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Abstract
Given the vast phenotypic and genetic heterogeneity of acute and chronic myeloid malignancies, hematologists have
eagerly awaited the introduction of next-generation sequencing (NGS) into the routine diagnostic armamentarium to
enable a more differentiated disease classification, risk stratification, and improved therapeutic decisions. At present, an
increasing number of hematologic laboratories are in the process of integrating NGS procedures into the diagnostic
algorithms of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative
neoplasms (MPNs). Inevitably accompanying such developments, physicians and molecular biologists are facing
unexpected challenges regarding the interpretation and implementation of molecular genetic results derived from
NGS in myeloid malignancies. This article summarizes typical challenges that may arise in the context of NGS-based
analyses at diagnosis and during follow-up of myeloid malignancies.

Biological-clinical challenges
Defining the clinical impact of novel NGS markers for
different myeloid entities
Current diagnostics of myeloid malignancies, including

acute myeloid leukemia (AML), myelodysplastic syn-
dromes (MDS) and myeloproliferative neoplasms (MPN)
has been rapidly evolving1,2. Within the last 5–10 years,
next-generation sequencing (NGS) has been introduced
in most specialized hematologic laboratories with various
myeloid NGS panels now being commercially available.
These panels are based on targeted resequencing and
usually analyze 25–50 genes. The genes tested within

these panels can be classified into several functional
categories including the splicing machinery (e.g., U2AF1,
SF3B1, SRSF2, ZRSR2), epigenetic modifiers (such as
TET2, DNMT3A, BCOR, ASXL1, IDH1, IDH2), cohesins
(STAG2, RAD21, and SMC3), transcription factors
(RUNX1, WT1, ETV6), signaling molecules (NF1, NRAS,
CBL, PTPN11, JAK2, FLT3), and chromatin modifiers
(EZH2, ASXL1)3–6.
With the help of myeloid gene panels more than one

recurrent somatic mutation can be identified in most
AML patients, and even within defined AML entities
additional molecular genetic mutations are detectable in
many cases7. In MDS, NGS allows the identification of
molecular mutations in nearly 90% of the patients3,5,8–11.
As a result, molecular genetic markers find increasing
entrance into current classification systems. In this con-
text, the favorable subcategory of MDS with ring side-
roblasts has been expanded to include cases with ≥5% of
ring sideroblasts in the setting where a SF3B1 mutation is

© The Author(s) 2019
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Ulrike Bacher (veraulrike.bacher@insel.ch) or
Thomas Pabst (thomas.pabst@insel.ch)
1Department of Hematology and Central Hematology Laboratory, Inselspital,
Bern University Hospital, University of Bern, Bern, Switzerland
2Center for Laboratory Medicine (ZLM)/University Institute of Clinical
Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern,
Switzerland
Full list of author information is available at the end of the article.

Blood Cancer Journal

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://creativecommons.org/licenses/by/4.0/
mailto:veraulrike.bacher@insel.ch
mailto:thomas.pabst@insel.ch


present in the most recent revision of the WHO classifi-
cation12. Also for AML, new molecularly-defined entities
have been suggested including chromatin–spliceosome,
TP53 aneuploidy, and provisionally, IDH2R1724.
The molecular genetic landscape undergoes exploration

by NGS also in BCR-ABL1-negative MPNs13–16. Besides
the three classical mutations in JAK2, CALR, and MPL
that are commonly referred to as MPN driver mutations,
non-driver mutations in the genes known from MDS and
AML are also detected in polycythemia vera (PV),
essential thrombocythemia (ET), and primary myelofi-
brosis (PMF)15,17,18. However, as compared to AML and
MDS, the clinical significance of these novel markers has
been more difficult to define. Considering the importance
of cytomorphology and histopathology in addition to the
high frequency of the three driver mutations in the MPNs,
which may also be investigated by traditional molecular
techniques12, the value of NGS at present lays in the
refinement of risk stratification in critical or difficult cases
and consequently treatment decisions19,20. Along this line,
the prognostic impact of certain co-occurring mutations
has been associated with MPN disease progression as well
as the development of secondary AML21. This is parti-
cularly relevant in PMF, where high molecular risk (HMR)
markers include mutations in ASXL1, SRSF2, EZH2, IDH1
and IDH218. Similarly, in ET and PV, mutations with
adverse prognostic value are IDH2, U2AF1, EZH2, TP53,
SH2B3, and SF3B114. The number of co-occurring
mutations has also been suggested to be prognostically
relevant with ≥2 HMR mutations predicting the worst
prognosis and shortened leukemia-free survival22. Thus,
NGS enables the identification of patients that are at
higher risk for progression and transformation, whereas
during follow-up, the occurrence of clonal molecular
evolution or the detection of HMR marker can identify
MPN patients that may become potential candidates for
allogeneic hematopoietic stem cell transplantation
(HSCT)23.
Besides allowing a refinement of risk stratification and

therapeutic decision making in patients with driver
mutations, NGS offers great benefit in about 10% of
patients with pathologic features of MPN that lack
defining molecular drivers (i.e., JAK2V617F, CALR, and
MPL)14,24. Diagnostics in these so-called triple-negative
(TN) cases can be challenging, so NGS may confirm the
presence of hematological clonal disease and corroborate
an initial cytomorphologic diagnosis. TN patients may
carry driver mutations in non-canonical sites in JAK2 and
MPL or in alternative genes including epigenetic modi-
fiers (ASXL1, TET2), the spliceosome (SF3B1, SRSF2), and
regulators of cytokine signaling (CBL, SH2B3)14. How-
ever, despite growing implementation of myeloid NGS
panels, a small proportion of TN MPN patients remains
without any mutation detectable.

Together, the growing insights into molecular aspects of
the pathogenesis of myeloid malignancies will eventually
pave the way towards a more detailed clinical evaluation
and optimized therapeutic decisions.

Discriminating leukemia-related mutations from genetic
polymorphisms and passenger mutations
Following the expansion of large-scale cancer genome

sequencing, databases such as Genome Aggregation
Database (gnomAD), 1000-Genomes-Projekt and Exome
Aggregation Consortium aim to depict population allele
frequencies in detail25–27 (Table 1). Other databases
(Table 2A), e.g., International Agency for Research on
Cancer, Catalog of Somatic Mutations in Cancer, Cancer
Genome Atlas, and Human Gene Mutation Database
focus on somatic and germline mutations to distinguish
particular gene variants between “true” tumor associated
mutations and genetic polymorphisms28–32. Some of these
databases are accessible via genome browser apps (e.g.,
Alamut). Based on such tools, gene variations described
with frequencies of more than 1% in the population
represent genetic polymorphisms.
In sight of the enormous number and variety of gene

alterations detectable by NGS, the discrimination of
leukemia-initiating mutations from incidental passenger
mutations lacking any impact on leukemogenesis can be
challenging. In fact, only a small fraction of somatic gene
alterations seems to act as driver mutations that are
involved in cancer initiation and progression33,34. Differ-
ent bioinformatic methods are utile to discriminate driver
mutations from passenger variants, either by assessing the
frequency of mutations or by predicting their functional
impact35,36. The first approach assumes a driver gene to
be mutated in a significantly higher proportion of alleles
compared to the expected background mutational rate
and is calculated based on statistical scores (e.g., Can-
cerMutationAnalysis, CHASM, DMI) taking into account,
amongst others, gene size, nucleotide constitution and
background non-synonymous mutation rates from
cancer-specific databases (e.g., COSMIC)37–39. The sec-
ond approach is based on the hypothesis that mutations
with “damaging” functional impact, predicted by tools like
SIFT, MutationAssessor or MAPP, are more likely to
represent driver mutations than those with little (if any)
predicted impact35,36. (Table 2B)
To further illustrate the difficulties that may arise in the

discrimination of germline polymorphisms from “true”
somatic mutations, we detected a c.167 T > C, p.(Leu56-
Ser) alteration in the RUNX1 gene in a patient with
therapy-related AML. In the PB, the variant allele fre-
quency (VAF) was 44% at diagnosis. At 9 months from
diagnosis, the patient was in remission, however, the
respective RUNX1 alteration persisted at a VAF of 48% in
the PB, whereas a co-incidental SF3B1 mutation had
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decreased from 10.5 to 2.9% in the PB. At this later time
point, we identified the aforementioned RUNX1 alteration
as a germline polymorphism occurring at a frequency of
around 1.5% in the general population (gnomAD). This
information had not been available at diagnosis of the
AML. Thus, considering the steadily improvement of
molecular genetic databases, population frequency data
are expected to become more and more available even for
very rare germline variants in the near future.
Nevertheless, the evidence underlying the respective

databases is not without limitations and a satisfying
definition of levels of evidence is lacking. Browsers that
facilitate data aggregation and display such as Alamut
require further optimization regarding these functions.
Thus, the review of the reported genetic variants by

experts with technical and clinical knowledge is highly
relevant, and literature research remains mandatory, too.
Interdisciplinary teams of expert physicians, genetic
counselors, and technologists are required to improve the
level of accuracy of genomic databases and the inter-
pretation of distinct genetic variants that may occur in
myeloid malignancies. In addition, further high quality
clinical trials and functional studies are needed to
improve our understanding of the relevance of less well-
characterized genes and gene mutations.

Discrimination of somatic leukemia-related mutations
from CHIP
The discrimination of somatic leukemia-associated

mutations from clonal hematopoiesis of indeterminate

Table 1 Challenges accompanying the introduction of massive parallel sequencing in clinical routine diagnostics in
hemato-oncology

Challenge Background Current and future approach

Discrimination of leukemia-related

mutations from polymorphisms or

passenger mutations

Driver mutations expected to occur at higher allele

frequency in patient samples than passenger

mutations; driver mutations more likely to have an

impact on protein function than polymorphisms or

passenger mutations

Optimization of cancer-specific databases including

reporting of rare physiological gene variants

Implementation of novel bioinformatic algorithms

based on prediction of functional impact

Quantitative and dynamic VAF monitoring (separately

and together with other mutations) at follow-up

Discrimination of somatic leukemia-

related mutations from CHIP

CHIP is presented in ~10% of individuals aged 70 to

80 and in up to 20% in the age group > 80 years

Quantitative and dynamic VAF monitoring (separately

and together with other mutations) at follow-up

Clarifying the significance of CHIP in the context of

myeloid malignancies

Discrimination of leukemia-related

somatic mutations from pathogenic

germline alterations

Challenge to differentiate acquired somatic

mutations from germline pathogenic variants at

diagnosis

Mutation detection in germline control samples (e.g.,

skin fibroblasts, saliva) in mutations such as in RUNX1,

CEBPA

Thorough medical family history followed by

molecular genetic tests in relatives if necessary

High and stable VAF (e.g., 40–50%) at follow-up despite

clinical response to treatment may be indicative for

germline alteration

Discrimination of true genetic

alterations from PCR, sequencing and

post-sequencing artifacts

Many artefacts are known to arise during NGS library

preparation, sequencing and data analysis

Error correction using molecular identifiers that

individually label original input DNA molecules

Refinement of error-correction computational

methods in post-sequencing NGS data analysis

Confirmation using Sanger sequencing

Limited sensitivity of NGS for minimal

residual disease (MRD) assessment

Mutations detected at diagnosis may be re-

identified at best to a VAF of 1–2%

Error-corrected sequencing using molecular identifiers

Complementation of NGS by established MRD tools

like real-time PCR and flow cytometry

High financial burden; demand on

interdisciplinary approaches

Expensive technical and staff equipment,

sophisticated data interpretation

Complex translation of NGS results into therapeutic

decisions

Development of continuously updated NGS

interpretation sets and algorithms for well-established

mutational profiles within distinct hematological

malignancies

Interdisciplinary leukemia boards

VAF variant allele frequency, CHIP clonal hematopoiesis of indeterminate significance, bp base pairs, G guanine, C cytosine, ITDs internal tandem duplication
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potential (CHIP) is another challenging issue40,41. Clonal
hematopoiesis is typically benign in healthy individuals
with very small clones, while patients with clinically
abnormal hematopoiesis, larger clones and more driver
gene mutations appear to be at much greater risk42. CHIP
is defined by evidence of a somatic mutation in a
leukemia-associated driver gene amounting to an allele
frequency of 2% or more in individuals that do not fulfill
the WHO criteria for a hematologic malignancy43. Kwok
et al. identified somatic mutations in myeloid malignancy
genes in 71% of patients with MDS, 62% of patients with
ICUS (idiopathic cytopenia of unclear significance) and
evidence of some dysplasia, and in 20% of ICUS patients
without dysplasia. Variant allele fractions were compar-
able between patients with clonal ICUS and MDS44.
In AML, DNMT3A mutations can persist in the post-

therapeutic period despite continuous remission without
affecting the relapse rate in the absence of co-incidental
gene mutations45,46. Aside from DNMT3A, the spectrum
of CHIP may comprise a wide range of genes including
TET2, ASXL1, RUNX1, IDH1/2, and others. Jongen-
Lavrencic et al. recently demonstrated no adverse effect of
persisting DNMT3A, TET2 and ASXL1 mutations in the
absence of other genetic alterations in a cohort of 482
AML patients achieving first remission after two cycles of
intensive induction treatment, thereby allocating them to
CHIP rather than to a pre-relapse condition. Yet, any
additional mutation present in the same patients with
mutated DNMT3A, TET2, and ASXL1 had a dramatic
impact on the cumulative relapse incidence47. Following
this line of research, we recently reported a patient with
NPM1 mutation subtype switch at relapse of AML 8 years
after successful intensive chemotherapy and consolidation
with autologous stem cell transplantation (NPM1mut
subtype D at first diagnosis; subtype A at relapse).

Interestingly, at every assessment since diagnosis, a
DNMT3A mutation was present at allele fractions
between 37 and 51%48. Furthermore, the JAK2V617
mutation, which constitutes one of the most common
mutations described in CHIP, occurs in about 0.1% of the
general population without clinical signs of myeloproli-
ferative disease49–51. Therefore, caution should be used in
order not to refer a patient automatically to a diagnosis of
MPN in the case of a JAK2 mutation detected by tradi-
tional molecular techniques or NGS. This aspect
emphasizes the need to clearly separate true MPNs from
CHIP when a JAK2 mutation has been detected, e.g., by
considering the results of a bone marrow biopsy. Clearly,
the role of clonal hematopoiesis requires careful investi-
gation considering the long-term courses of patients. In
addition, patients with unexplained thrombocytosis
should not automatically be assigned to a diagnosis of
MPN in case of detection of a mutation such as DNMT3A
or TET2 (that may occur in myeloid malignancies but may
also reflect clonal hematopoiesis).
Naturally, while the differentiation between CHIP and

leukemia-associated mutations is important, the finding
of CHIP itself deserves attention as well. Allogeneic stem
cell donation from individuals harboring CHIP, e.g., of
DNMT3A may result in poor hematopoietic engraftment
in the allograft recipients52. Individuals with CHIP have
an increased risk for various myeloid malignancies as well
as for cardiovascular disease due to accelerated arterio-
sclerosis, probably secondary to vascular inflammation
driven by clonally derived monocytes/macrophages43.

Discrimination of leukemia-related somatic mutations
from rare pathogenic germline alterations
Considering the variety of mutations such as TP53,

RUNX1, GATA2, CEBPA, or ASXL1 that may arise in the

Table 2A Overview on databases used for the characterization of genetic variants

Database URL Description

cBioPortal www.cbioportal.org Free database for cancer genomics

My Cancer Genome www.mycancergenome.org Free database for cancer genomics

COSMIC cancer.sanger.ac.uk/cosmic Catalogue Of Somatic Mutations In Cancer, free database for somatic mutations in cancer

dbSNP www.ncbi.nlm.nih.gov/SNP Free database for short genetic variations

ExAC Browser exac.broadinstitute.org Freely available exome sequencing data from the Exome Aggregation Consortium

ClinVar www.ncbi.nlm.nih.gov/clinvar Free database for information about genomic variations and their relationship to human health

gnomAD gnomad.broadinstitute.org Genome Aggregation Database, free database for genome sequencing data

ESP evs.gs.washington.edu/EVS Exome Sequencing Project, free database for exome sequencing data

LOVD www.lovd.nl Leiden Open Variation Database, freely available tool for gene-centered collection and display of

DNA variations

HGMD Professional www.hgmd.cf.ac.uk Database for known gene mutations causing inherited diseases
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context of AML or MDS, but may also occur as rare
pathogenic germline variants, there is considerable risk
for misinterpretation53–55. The “IARC TP53 Database”
contains more than several hundred TP53 germline
mutations, most of which are associated with the Li-
Fraumeni cancer predisposition syndrome, do not show
any hotspots regions and often occur within exons
2–1156,57. Recently, germline TP53 mutations were
reported in 6 out of 107 patients with treatment-related
AML highlighting their role in leukemogenesis after
cancer treatment58. Up to 11% of AML patients with
biallelic CEBPA mutations, in fact, harbor a mutant
CEBPA germline predisposition. In contrast to somatic
CEBPA mutations, which cluster in the C-terminus of the
gene, germline mutations mostly affect the N-
terminus55,59,60. RUNX1 germline mutations are asso-
ciated with familial platelet disorder with predisposition
to AML, they mostly occur in a mono-allelic form and - in
contrast to sporadic AML - represent the initiating
molecular genetic event in leukemogenesis61. Thus, the
search for a potential germline origin of the mutation may
be justified when NGS detects an isolated RUNX1
alteration with a mutation load around 50% in a given
AML patient. Following the increasing implementation of
NGS in routine cancer diagnostics, a higher frequency of
germline mutations will be detectable in the future. Along
this line, Drazer et al. identified pathogenic or likely
pathogenic variants in genes associated with hereditary
hematopoietic malignancies in 21% of 360 patients with
hematologic malignancies (ANKRD26, CEBPA, DDX41,
ETV6, GATA2, RUNX1 and TP53). In addition, they were
able to show that especially mutations with VAF of more
than 40% were more likely to be germline mutations as
demonstrated by parallel germline tissue analyses62.
In the MPNs, complexity is added by the recent iden-

tification of a number of rare germline predisposition
alleles49,63. Affected genes include TERT, SH2B3, TET2,
ATM, CHEK2, PINT, FG11B, MECOM, TERT, JAK2 and
HBSL1-MYB, respectively49,63. The prognostic value of
these heritable genetic polymorphisms is not fully
understood and is thus not currently recommended be

used for estimating the risk of developing an MPN. As
NGS is unable to distinguish between germline and
somatic origins unless paired germline/tumor DNA
samples are evaluated the individual family’s history needs
to be carefully taken into account24. Similarly, driver MPN
mutations may also be present in rare forms of hereditary
thrombocytosis or erythrocytosis64,65, where cytor-
eductive therapy is not currently recommended24.
In clinical practice, true germline control samples

derived from non-hematopoietic, non-malignant tissues
like skin biopsies are not always available. The examina-
tion of saliva provides an alternative (albeit with a lower
safety level due to the possible contamination by hema-
topoietic cells). In many cases, and when population fre-
quency databases do not provide definite information,
only follow-up monitoring of a given mutation from the
bone marrow or PB allows clarification. When a patient
achieves complete remission, but the respective mutation
persists at the previously high allele fraction, an inter-
pretation as CHIP or germline mutation (especially in the
case of a mutation load around 50%) seems more likely. In
cases where different mutations occur at the primary
diagnosis and all other mutations decrease under therapy,
a single persisting mutation requires diligent re-
evaluation. In such cases, the analysis of non-myeloid
tissue is mandatory for exclusion of a hereditary origin of
the respective alteration.

Detection of reciprocal rearrangements
Commercial myeloid NGS panels nowadays also enable

the detection of reciprocal gene rearrangements. In the
pre-NGS era, a limited number of reciprocal rearrange-
ments underwent screening by PCR at diagnosis of AML,
such as PML-RARA, RUNX1-RUNX1T1, and CBFB-
MYH11. In addition to these frequent rearrangements
(that are usually included in myeloid panels), current NGS
panels allow the detection of a broad variety of rare
reciprocal rearrangements in hemato-oncologic malig-
nancies66,67. In fact, over the past years more than 9000
new fusion genes - mostly interpreted as passenger events
by comparison with the data of the CancerGenome Atlas

Table 2B Overview on algorithms used for the validation and interpretation of genetic variants

Algorithm URL Description

Align GVGD agvgd.hci.utah.edu Free web-based program for classification of missense variants

SIFT sift.bii.a-star.edu.sg Free web-based program for prediction of missense variant effect on protein function

MutationTaster www.mutationtaster.org Free web-based program for prediction of disease-causing potential of DNA variants

PolyPhen-2 genetics.bwh.harvard.edu Free web-based program for prediction of missense variant effect on protein structure and function

Provean provean.jcvi.org Free web-based program for prediction of missense and indel variant effect on protein function

FATHMM fathmm.biocompute.org.uk Free web-based program for prediction of functional consequences of coding and non-coding variants
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network - have emerged following the introduction of
NGS68. This reflects the increased sensitivity of NGS to
discover subtle intra-chromosomal rearrangements
whereas fluorescence in situ hybridization (FISH) may
only detect exchanges of considerably larger chromosome
segments. Accordingly, 75% of gene fusions revealed by
NGS are related to intra-chromosomal rearrangements68.
Stengel et al. investigated targeted RNA sequencing by

NGS for the detection of reciprocal rearrangements in 58
AML cases with suspected novel fusions based on the
detection of only one partner gene (RUNX1, ETV6,
PDGFRB, KMT2A, RARA, NPM1, MECOM, PDGFRA,
BCOR, TET2, NUP98) by chromosome banding analysis
and FISH. The second partner gene could be identified in
59% of the patients by extended RNA sequencing69.
Another example are unusual variants of APL with
pathogenic X-RARA or alternative PML-RARA fusions
revealed by NGS, which traditional methods including
RT-PCR failed to detect70. In a patient with t-AML and a
complex aberrant karyotype including a trisomy 8, we
recently detected a cryptic reciprocal RUNX1-CBFA2T3
rearrangement [corresponding to t(16;21)(q24;q22)] in a
total of 25,000 NGS reads. Metaphase FISH using a
RUNX1 break apart probe confirmed the t(16;21).
According to the literature, t(16;21) positive AML is fre-
quently associated with previous radio-/chemotherapy,
typically demonstrates additional chromosomal aberra-
tions including trisomy 8, and patients may show
eosinophilia71.
In cases with high transcript numbers, the correct

diagnosis is easy to obtain, whereas low transcript num-
bers render it difficult to discriminate true genetic
alterations from artifacts or passenger mutations accord-
ing to the above-described principles of driver gene
detection. Interphase FISH can confirm cryptic rearran-
gements below the detection level of chromosome band-
ing analysis, if commercial probes for the involved genes/
breakpoints are available. The combination with FISH
allows excluding false positive results in the case of higher
read counts. On the other hand, the addition of FISH
increases the costs and the turn-around-time. The clinical
impact of rare fusion transcripts detected only by FISH
but not by chromosome banding deserves diligent inves-
tigation in the next years.

Technical challenges
Discrimination of true genetic alterations from PCR,
sequencing, and post-sequencing artifacts
NGS procedures are associated with sequence errors

due to artifacts that originate from library preparation, the
sequencing process itself, or data analysis (e.g., read
mapping, variant calling) resulting in incorrect calling of
DNA bases or sequence variants72–74. Such challenges
may result from the investigated genomic region itself

with under- or overrepresentation of particular amplicons
due to sequence-specific biases in target enrichment or
sequencing efficiency (Table 1). Indeed, the depth of
coverage across the target region can differ between
library preparation methods, with amplicon-based pro-
tocols overall showing less uniform coverage compared to
hybridization-capture-based target enrichment75. In
addition, distinct sets of nucleotides can be associated
with poor sequencing performance (e.g., GGT or GGC
patterns for Illumina technique or homopolymer regions
for Ion Torrent)76. Thus, NGS quality depends on the
properties of the target sequence77–80. However, sequence
differences in NGS reads may also reflect PCR errors such
as base misincorporations or rearrangements occurring in
the process of massive and simultaneous amplification
within multiple rounds of PCR81,82. With the increasing
use of molecular identifiers (i.e., molecular barcodes that
individually label each DNA molecule from the original
sample), artifacts arising both from PCR amplification or
sequencing may be significantly reduced due to the use of
consensus sequencing of single DNA molecules83.
Incorrectly called sequence variants may also arise from

digital processing during data analysis. This phase, also
called post-sequencing NGS pipeline, represents a mul-
tistep and sequential process including quality control of
raw sequence reads; aligning to a reference genome/
assembly; post-alignment quality control and recalibra-
tion; identification of mutations (variant calling and gen-
otyping); post-variant call/genotyping quality control; and
finally data storage77,84,85. Although all these processes
include some error-correction procedures, further com-
putational methods are necessary to reduce the sequential
bias at this stage.
Besides further improvement of NGS-based assays and

bioinformatic pipelines, additional Sanger sequencing
may be helpful to discriminate errors caused by NGS from
true genetic alterations. However, the limited sensitivity of
Sanger sequencing of around 20% does not allow the
investigation of sequence alterations detected by NGS at
lower allele fractions occurring e.g., in MDS or AML
subclones. Even with further improvement of NGS-based
assays and bioinformatic pipelines, overdependence on
bioinformatics pipelines should be avoided. For example,
indel mutations can be incorrectly called. Visual inspec-
tion of the aligned sequencing data is advisable in cases
where there is a suspicion of incorrect mutation calling by
the used tool86. Additionally, Sanger sequencing may be
helpful to discriminate errors caused by NGS from true
genetic alterations.
In this context, consideration needs to be given to the

impact of the reference sequences used on read mapping,
variant calling and annotation. In particular, variant
annotation may differ depending on the transcript set
used87,88. In addition, newer versions of the human
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reference genome (GRCh38) are incorporating additional
genomic regions and are increasingly accounting for
population variation through the inclusion of alternate
haplotypes in order to reduce reference sequence bias in
read mapping89. Changes in the reference sequence may
thus require re-validation of performance characteristics
of NGS methods. This explains, for example, why
GRCh37 is still in use, although GRCh38 has been pub-
lished some time ago. Furthermore, future challenges
include the incorporation of alternate haplotypes into
variant calling algorithms89.

Other technical aspects
The currently used NGS technologies in clinical diag-

nostics usually are classifiable as short read sequencing
(read length ~100–~500 bp). Short read sequencing is
inherently prone to miss structural variants such as longer
insertions and deletions. This holds true especially for
capture based target enrichment as opposed to targeted
library amplification methods as there may be insufficient
positioning data to align the obtained reads to the refer-
ence correctly90–92. Paired end sequencing can mitigate
this issue by allowing sequencing of the same read from
both ends providing additional positioning information
compared with single end sequencing90,93. This method of
sequencing comes at a cost of more complex library
preparation and data analysis, higher sequencing times
and data volumes90–92. With the ongoing maturation and
future establishment of long read sequencing technologies
in clinical diagnostics further tools will be available to
complement the current short read sequencing applica-
tions. Long read sequencing can generate read lengths
exceeding several kilobases. As such, it is much better
suited to analyze structural variants and highly repetitive
sequences. Additionally, it will much more readily allow
direct phasing of concurrent genetic variants (cis/trans).
Currently, however, the high costs of such sequencers still
largely limits them to research settings90–92.

Minimal residual disease
The multitude of molecular markers in AML detectable

by standard myeloid NGS panels (e.g., RUNX1, EZH2, or
spliceosome mutations), offers the possibility of per-
forming molecular minimal residual disease (MRD)
monitoring in virtually every patient. Most AML patients
show more than one molecular marker4. However, MRD
detection is limited by the background noise of NGS94,95.
Already known mutations are re-identifiable at best at a
variant allele fraction as low as 1%. Thus, the sensitivity of
MRD detection by NGS is limited compared to quanti-
tative real-time PCR (qPCR) offering sensitivities of 10−4

to 10−6, or the sometimes even more sensitive digital
droplet PCR (ddPCR). Currently, qPCR or ddPCR are
primarily used for monitoring of frequently occurring

genetic alterations, e.g., hotspot mutations such as NPM1
subtype A, or recurrent reciprocal rearrangements such as
RUNX1-RUNX1T1/t(8;21). Therefore, increasing the
number of genes within a molecular MRD marker panel is
of paramount importance. An additional challenge is the
frequently polyclonal character of AML, as different
clones may respond differently to therapy or may re-
emerge separately in the post-therapeutic or post-
transplant period. Error-corrected or barcoded sequen-
cing using molecular identifiers increasing the sensitivity
of NGS to around 10−5 may facilitate future MRD stra-
tegies96. At present, a combination, e.g., of qPCR/ddPCR
and NGS in the case of suitable marker combinations
should be explored47. Given the variety of the molecular
markers and their combinations, evaluation of molecular
MRD results often remains individualized and requires a
close interaction with clinicians. Similarly, molecular
MRD results should be correlated with peripheral blood
values and the results of flow cytometry, cytomorphology,
and histopathology, eventually also with cytogenetics/
FISH.
When AML patients develop an overt or molecular

relapse, clinicians should be alert to initiate comprehen-
sive mutation screening again. This allows for the detec-
tion of therapeutic targets such as IDH1, IDH2, or FLT3-
ITD/TKD that may have newly developed due to clonal
evolution.

Economic and organizational aspects
Finally, the additional financial burden by the use of

NGS deserves some consideration. Expenses concerning
technical and staff equipment, including a variety of
professionals such as molecular and computational biol-
ogists, genetic counsellors, and specialized clinicians, are
considerably higher than anticipated some years ago. Even
though the costs of a single NGS assay will continue to
decrease, the number of genes that are required for
comprehensive diagnostic results and treatment decisions
is continuously growing. Therefore, the time allocation for
the post-sequencing steps such as filtering of variants,
comparison of data with genomic databases, and inter-
pretation of gene variants as well as writing of laboratory
reports has become a challenge. In addition, high in-depth
knowledge and experience is required to meet all the
demands of NGS procedures used in hematology with its
extensive gene/hot-spot panels for the different hemato-
logic subtypes.
At present, therapeutic concepts focus on allocating

AML patients at the earliest possible time point to tar-
geted therapies such as IDH1, IDH2, or FLT3 inhibition.
Considering the long turnaround time of NGS, this is a
relevant challenge for molecular laboratories. Thus, in
many instances, molecular laboratories perform tradi-
tional assays (e.g., fragment analysis for FLT3-ITD or
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–TKD) in parallel to NGS, even though NGS provides the
same results a few days later. This further increases the
efforts and the costs for molecular analyses in leukemia
patients. “Best-practice algorithms” that take labor and
equipment resources into account and that aim to avoid
duplicate analyses are needed.

Interdisciplinary approaches
For a correct interpretation of the variety of NGS results

in the context of hematological diagnostics, a constant
bidirectional interaction between laboratory scientists,
technicians and clinicians is essential. This holds true for
the selection of the appropriate NGS panels at diagnosis,
the selection of markers for follow-up analyses in accor-
dance to the suspected hematological malignancy, but
also to the interpretation of the genetic alterations
detected by modern sequencing approaches. Specifically,
the results of NGS should be interpreted in the context of
other laboratory findings regarding cytomorphology, his-
topathology, immunophenotyping, traditional molecular
genetics, cytogenetics, and clinical diagnostic and data
outcome. NGS-based MRD approaches in principle are
more comprehensive in light of the variety of mutations
detectable at AML diagnosis today, but limited resources
require a diligent selection of the optimal time points and
the markers for NGS follow-up and a comparison with
traditional and currently more sensitive approaches (e.g.,
real-time PCR). Thus, informal and formal inter-
disciplinary communication (i.e., in the context of leuke-
mia boards, molecular tumor boards) has shown to be
particularly useful.

Conclusions
NGS has opened new horizons for individualized diag-

nostics and therapy of myeloid malignancies. While new
technological advances may improve the sensitivity and
accuracy of NGS-based analyses, its results also deserve
cautious interpretation considering the clinical context. In
particular, the clinical value of NGS needs to be defined
for the different myeloid entities. For AML, the additional
value of comprehensive analysis by NGS has to be com-
pared to the previously limited molecular panels including
some driver mutations only, such as NPM1 or FLT3-ITD.
The identification of additional prognostically relevant
mutations such as the adverse RUNX1 mutations or the
identification of novel therapeutic targets such as IDH1 or
IDH2 justify the additional demand that arises from
comprehensive NGS analysis97. For MDS patients, mole-
cular analysis allows a more accurate prognostication as
compared to cytogenetics alone5. Nevertheless, the WHO
classification of myelodysplastic syndromes so far only
respects the SFB3B1 mutation12 due to the overlap of
MDS-related mutations with CHIP. In the MPNs, NGS
can confirm a clonal disorder in triple-negative cases and

improves the characterization of the risk profile, e.g., in
patients with PMF. Presence of two or more high mole-
cular risk markers such as mutations in ASXL1, EZH2, or
IDH1/IDH2 predicts a highly adverse prognosis and rapid
leukemic transformation22 and thus may identify potential
candidates for allogeneic HSCT23.
Apparent AML or MDS-associated mutations may

reflect germline variants or clonal hematopoiesis. In cri-
tical cases, exclusion of a germline origin by analysis of
buccal cells, or, ideally, a skin biopsy, is mandatory. Per-
sistence of mutations such as ASXL1, DNMT3A, or TET2
despite clearance of other mutations in AML patients
under therapy should raise alertness for the possibility of
clonal hematopoiesis47. Molecular MRD diagnostics is
likely to undergo an expansion in the future as in virtually
all AML patients there are markers suitable for NGS
analysis. The possibility of discordant dynamics of
simultaneous mutations requires comprehensive MRD
monitoring combining different techniques (mainly
quantitative PCR and NGS). Comprehensive MRD panels
targeting all initial markers allows for the detection of
dissociated responses of polyclonal disease to therapy with
some clones responding while others are refractory.
Finally, clinicians should be alert to initiate comprehen-
sive mutation screening in patients with molecular or
overt relapse for detecting therapeutic targets such as
IDH1, IDH2, or FLT3-ITD/TKD that may newly develop
consequently to clonal evolution.
Taken together, hemato-oncologists and pathologists

should remain in close interaction with laboratory spe-
cialists. An interdisciplinary approach is essential to avoid
misinterpretation of results. Both clinicians and molecular
biologists require in-depth training for the critical inter-
pretation of NGS results, and their interdisciplinary
communication is more essential than ever. Such com-
bined efforts will contribute to an optimized use of these
novel diagnostic methods for the benefit of patients with
myeloid malignancies.
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