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ABSTRACT
Introduction  Artificial intelligence (AI) algorithms for 
interpreting mammograms have the potential to improve 
the effectiveness of population breast cancer screening 
programmes if they can detect cancers, including 
interval cancers, without contributing substantially to 
overdiagnosis. Studies suggesting that AI has comparable 
or greater accuracy than radiologists commonly employ 
‘enriched’ datasets in which cancer prevalence is 
higher than in population screening. Routine screening 
outcome metrics (cancer detection and recall rates) 
cannot be estimated from these datasets, and accuracy 
estimates may be subject to spectrum bias which 
limits generalisabilty to real-world screening. We aim to 
address these limitations by comparing the accuracy of 
AI and radiologists in a cohort of consecutive of women 
attending a real-world population breast cancer screening 
programme.
Methods and analysis  A retrospective, consecutive 
cohort of digital mammography screens from 109 000 
distinct women was assembled from BreastScreen WA 
(BSWA), Western Australia’s biennial population screening 
programme, from November 2016 to December 2017. 
The cohort includes 761 screen-detected and 235 interval 
cancers. Descriptive characteristics and results of radiologist 
double-reading will be extracted from BSWA outcomes 
data collection. Mammograms will be reinterpreted by a 
commercial AI algorithm (DeepHealth). AI accuracy will be 
compared with that of radiologist single-reading based 
on the difference in the area under the receiver operating 
characteristic curve. Cancer detection and recall rates for 
combined AI–radiologist reading will be estimated by pairing 
the first radiologist read per screen with the AI algorithm, 
and compared with estimates for radiologist double-reading.
Ethics and dissemination  This study has ethical 
approval from the Women and Newborn Health Service 
Ethics Committee (EC00350) and the Curtin University 
Human Research Ethics Committee (HRE2020-0316). 
Findings will be published in peer-reviewed journals and 
presented at national and international conferences. 
Results will also be disseminated to stakeholders in 
Australian breast cancer screening programmes and policy 
makers in population screening.

INTRODUCTION
Healthcare systems in developed coun-
tries have implemented population breast 
cancer screening for several decades. This 
is based on evidence from randomised trials 
that mammography reduces breast cancer-
specific mortality,1 complemented by obser-
vational evidence of benefit from real-world 
screening.2 Breast cancer screening involves 
interpretation of digital mammograms to 
identify suspicious abnormalities that warrant 
further investigation (‘recall to assessment’), 
and is a subjective process that can detect 
cancer, yield false-positive results or miss a 
cancer because the cancer is not visible to 
the radiologist. Cancers that are not detected 
at the screening examination often present 

Strengths and limitations of this study

	► With data from over 100 000 distinct, consecutive 
screening examinations, and including interval can-
cers, this will be the largest study to date to inves-
tigate the accuracy of an artificial intelligence (AI) 
algorithm for interpreting digital mammograms in a 
population breast cancer screening programme.

	► The consecutive cohort will overcome limitations of 
previous studies that have used ‘cancer enriched’ 
datasets, resulting in accuracy estimates that will 
be generalisable to screening programmes, thus en-
abling the estimation of population-based screening 
outcome metrics.

	► The retrospective design requires simulation of the 
integration of AI into double-reading by analytical-
ly pairing AI with a human reader, which may dif-
fer from integrated AI–human reading strategies in 
practice.

	► Societal and ethical issues along with the econom-
ic implications of AI are beyond the scope of this 
study protocol, but are being investigated in adjunct 
projects.
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symptomatically in the interval between screening rounds 
and are known as ‘interval cancers’.3 Interval cancers 
are more often fast-growing and aggressive compared 
with screen-detected cancer,4 and interval cancer rates 
are routinely monitored by screening programmes as 
an indicator of screening effectiveness.5 Population-
based breast cancer screening programmes in Australia 
(BreastScreen), Europe and the UK use ‘double-reading’, 
implemented as independent screen-readings by two 
radiologists (with arbitration for discordance) to reduce 
screen-reading error. There is, however, variability in the 
accuracy of screening between radiologists and across 
screening programmes.6

Internationally, there is increasing concern about 
the ongoing viability of population breast screening 
programmes due to what has been termed ‘a global 
radiology workforce crisis’.7 As in the UK and Europe, 
resourcing screen-reads in Australia is increasingly difficult 
for publicly funded screening programmes, where reader 
shortages exist in some locations.8 The Royal Australian 
and New Zealand College of Radiologists’ Workforce 
Survey Report identifies screening mammography as an 
area of practice ‘at significant risk of workforce shortage’, 
with this deficit predicted to increase over time.9 Simulta-
neously, screening volumes are increasing, corresponding 
to an ageing population, coupled with recent policy and 

funding decisions to increase the target age range for 
breast cancer screening in Australia from 50–69 years to 
50–74 years.5 Artificial intelligence (AI) has the potential 
to address these resource challenges by making screen-
reading more efficient and accurate. AI may particularly 
improve screening effectiveness if it can detect some 
interval cancers (cancers missed at screening) without 
substantially contributing to overdiagnosis (detection 
of cancers that would not otherwise become clinically 
apparent).3

Deep learning, a rapidly growing field of AI that inte-
grates computer science and statistics, allows computers 
to learn directly through automatic extraction and anal-
ysis of complex data. An AI algorithm can be trained to 
detect breast cancer given mammography examinations 
with known outcomes. In doing so, the AI algorithm 
learns to identify automatically extracted quantitative vari-
ables (‘features’) that are predictive of cancer presence. 
In this respect, deep learning is a significant advance over 
earlier computer-aided detection systems that relied on 
limited sets of human-extracted features, and resulted in 
unacceptably high false-positive rates.7

Studies that have evaluated AI for breast cancer 
screening suggest the technology can achieve accuracy 
that is comparable to expert radiologists.6 10–12 However, 
such studies commonly employ ‘enriched’ datasets in 
which the prevalence of cancer is substantially higher 
than in population screening (up to 55%, compared 
with real-world screening populations where breast 
cancer prevalence is less than 1%).13 Selected datasets 
enriched with cancers are likely to be unrepresentative 
of disease spectrum in screening populations, and may 
lead to estimates of accuracy for both AI and radiologists 
that are not generalisable to real-world screening.13–15 
Furthermore, routine screening metrics (cancer detec-
tion rate (CDR) and recall rate) cannot be accurately 
estimated from these datasets. There is therefore a need 
to generate evidence of AI performance that is general-
isable to routine screening practice to inform decisions 
about adopting the technology.13 16

Study aims and hypotheses
This project aims to compare AI reading of digital 
mammograms with human reading in a real world, popu-
lation breast cancer screening setting. We hypothesise 
that the AI algorithm has accuracy that is comparable to 
human readers, and that integrating the AI into a stan-
dard screen-reading strategy will accurately detect cancers 
including interval cancers. Specifically, we aim to:
1.	 Compare the accuracy of AI with the average accuracy 

of single human reading in terms of the area under the 
receiver operating characteristic curve (AUC-ROC).

2.	 Compare integrated AI–human screen-reading with 
human double-reading (standard breast cancer screen-
reading practice) in terms of CDR (number of cancers 
detected per 1000 screens) and case-specific recall rate 
(percentage of women recalled to further assessment).

Figure 1  Flowchart of cohort inclusions and exclusions.
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METHODS AND ANALYSIS
Study design and inclusion criteria
A retrospective study design was used to assemble a 
contemporary cohort of unique, consecutive digital 
mammography screens from BreastScreen WA (BSWA), 
the population breast cancer screening programme 
in Western Australia (WA). The study will avoid biases 
identified in previous research on AI for mammography 
screening13 by using consecutive screens (ie, all screening 
examinations meeting the inclusion criteria in a defined 
time interval) representative of real-world screening 
populations, with ascertained outcomes including interval 
cancers. Consecutive women attending screening at 
BSWA and fulfilling the following criteria were included 
in the cohort:
1.	 Screened between 1 November 2015 and 31 December 

2016.

2.	 Age 50–74 years (the target age range for biennial 
breast cancer screening in Australia5).

3.	 For women with multiple screening examinations in 
this time period, only the last will be included.

In order to ensure a minimum follow-up period of 
24 months for ascertainment of interval cancers, and 
adequacy and completeness of screening examinations 
for reinterpretation by the AI algorithm, the following 
exclusion criteria were applied:
1.	 Deaths within 24 months.
2.	 Out-of-state relocations.
3.	 Women who have had a previous mastectomy (and 

therefore cannot contribute bilateral images for rein-
terpretation by AI).

4.	 Women with implants (self-reported or radiologist-
identified).

5.	 Incomplete screens (eg, due to physical limitation, 
fainting or distress, where the screening episode is un-
able to be completed at a later time).

Study cohort characteristics
A total of 113 818 unique, consecutive screening exam-
inations were identified during the study period. After 
applying the exclusion criteria, 109 000 screening exam-
inations (95.8%) were eligible for inclusion in the cohort 
(figure 1). The mean age of the cohort is 61.0 years (SD 
6.9 years; range 50–74 years). There were 9076 baseline 
(first ever) screens (8.3%); the remainder were subse-
quent screens. A total of 13 954 women (12.8%) were 
offered annual screening due to a previous history of 
breast (n=3354) and/or ovarian cancer (n=631); and/
or a previous diagnosis of ‘benign high risk’ disease 
(n=382) defined as atypical ductal or lobular hyperplasia 
or lobular carcinoma in situ; and/or a significant family 
history (n=10 197) defined by BSWA as two or more first-
degree relatives with breast cancer, or at least one first-
degree relative with breast cancer occurring at <50 years 
or with bilateral breast cancer.

Measurement
BSWA routinely collects demographic characteristics 
and risk factors through a self-administered registra-
tion form. Details of the screening examination and 
further assessment are also routinely recorded in the 
Mammographic Screening Registry. Descriptive variables 
(age; screening round; time since last screen for repeat 
screens; mammographic breast density; personal history 
of breast cancer; first-degree family history of breast 
cancer; personal history of ovarian cancer; hormone 
replacement therapy in the past 6 months; a history of 
removal or biopsy of benign lump and self-reported 
breast symptoms) will be used to characterise the cohort. 
Breast density (defined as heterogeneously or extremely 
dense breasts identified by at least one of two radiol-
ogists) is recorded by BSWA only for women with no 
abnormality identified (ie, women who are not recalled 
for further testing). A deidentified screen episode ID will 
be used to link these data to output of the AI algorithm 

Figure 2  Digital mammogram mediolateral oblique view 
with region of interest (denoted by bounding box) identified 
by the AI algorithm as suspicious for malignancy. Cancer 
was confirmed as invasive ductal carcinoma. AI, artificial 
intelligence.
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(see the section ‘Reinterpretation of mammograms by AI 
algorithm’).

The final screening outcome (recall or not recall) will 
be collected, along with findings from each reader and 
a deidentified radiologist ID. Data on cancer diagnosis 
(date of diagnosis; screen-detected or interval cancer) 
and cancer characteristics (histological type; tumour size; 
grade; nodal status) will also be extracted.

Definitions of screen-detected and interval cancers
Screen-detected breast cancers are defined as either inva-
sive cancer or ductal carcinoma in situ (DCIS) detected 
at the index screening episode.17 BSWA collects details on 
all screening participants recalled for further testing and 
their subsequent cancer diagnosis. There are 761 screen-
detected breast cancers in the study cohort (606 invasive, 
155 DCIS; overall CDR 7.0 per 1000 screens). Interval 
breast cancers are defined as invasive cancers that are 
diagnosed after a negative index screening episode and 
before the next scheduled screening episode (ie, within 
24 months for biennial screeners, and 12 months for the 
minority of women scheduled to have an annual screen).17 
Interval cancers are identified through data linkage to the 
WA Cancer Registry and are reported regularly to BSWA 

according to national quality and accreditation standards. 
Interval cancers also include women who present symp-
tomatically to BSWA for early re-screening and a cancer 
is diagnosed in the same breast. There are 235 interval 
cancers in the study cohort (2.2 per 1000 screens).

Reinterpretation of mammograms by AI algorithm
The DeepHealth algorithm used in this study underlies 
a triage product that is Food and Drug Administration 
(FDA)-cleared and commercially available in the USA. 
Development of the algorithm has been described previ-
ously.10 In brief, DeepHealth used a progressive, stage-
wise training strategy motivated by how a radiologist 
might learn to read an image: by first viewing cropped 
examples of various lesion types, benign and malignant, 
before learning to scan an entire screen and make a global 
decision on whether a suspicious lesion is present. Convo-
lutional neural networks (a deep learning approach to 
analysing visual data) were trained on five datasets from 
the USA and UK, making use of both strongly and weakly 
labelled data. Australian data were not used for algorithm 
training; therefore, training datasets were independent 
of the dataset used for the current external validation 
study. The trained algorithm outputs a ‘bounding box’ 

Table 1  Significant gaps in knowledge needed to develop prospective real-world screening trials or evaluation (adapted from 
Houssami et al13)

Knowledge gap or limitations of published studies
Addressed by 
this study? Description of how addressed in our study

Few studies use commercially available AI systems. Partly The AI algorithm used in this study10 underlies a triage product that 
is FDA-approved and commercially available in the USA.

Studies have used relatively small datasets, often 
consisting of mammograms from several hundred 
women (rarely several thousand). Larger validation 
datasets are required.

Yes A large validation dataset including 109 000 women will be used.

The same or selected subsets of the same datasets 
were used to train and validate models. Validation using 
independent, external datasets is required.

Yes The study dataset is external to and independent from the datasets 
used to train the algorithm.

Datasets were commonly enriched with malignant 
lesions, with studies often selecting images containing 
suspicious abnormalities. Studies are required in 
unselected screening populations.

Yes The study dataset is a consecutive, unselected population drawn 
from a real world, biennial population-based breast screening 
programme (BreastScreen WA). The dataset is not enriched with 
cancers. The prevalence and disease spectrum of screen-detected 
and interval cancers are representative of population breast 
screening.

There is a paucity of studies reporting conventional 
screening metrics (CDR and recall rate).

Yes The inclusion of unique, consecutive screening episodes will allow 
estimation of CDR and recall rate (it is not possible to accurately 
derive these metrics from case-controlled, cancer-enriched 
datasets).

There is limited data on AI versus human interpretation. 
Future studies should compare AI to radiologists’ 
performance or report the incremental improvement for 
AI algorithms in combination with radiologists.

Yes The comparative accuracy of AI and radiologists will be estimated in 
terms of AUC-ROC, sensitivity and specificity. Incremental rates of 
cancer detection and recall will be estimated for double-reading with 
and without AI.

There are no studies on women’s or societal 
perspectives on the acceptability of AI.

No This is beyond the scope of the present study. A parallel stream of 
social and ethical research by some of the study investigators will 
explore the acceptability of AI.

Future studies should include images from digital 
breast tomosynthesis, given the rapid adoption of this 
technology.

No This is beyond the scope of the present study. Digital breast 
tomosynthesis is not currently used in Australian publicly funded 
population breast screening programmes.

AI, artificial intelligence; AUC-ROC, area under the receiver operating characteristic curve; CDR, cancer detection rate; FDA, Food and Drug 
Administration.
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identifying a region of interest (figure  2), along with a 
malignancy score quantifying the likelihood that the 
region of interest represents a malignancy. The algorithm 
evaluates each image in a study independently and aggre-
gates the scores across all potential regions in the study 
to compute a single study-level malignancy score. The 
overall accuracy of the algorithm based on this study-level 
malignancy score has been compared with five individual 
radiologists, each fellowship-trained in breast imaging, on 
a cancer-enriched dataset, and was shown to outperform 
all five readers. At the average radiologist specificity, the 
algorithm resulted in an absolute increase in sensitivity 
of 14.2%; at the average radiologist sensitivity, the abso-
lute increase in specificity was 24.0%.10 The algorithm 
also outperformed radiologists in detecting malignancy 
in a set of prior ‘normal’ mammograms from the same set 
of cancer cases (increase in sensitivity 17.5%; increase in 
specificity 16.2%), demonstrating the potential to detect 
interval cancers ‘missed’ by radiologists.

All imaging analysis for the study will take place at 
BSWA to ensure security of images. Images will only be 
accessed by investigators who are employed by BSWA, 
and have such access under the usual conditions of their 
employment; these images will not be used for further 
refinement of DeepHealth’s algorithm. A laptop with 
the AI algorithm installed and a graphics processing unit 
supporting its evaluation will be located at BSWA. An 
external hard drive will be attached containing the cohort 
of digital mammogram data (DICOM files consisting of 
four views per breast, two breasts per woman). The algo-
rithm will output data to a csv file including bounding box 
coordinates, malignancy scores ranging from 0 to 1, and 
a unique identifier extracted from the DICOM header to 
enable woman-level matching of results to BSWA routine 
screening data.

Data de-identification and secure storage
De-identified data on cohort characteristics, screening 
findings and cancer diagnosis will be transferred by secure 
online file transfer to the Curtin School of Population 
Health, Curtin University. No paper-based or portable 
electronic media storage of these data will take place. 
Project data will be electronically stored on a secure server, 
which is backed up daily to prevent any unintentional 
data loss. The research environment includes a variety of 
security controls to restrict unauthorised access—these 
include access controls, role-based delegations, encryp-
tion, firewalls and physical access restrictions (authorised 
access to server rooms and research offices is restricted by 
key). Automatic screen locking will occur on electronic 
devices after 5 min of inactivity. Data will not be stored or 
used in public terminals.

Statistical methods
All statistical analyses will be undertaken at the School 
of Public Health, Curtin University. To descriptively 
compare the accuracy of AI with the average accu-
racy of single human reading, an ROC curve for the AI 

algorithm will first be plotted from the algorithm’s study-
level malignancy score and the AUC-ROC derived. The 
hierarchical summary ROC model proposed by Rutter 
and Gatsonis18 19 will be used to model radiologist accu-
racy and derive an area under the summary ROC curve 
for radiologists (using numerical integration), along with 
summary estimates of sensitivity and specificity. The sensi-
tivity and specificity of AI will be descriptively compared 
with that of radiologists by estimating the AI’s sensitivity 
at the summary radiologist specificity, and the AI’s spec-
ificity at the summary radiologist sensitivity. The malig-
nancy score derived from the AI algorithm will also be 
dichotomised using a prospectively defined threshold 
selected to reflect an expected recall rate of 4% (the 
overall recall rate of the BSWA programme) based on 
DeepHealth’s (non-Australian) validation data, allowing 
for a descriptive comparison of sensitivity and specificity 
at this threshold with summary radiologist estimates.

The CDR and case-specific recall rate of double-reading 
by radiologists (current population reading practice) will 
be compared with double-reading strategies integrating 
AI (McNemar’s test), where the first radiologist read per 
screen will be paired analytically with AI. The following 
integrated AI–radiologist strategies will be used:
1.	 Recall to assessment based on an ‘either positive’ rule 

(ie, either AI or radiologist is positive for suspicious 
abnormality). This strategy will maximise CDR.20

2.	 Recall to assessment based on a ‘both positive’ rule (ie, 
both AI and radiologist are positive for suspicious ab-
normality). This strategy will minimise recall rate.20

3.	 Recall to assessment based on results of AI–human 
reading, where ‘both positive’ findings for AI and ra-
diologist trigger a decision to recall, and ‘either posi-
tive’ findings (ie, disagreement) are arbitrated by the 
second radiologist read that occurred in practice. This 
strategy simulates current screen-reading practice.

The effect on CDR and recall rates of alternative thresh-
olds for dichotomising the AI algorithm score will be 
explored in sensitivity analyses. CDR results for integrated 
AI–radiologist reading will be stratified by interval versus 
non-interval cancers to estimate the incremental CDR for 
interval (clinically progressive) cancers. Sensitivity anal-
yses will also be conducted to apply a consistent 12-month 
follow-up period for ascertaining interval cancers.

Sample size and power calculation
Power calculations were derived for the outcome of CDR, 
based on the sample size and number of screen-detected 
and interval cancers present in the cohort. The CDR for 
double-reading by radiologists in the study cohort is 7.0 
per 1000 screens. With a sample size of 109 000 unique 
screening examinations, at an alpha of 0.05 (two-sided) 
the study has 80% power to detect an increase in CDR 
to 7.5 per 1000 screens for integrated AI–radiologist 
reading. This assumes concordance between the reading 
strategies of 5.5 cancers per 1000 screens, with 1.5 cancers 
per 1000 detected by radiologist double-reading only (and 
not by integrated AI–radiologist reading) and 2.0 cancers 
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per 1000 screens detected by integrated AI–radiologist 
reading only (and not by radiologist double-reading). 
This 1.5:2 ratio of discordant cases is derived from a UK 
study comparing AI with radiologist double-reading.11

Substudies
In addition to the primary study objectives, substudies will 
be undertaken to further explore differences in accuracy 
observed in the main analyses. These will include:
1.	 Description of cancers for which there are discordant 

results (ie, cancers detected by the AI algorithm but 
not by radiologists and vice versa), in terms of radio-
logical and cancer characteristics.

2.	 Investigation of presumed ‘false positive’ AI algorithm 
results in terms of the presence or absence of cancer in 
the next screening round (when available), to explore 
the extent to which these may represent true early can-
cer detection.11

Patient and public involvement
The research team includes a consumer advocate who 
contributed to the development and refinement of the 
research questions and project plan, and highlighted key 
ethical implications from a consumer perspective that may 
arise from the research (eg, data security and privacy). 
Consumer health representatives external to the research 
team have been engaged to provide community perspec-
tives on this research (eg, advice on language, including 
lay summaries; potential utilisation of the research 
findings and advocacy on behalf of consumers and the 
community). In addition, several of the study investiga-
tors are undertaking a concurrent, parallel stream of 
research (with separate protocols and ethical approval) 
to elicit community perspectives about the acceptability 
of AI and social and ethical issues around its use in breast 
cancer screening.

ETHICS AND DISSEMINATION
Human research ethics committee approval
This study has ethical approval from the Women and 
Newborn Health Service Ethics Committee (EC00350) 
and the Curtin University Human Research Ethics 
Committee (HRE2020-0316). Both committees provided 
a waiver of consent for this study. Participants in the 
BSWA programme provide written consent for their data 
to be used for research purposes each time they screen.

Intended publications and research dissemination
Datasets generated and/or analysed during the current 
study are not publicly available due to data confidenti-
ality agreements with data custodians. Results generated 
by the research will be made publicly available at the 
summary level. Manuscripts addressing the study aims 
will be published in peer-reviewed journals. Results will 
also be presented at relevant national and international 
conferences. Study outcomes will also be disseminated 
to stakeholders in Australian breast cancer screening 

programmes and policy makers in population screening, 
to inform future evaluation and policy discussions about 
the potential implementation of AI.

DISCUSSION
Organised population breast screening programmes are 
facing growing screen-reading resource challenges, so the 
current global research effort aimed at developing and 
testing AI algorithms for interpreting screening mammo-
grams can contribute to ensuring future sustainability of 
screening. Although the field is rapidly evolving, to date 
there has been a focus on algorithm development with 
relatively few studies evaluating AI in real-world breast 
cancer screening settings. A scoping review of the litera-
ture on AI for breast screening identified eight key defi-
ciencies of the evidence base (table  1), and concluded 
that although studies indicate a potential role of AI in 
this clinical scenario, those evidence gaps should be 
addressed prior to the initiation of prospective trials and 
the adoption of the technology in routine practice.13 The 
primary concerns raised relate to the quality of datasets 
used to validate AI models and the paucity of evidence 
comparing the accuracy of AI and radiologists, potentially 
affecting the applicability and robustness of AI algorithms 
and raising the possibility of bias. The study we present in 
this protocol addresses those evidence gaps by comparing 
the accuracy of a commercially available algorithm with 
that of radiologists using a large, external validation 
dataset representing consecutive, unselected digital 
mammograms from a real-world screening programme 
(table  1). This retrospective cohort study is therefore 
an essential step to build the evidence base to underpin 
prospective trials and inform their design, and to provide 
timely evidence to screening stakeholders.

Although this study will overcome most key limitations 
of the evidence base, there are potential limitations asso-
ciated with its retrospective design. Data collected for 
administrative purposes may be more prone to misclas-
sification than data collected specifically for research 
purposes through a prospective trial. For instance, we 
have excluded women from the study cohort who relo-
cated outside WA after the index screening examination 
and therefore were potentially lost to follow-up. Since the 
date of relocation is not routinely collected, it is possible 
that some women with complete follow-up were excluded. 
Given that exclusions for relocation represented <0.6% 
of women during the study period (figure  1), this is 
unlikely to represent a significant concern. Data on 
outcomes (recalls, screen-detected and interval cancers) 
are meticulously collected according to national quality 
and accreditation standards and are therefore unlikely 
to be subject to misclassification. Furthermore, we have 
defined the end date for study enrolment (31 December 
2016) to ensure completeness of notifications for interval 
cancers (while simultaneously ensuring a contemporary 
cohort that is representative of the current target popu-
lation for breast cancer screening in Australia). Errors in 
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the classification of outcome data are therefore consid-
ered to be rare.

To estimate CDR and recall rate for integrated AI–
human reading, we will take an analytic approach to 
combining AI and radiologist findings. This pragmatic 
approach is dictated by the retrospective study design; 
however, it may not be representative of how AI screening 
results might be incorporated into practice. Our decision 
rules for defining recall to further assessment are among 
several proposed uses of AI information. Some alterna-
tive approaches (such as the use of AI to ‘triage’ women 
to double-reading if exceeding a threshold probability of 
malignancy11) may potentially be investigated analytically 
by our study design, but others (such as AI output used 
by radiologists interactively as a decision support6) can 
only be evaluated in studies using a prospective design. 
Furthermore, the methods adopted to derive summary 
ROC curves for radiologists and associated measures 
of accuracy are dictated by the retrospective design. 
Although these methods are established and appropriate 
for our real-world screening data,18 they allow only for 
descriptive comparisons with empirical estimates for the 
AI algorithm.19

The lack of studies exploring social and ethical issues, 
particularly women’s perspectives and preferences 
around AI, has been identified as a critical evidence 
gap (table 1). Although beyond the scope of this study, 
a parallel research stream using qualitative methods is 
being undertaken by some of the study authors to eluci-
date those perspectives. For instance, women will be 
provided with information about potential uses of AI in 
breast screening, and will then discuss potential imple-
mentation with a focus on what matters most to them, 
and how implementation should (or should not) take 
place. Similarly, economic modelling to estimate incre-
mental costs and benefits from the use of AI is critical 
to informing policy decisions about adopting the tech-
nology. Cost-effectiveness analysis will be undertaken in a 
future project building on the results of this study.

AI algorithms for interpreting mammograms have 
the potential to improve the effectiveness of population 
breast cancer screening programmes if they can detect 
cancers, including interval cancers, without contrib-
uting substantially to overdiagnosis. This will be the 
largest study to date to investigate the accuracy of an AI 
algorithm for interpreting consecutive digital mammo-
grams in a population-based breast cancer screening 
programme. The evidence generated by this study can be 
used to inform decisions about adopting AI for mammo-
gram interpretation in the future, to improve accuracy, 
effectiveness and efficiency.
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