess for tS ¼ 0--15 min, and found that tS þ tM differed by less than 1%. The number of

intermediates I and mature pores M is given by

dI tð Þ

dt
¼ V tð Þ� kMI tð Þ (1)

dM tð Þ

dt
¼ kMI t� tMð Þ� kdM tð Þ; (2)

where kd is the degradation rate constant of mature pores. Consequently the number of intermedi-

ates in the process of maturation Im is given by

dIm tð Þ

dt
¼ kMI tð Þ� kMI t� tMð Þ: (3)

The total number of intermediates IT is the quantity we can measure which is given by

IT tð Þ ¼ I tð Þþ Im tð Þ: (4)

Surface densities are computed from iT ¼ IT=A, m¼M=A, where A is the nuclear surface area. The

overall maturation time is defined as

TM ¼
1

kM
þ tM (5)

We assume isotropic expansion of the nucleus where the surface area can be described by

A tAOð Þ ¼ a0 þ a1 1� exp �kg1tAO
� �� �

þ kg2tAO (6)

We obtained a0= 424 mm2 (95% confidence interval (CI) [212--448]), a1 = 161 mm2 (95% CI

[81--185]), kg1 = 0.0722/min (95% CI [0.036--0.093]), kg2 = 0.397/min (95% CI [0.199--0.405]) by fitting

Equation 6 to the data in Figure 3—figure supplement 2. We tested different intermediate produc-

tion variants (Figure 3—figure supplement 1B) as

V tð Þ ¼

vA tð Þ;Variant 1

v1exp �kv t� tSð Þð Þþ v0ð ÞA tð Þ;Variant 2

i tSð ÞA tSð Þd t� tsð Þþ v0A tð Þ;Variant 3:

8

>

<

>

:

(7)

Variant 1 assumes a constant production rate density; Variant 2 assumes a time dependent pro-

duction that decreases with time to a basal rate v0; finally in Variant 3 the majority of pores are initi-

ated at tS. For Variant 3 the initial densities i(tS) and m(tS), are estimated for the inner- and outer-

core regions separately. The value of i(tS) is set to 0 for Variant 2. We take im(tS) = 0. The system of

equations (Equations 1--6) is solved analytically to obtain the densities of intermediates and mature

pores. The production and degradation rates are estimated from this and previous studies. For the

mature pore degradation rate constant we take kd = 0.00042/min, which yields a pore life time of

~40 hr (Rabut et al., 2004; Schwanhausser et al., 2011). For Variant 2 and Variant 3 we take v0 =

0.0015 intermediates/mm2/min. This yields an NPC density in mature NEs (3--20 hr post anaphase) of

11.47 ± 1.33 NPCs/mm2 (0.65 ± 6e-4 intermediates/mm2) for Variant 3 and 12.1 ± 1.2 NPCs/mm2 (0.41

± 1.36e-04 intermediates/mm2) for Variant 2. Here the mean and standard deviation were estimated

from inner-core*0.68 + outer-core*0.32 since the ratio of the surface area between inner- and outer-

core regions is 0.68:0.32. The other model parameters are estimated by minimizing the sum of

squared residuals (MATLAB routine lsqnonlin)

F ¼
1

s2

X

n=2

j¼1

iT tj
� �

�Di tj
� �� �2

þ m tj
� �

�Dm tj
� �� �2

; (8)
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where Di and Dm are the measured densities of intermediate and mature pores (Figure 3C,D), n is

the number of data points, and s
2 = 2.18 pores/mm2 is the mean standard deviation estimated from

all measurements. For Variant 1 we obtained kM = 7.13/min (95% CI [0.0379--7.5730]), tM =

18.23 min (95% CI [0.725*--27.59]) and TM = 18.37 min (95% CI [16.12--27.69]), for Variant 2 kM =

0.0996/min (95% CI [0.0274--2.06]), tM = 17.75 min (95% CI [0.725*--44.59]) and TM = 27.78 min

(95% CI [18.26--44.72]), for Variant 3 kM = 1.357/min (95% CI [0.0408--20*]), tM = 43.03 min (95% CI

[18.78--49.86]) and TM = 43.76 (95% CI [41.32--50]). For Variant 2 and 3 the model fit does not

change for very low values tM or high values of kM , respectively. The asterisk indicates that the 95%

boundary of the distribution has not yet been reached at the given value. The profile-likelihood

method (Venzon and Moolgavkar, 1988) has been used to estimate the 95% confidence. In this

method the log-increase ’ parð Þ ¼ n log
F parð Þ

n

� �

� log
F parminð Þ

n

� �h i

of the mean squared distance F with

respect to the best fit parmin was computed by varying the parameter of interest and optimizing the

other parameters to the n data points. For j’ parð Þj<�2

1;0:95 = 3.84 the parameter is within its 95% CI.

For TM (Equation 5) the confidence interval is computed from the values of kM and tM . The quality

of the fits (lower sum of squared residuals, Figure 3—figure supplement 1C) was slightly better for

Variant 3. Furthermore the obtained maturation time was more in agreement with previous reported

values (Dultz and Ellenberg, 2010). We thus investigate alternatives to the maturation mechanism

using Variant 3 only.

The model with a multi-step maturation process (Figure 3—figure supplement 1F) reads

dI1

dt
¼ V tð Þ� kM1I1 (9)

dIj

dt
¼ kM j�1ð ÞIj�1� kMjIj; for j¼ 2; :::;N� 1 (10)

dM

dt
¼ kM N�1ð ÞIN�1 � kdM: (11)

The sum of all intermediates
P

N�1

j¼1

Ij=Aand M/A are fitted to the intermediate and mature pore den-

sities, respectively. We modeled Variant 3 for the pore initiation. We found that there was no signifi-

cant difference in the quality of the fits when assuming equal transition rate constants. Consequently

the simulations shown are for kMj ¼ kM . The maturation time defined as the characteristic time of

mature pore appearance reads

TM ¼
X

N�1

j¼1

1

kMj

¼
N� 1ð Þ

kM
: (12)

We simulate different maturation times by allowing a maturation time distribution P tð Þ, with finite

positive support as

dI tð Þ

dt
¼ V tð Þ� kMI tð Þ (13)

dIm tð Þ

dt
¼ kMI tð Þ� kM

Z

¥

0

P tð ÞI t� tð Þdt(14)

dM tð Þ

dt
¼ kM

Z

¥

0

P tð ÞI t� tð Þdt� kdM tð Þ:(15)

The example shown in Figure 3—figure supplement 1H is for an uniform distribution of tM �w,

where w is the half-width of the distribution.

Genome editing
For tagging Nup107 at the N-terminus with monomeric enhanced GFP (mEGFP), zinc finger nucle-

ases (ZFN) containing DNA binding sequences in the 5’-3’ direction of TCAGTACTGATG and GC

TGAGCCCGAAGTC were purchased from Sigma Aldrich. The donor plasmid consists of mEGFP

cDNA sequence flanked by a left homology arm (ENSEMBL release 75, ENST00000229179,
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chromosome 12: 68686269–68687065) and a right homology arm (ENSEMBL release 75,

ENST00000229179, chromosome 12: 68687065–68687892). ZFN and the donor plasmid were trans-

fected into HeLa cells as described in Mahen et al. (2014). For tagging Nup358 at the N-terminus

with mEGFP, CRISPR-Cas9 nickases were used. pX335-U6-Chimeric_BB-CBh-hSpCas9n(D10A) was a

gift from Feng Zhang (Addgene plasmid # 42335, Cambridge, MA), and gRNAs were designed

using the Feng Zhang Lab’s Target Finder (http://crispr.mit.edu/). The following gRNAs for Nup358

were cloned into pX335 (Cong et al., 2013): 5’CCTGAGCGCTGGTCTCACGCGCC3’ and

5’GAGGCGCAGCAAGGCTGACGTGG3’. CRISPR-Cas9 nickases and the donor plasmid were trans-

fected using jetPRIME reagent (Polyplus, New York, NY), according to the manufacture’s protocol.

7–10 days after transfection, cells were sorted with a MoFlo Legacy cell sorter (Beckman Coulter,

Brea, CA) as described in Mahen et al. (2014).

Junction PCR
Genomic DNA was prepared using ISOLATE II Genomic DNA Kit (Bioline, Taunton, MA) according

to the supplier’s manual. Junction PCR was performed at endogenous loci to detect the insertion of

mEGFP using separate sets of primers, one of which anneals inside mEGFP and the other one out-

side of the gene of interest. The primer sequences are as follows: Nup107 forward (5’ATTAA

TAAAAGGTATAAATGCCAGCAACAG3’), Nup107 reverse (5’CACCTGGTCAACAACTACTTACTCC

T3’), NUP358 forward (5’GCATAAGACGGTGGTTCTGGAACCAATC3’), and NUP358 reverse

(5’AGCAAACTGACTCAAGATTCTGCGCA3’). Touchdown PCR was performed using HotStar HiFi-

delity (Qiagen, Hilden, Germany) according to the supplier’s protocol.

Western blot
Cells were lysed for 20 min on ice in lysis buffer (10% glycerol, 1 mM DTT, 0.15 mM EDTA, 0.5% Tri-

ton X-100, complete protease inhibitor cocktail and PhosSTOP (Roche, Basel, Switzerland)). Protein

concentration was quantitated using the Bio-Rad Protein Assay (Bio-Rad, Hercules, CA). 40 mg of

total protein was run onto NuPAGEÒ4–12% Bis-Tris Gels (Novex Life Technologies, Waltham, MA)

and transferred onto PVDF membrane using the Bio-Rad transfer system. After blocking with 5%

milk solution (nonfat milk powder in PBS + 0.1% Tween 20), the following primary antibodies were

used to label the proteins of interests: anti-Nup107 (ab178399, abcam, Cambridge, United King-

dom; RRID:AB_2620147), anti-RanBP2 (ab197044, abcam; RRID:AB_2620148), anti-tubulin (DM-1A,

Sigma; RRID:AB_521686) and anti-GFP (Cat. No. 11814460001, Roche; RRID:AB_390913). Subse-

quently horseradish peroxidase (HRP)-conjugated secondary antibodies (ECL anti-rabbit IgG HRP-

linked whole antibody NA934V; RRID:AB_772206, or ECL anti-mouse IgG HRP-linked whole anti-

body NA931V; RRID:AB_772210, GE Healthcare, Little Chalfont, United Kingdom) were used to

detect the protein of interests with chemiluminescence reaction.

Kinetic analyses of Nup107 and Nup358 assembly
Average intensities of Nup358 and Nup107 in the inferred inner-core and non-core regions were

quantified. The total intensities were calculated by multiplying the average intensities by the nuclear

surface area. Methods for the segmentation of core regions is described in ‘Segmentation of the

nucleus and core regions’ section above. We formulated a sequential assembly model that describes

the recruitment of Nup107 and Nup358. Nup107 accumulates first with a rate constant k, and

Nup358 assembles later with a rate constant l. The number of NPC intermediates can be described

as

dNx
0

dt
¼�kxN

x
0

(16)

dNx
1

dt
¼ kxN

x
0
� lxN

x
1
; wherex¼ pm; ip (17)

dNx
2

dt
¼ lxN

x
1
; (18)

where N
pm;ip
0;1;2 denote the number of NPCs that assemble through the interphase (ip) or postmitotic

(pm) pathway without Nup107 nor Nup358 (Npm
0

and N
ip
0
), with Nup107 only (Npm

1
and N

ip
1
), or both

Nup107 and Nup358 (Npm
2

and N
ip
2
). The rate constants for postmitotic and interphase recruitment of
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Nup107 and Nup358 are given by kpm and kip, and lpm and lip, respectively. The degradation and

interphase production rates are small (Rabut et al., 2004; Dultz and Ellenberg, 2010;

Schwanhausser et al., 2011) and can be neglected in the time frame of 2 hr post anaphase (see

also ‘kinetic modeling of nuclear pore densities’ above). The total number of NPCs containing

Nup107 and Nup358 are then given by

TNup107 ¼ N
pm
1

þN
pm
2

� �

fpmþ N
ip
1
þN

ip
2

� �

1� fpm
� �� �

(19)

TNup358 ¼ N
pm
2
fpm þN

ip
2

1� fpm
� �� �

(20)

where fpm is the fraction of postmitotic NPC. In the non-core region fpm = 0.92, whereas in the inner-

core region fpm = 0.5 (Figure 3). Since the nuclear membrane is not yet sealed before 10 min post

anaphase (Dultz et al., 2008; Otsuka et al., 2014), we take for initial condition N
ip
0
(t = 10 min) = 1,

and 0 for t < 10 min. For the postmitotic assembly we take N
pm
0
(t = 4 min) = 1, and 0 for t < 4 min.

The four kinetic rate constants kpm, kip, lpm and lip are estimated by simultaneously fitting the total

Nup107 and Nup358 intensities in non-core and inner-core regions from 4 min up to 125 min post

anaphase (Figure 4). To match the experimental data normalization we also normalize the simula-

tions. The normalization coefficients range from 1--1.1. The normalized pore densities are obtained

by multiplying the normalized total number of pores by the nuclear surface area and subsequently

dividing it by the maximal area. We obtained kpm = 0.355/min (95% CI [0.333--0378]), lpm = 0.0437/

min (95% CI [0.0425--0.0449]), kip = 0.0374/min (95% CI [0.0335--0.0417]), and lip = 0.0276/min (95%

CI [0.0209--0.0354]). Confidence intervals are obtained as explained in ‘kinetic modeling of nuclear

pore densities’ above.

Stimulated emission depletion (STED) microscopy
After release from thymidine block, the division process of GFP-Nup107 genome-edited cells were

monitored every 30 s by confocal microscopy (LSM780; Carl Zeiss) using 10 � 0.3 NA Plan-Neofluar

objective (Carl Zeiss). Cells were then fixed with paraformaldehyde and immunostained as described

in the previous report (Szymborska et al., 2013), with rabbit anti-Nup358 (Cat. No. HPA018437,

The Human Protein Atlas; RRID:AB_2620151) and mouse anti-GFP (Cat. No. 11814460001, Roche;

RRID:AB_390913) antibodies, and Abberior STAR RED-conjugated anti-rabbit IgG (Cat. No. 2-0012-

011-9, Abberior GmbH, Göttingen, Germany; RRID:AB_2620152) and Abberior STAR 580-conju-

gated anti-mouse IgG (Cat. No. 2-0002-005-1, Abberior GmbH; RRID:AB_2620153). Cells were

mounted in Vectashield containing 4’,6-diamidino-2-phenylindole (DAPI) (Cat. No. H-1500, Vector

Laboratories Inc., Burlingame, CA). Super-resolution imaging was performed on a Leica SP8 3X

STED microscope, equipped with 775 nm pulsed wave depletion and white light pulsed lasers, Leica

HCX 100 � 1.4 NA Plan Apochromat objective, and time-gated hybrid detectors (Leica HyD). Excita-

tion wavelength was adjusted to 580 and 633 nm, and bandpass filters were set to 585�630 and

650�702 nm, and the two channels were recorded pseudo-simultaneously by line switching. The

fluorescent nuclei stained with DAPI were also recorded afterwards. The images were taken with a

final optical pixel size of 20 nm, z-stacks of every 200 nm, and the optical section thickness of 550

nm. Images were filtered with a Gaussian filter (kernel size: 0.5 � 0.5 pixel) for presentation

purposes.

Quantification of STED data
Lines with the width of 400 nm were drawn along the edge of the DAPI-stained nuclei. Non-core

and core regions were inferred as described in Figure 1—figure supplement 1B--G. The NEs on the

lines were flattened and fluorescence intensity was quantified after binning of 15 pixels (correspond

to 300 nm width) along the lines. The intensity difference between two channels was normalized

using the images in non-core regions, and the intensity ratio of Nup107 to Nup358 was measured.

All analyses were done in ImageJ (http://rsbweb.nih.gov/ij/).

Particle averaging of mature pores and pore intermediates
Assembly intermediates which have similar membrane profiles were selected at each time point and

subjected to subtomogram averaging. The averaging was done on nuclear pores in freeze-substi-

tuted and plastic-embedded cells using the previously described averaging method (Beck et al.,
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2004). Briefly, the subtomograms, which contain mature pores and intermediates, were extracted

from the tomograms. The extracted subtomograms were aligned using iterative missing wedge

compensation alignment procedure. Afterwards, the aligned subtomograms were averaged and

visualized. The mature pores used for the averaging are the ones found in cells at >3 hr post ana-

phase. The overall structural similarity of the averaged nuclear pores to the respective cryo struc-

tures (Figure 1E) indicates a good structure preservation in freeze-substituted and plastic-

embedded cells.

Sample size determination and statistical analysis
For correlative light and electron microscopy, we first obtained one tomogram in each non-, inner-

and outer-core region in 4 different cells at 19, 28, 53, and 116 min after anaphase onset as pilot

experiments. We then increased the number of dataset and eventually took 158 tomograms in 14

different cells. The exact value of the analyzed surface area and the number of nuclear pores found

are listed in Table 1. We picked up all the NE evaginations which were visible in the EM tomograms

and did not perform any selection. Statistical analyses of the pore structure and density were per-

formed only after all the data were taken. For immuno-EM, time-lapse 3D imaging, and STED

microscopy, the data were from two independent experiments and the statistical analysis was carried

out after all the data were obtained. Statistical analysis methods, sample sizes (N) and P values (P)

for each experiment are indicated in figure legends.
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