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Abstract: Nitric oxide (NO) is a free radical which modulates protein function and gene expression
throughout all stages of plant development. Fruit ripening involves a complex scenario where
drastic phenotypical and metabolic changes take place. Pepper fruits are one of the most consumed
horticultural products worldwide which, at ripening, undergo crucial phenotypical and biochemical
events, with NO and antioxidants being implicated. Based on previous transcriptomic (RNA-Seq),
proteomics (iTRAQ), and enzymatic data, this study aimed to identify the ascorbate peroxidase (APX)
gene and protein profiles in sweet peppers and to evaluate their potential modulation by NO during
fruit ripening. The data show the existence of six CaAPX genes (CaAPX1–CaAPX6) that encode
corresponding APX isozymes distributed in cytosol, plastids, mitochondria, and peroxisomes. The
time course expression analysis of these genes showed heterogeneous expression patterns throughout
the different ripening stages, and also as a consequence of treatment with NO gas. Additionally,
six APX isozymes activities (APX I–APX VI) were identified by non-denaturing PAGE, and they
were also differentially modulated during maturation and NO treatment. In vitro analyses of fruit
samples in the presence of NO donors, peroxynitrite, and glutathione, showed that CaAPX activity
was inhibited, thus suggesting that different posttranslational modifications (PTMs), including S-
nitrosation, Tyr-nitration, and glutathionylation, respectively, may occur in APX isozymes. In silico
analysis of the protein tertiary structure showed that residues Cys32 and Tyr235 were conserved
in the six CaAPXs, and are thus likely potential targets for S-nitrosation and nitration, respectively.
These data highlight the complex mechanisms of the regulation of APX isozymes during the ripening
process of sweet pepper fruits and how NO can exert fine control. This information could be useful
for postharvest technology; NO regulates H2O2 levels through the different APX isozymes and,
consequently, could modulate the shelf life and nutritional quality of pepper fruits.

Keywords: ascorbate peroxidase; fruit ripening; hydrogen peroxide; nitric oxide; nitration; pepper
fruit; peroxynitrite; S-nitrosation; ripening; Tyr-nitration

1. Introduction

Nitric oxide (NO) is a free radical that directly or indirectly exerts signaling functions
either through the posttranslational modification (PTM) of proteins, mainly S-nitrosation
and nitration [1–4], or by gene regulation [5–9]. In recent years, the interest in NO as a
modulator of the postharvest maturation process has grown due to its possible biotech-
nological applications in maintaining the quality of the fruit, and in avoiding possible
infections by pathogens during storage, since it seems that NO induces certain antioxidant
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systems [2,10–12]. Additionally, H2O2 is an important non-radical reactive oxygen species
(ROS) that, at low concentrations, is also involved in plant physiological processes, playing
a key role as an active signaling molecule. However, at high concentrations, H2O2 could be
the cause of damage to plants, and thus its concentration should be controlled [13,14].

Ascorbate peroxidase (APX; EC 1.11.1.11) is a heme-containing enzyme that is part of
the plant ascorbate–glutathione cycle, which catalyzes the decomposition of H2O2 accord-
ing to the following reaction: H2O2 + L-ascorbate→ 2 H2O + dehydroascorbate. APX is
encoded by a multigene family generating several isozymes whose number differs depend-
ing on the plant species, and their expression is regulated according to their tissue/organ
distribution, subcellular compartmentalization, stage of growth and development, and
environmental conditions [15–23]. In Arabidopsis thaliana, APXs are encoded by eight genes
including three cytosolic (APX1, APX2, and APX6), three peroxisomal (APX3, APX4, and
APX5), and two chloroplastic, one at the thylakoidal membrane (tAPX) and the other at
the stroma (sAPX) [20,24,25]. Furthermore, the latter has also been found in the mito-
chondrion [20,25–27]. On the other hand, in tomato (Solanum lycopersicum) seven APX
genes including three cytosolic, two peroxisomal, and two chloroplastic APXs have been
reported [28].

Pepper (Capsicum annuum L.) fruits belong to the Solanaceae family, together with
tomatoes, thus representing a group of horticultural products that are among the most
consumed worldwide and, therefore, have great economic and nutritional impact [29,30].
Unlike tomato, which is a climacteric fruit, pepper falls into the category of non-climacteric
fruits since its maturation is ethylene-independent. During ripening, pepper fruits un-
dergo nitro-oxidative stress [31,32] where the metabolism of ROS is significantly regu-
lated [6,7,33–38].

Considering that APX is a key component in the metabolism of ROS, and based on
our previous reports on the transcriptome and proteome of sweet pepper [6,7], this study
aimed to identify the APX genes/proteins present in sweet peppers fruits and evaluate
if those genes/proteins are modulated during the ripening stage (ripe red vs. immature
green), or as a consequence of treatment with NO gas. The obtained data indicated that the
enzyme activity, gene, and protein expression of the six identified APXs were differentially
regulated during ripening and by NO, and in silico analysis provided evidence for NO-
derived post-translational modifications (PTMs) as having potential responsibility for
such modulation.

2. Materials and Methods
2.1. Plant Material and Nitric Oxide Gas Treatment

The criteria for selecting sweet pepper (Capsicum annuum L., cv. Melchor) fruits
for the experimental plant materials and their subsequent treatments were established
according to González-Gordo et al. [6]. Briefly, California-type pepper fruits were collected
from plants grown in plastic-covered experimental greenhouses (Syngenta Seeds, Ltd.,
El Ejido, Almería, Spain). The selected fruits without any external damages at three
developmental stages were labeled as green immature (G), breaking point (BP1), and red
ripe (R). In the laboratory, the fruits were washed with distilled water and kept for 24 h
at a low temperature (about 7 ◦C ± 1 ◦C). Then, the selected BP1 fruits were exposed to
NO gas treatment (5 ppm NO for 1 h), as reported earlier [39]. Supplementary Figure S1
shows a representative picture of the experimental design followed in this study with the
representative phenotypes of sweet pepper fruits at different ripening stages and subjected
to NO treatment [6]. The fruits were chosen in this BP1 stage due to the physiological
behavior of the ripening of pepper fruits, which are non-climacteric. Thus, the ripening
must be initiated (BP1), because if the fruits are harvested in a green stage, the peppers
will not ripen to red. This is one of the differences between non-climacteric and climacteric
fruits, such as tomatoes, which, if they are harvested in the green stage, later mature to red.
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2.2. Library Preparation and RNA-Sequencing

Pepper fruit libraries were prepared using an optimized Illumina protocol and were
sequenced on an Illumina NextSeq550 platform using 2 × 75 bp paired-end reads [6].
Reads were pre-processed to remove low-quality sequences. With the clean reads, the
de novo transcriptome assembly was accomplished. Bowtie2 was used to realign the
reads and Samtools was used to quantify the known transcripts. Differential expression
analyses were carried out using TransFlow and DEgenes-Hunter, which apply different
algorithms with their own statistical tests to validate the whole experiment [6,7] (González-
Gordo et al., 2019). Sequence Read Archive (SRA) data are available at the following link
https://www.ncbi.nlm.nih.gov/sra/PRJNA668052 (accessed on 28 May 2020).

2.3. Proteomic Analysis by iTRAQ® (Isobaric Tags for Relative and Absolute Quantitation)

Preliminary preparation of samples for proteomic analysis was achieved as reported
recently [40]. After reduction and alkylation, protein fruit samples were mixed with trypsin
at a final trypsin:protein ratio of 1:10 and digested overnight at 37 ◦C. Tryptic peptides
were dried by vacuum centrifugation, reconstituted in labeling buffer (70% ethanol/25 mM
TEAB) and labeled with iTRAQ reagents, according to the manufacturer’s protocol (AB-
Sciex, Framingham, MA, USA). Protein identification and quantification were performed
by LC-MS/MS analysis using a nanoLC Ultra 1D plus/Triple TOF 5600 analyzer (ABSciex,
Framingham, MA, USA).

2.4. Phylogenetic and Conserved Motif Analyses of APX Protein Sequences

The alignment of APX proteins was performed using the ClustalW tool with default
parameters. A phylogenetic tree using a total of 42 APX protein sequences from Arabidopsis
thaliana, Oryza sativa, Populus tricocharpa, Solanum lycopersicum, Solanum tuberosum and the
identified APXs from Capsicum annuum was generated using MEGA X [41] and edited with
Figtree software. Sequence logos of conserved motifs were created by MEME, Version
5.4.1 [42].

2.5. Preparation of Fruit Crude Extracts for APX (EC 1.11.1.11) Activity

Frozen samples of sweet pepper fruits at the different ripening stages and after NO
treatment were powdered under liquid nitrogen using an IKA® A11Basic analytical mill
(IKA®, Staufen, Germany) and then extracted in 100 mM Tris-HCl buffer, pH 8.0, containing
0.1% (v/v) Triton X-100, 1 mM ethylenediaminetetraacetic acid (EDTA), and 10% (v/v)
glycerol in a final 1:1 (w:v) plant material: buffer ratio. Homogenizing solutions for crude
extracts prepared to measure APX activity also contained either 2 mM (spectrophotometric
determination) or 5 mM (isoenzyme detection in acrylamide gels) ascorbic acid. The ob-
tained homogenates were centrifuged at 15,000× g for 30 min at 4 ◦C and the supernatants
were used for enzymatic APX assays. APX was determined spectrophotometrically by
monitoring the initial ascorbate oxidation by H2O2 at 290 nm [43]. To study the modula-
tion of APX activity, in vitro incubations of crude extracts from sweet pepper fruit in the
presence of 3-morpholinosydnonimine (SIN-1, 0.1–1 mM, a peroxynitrite (ONOO−) donor),
S-nitrosoglutathione (GSNO, 0.5–2 mM, an NO donor), and reduced glutathione (GSH,
0.5–2 mM) were carried out, and then the spectrophotometric assay was performed [44].

2.6. In-Gel Isozyme Profile of APX Activity and In Vitro Treatments

For the detection of APX in gels, the method reported by Bieker et al., (2012) [45]
with some modifications was followed [46]. Non-denaturing PAGE was carried out in
10% acrylamide gels (19:1, acrylamide:bis-acrylamide ratio) using a Mini-Protean Tetra
Cell (Bio-Rad, Hercules, CA, USA). The native-PAGE was run with a standard running
buffer containing 2 mM ascorbate. Pepper fruit crude extracts were added in addition to
0.006% (w/v) bromophenol blue dye and then loaded onto gels. Pre-electrophoresis was
initially run at 15 mA/gel for 30 min, and then the current was set at 25 mA/gel until
the dye front reached 1 cm above the gel edge. After electrophoresis, the gels were first
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incubated in 50 mM K-phosphate buffer, pH 7.0, containing 2 mM ascorbic acid for 30 min,
and thereafter in the same buffer containing 4 mM ascorbic acid plus 0.5 µM H2O2 for
10 min. Then, gels were equilibrated with 50 mM K-phosphate pH 7.8 for 1 min. Finally,
the gels were incubated in 50 mM K-phosphate buffer, pH 7.8, containing 12 mM TEMED
and 2 mM NBT (nitroblue tetrazolium). APX activity was observed as an achromatic band
on a purple–blue background and the staining was stopped by rising the gels with water.

For the APX assays after in vitro treatment, fruit samples were pre-incubated at 25 ◦C
for 1 h with different compounds, including S-nitrosocysteine (CysNO, 5 mM) as the NO
donor [35,47,48], and dithiothreitol (DTT, 5 mM), GSH (0–5 mM), and L-cysteine (L-Cys,
5 mM) as the reducing agents. Then, they were subjected to electrophoresis. Likewise, the
treatment with SIN-1 was performed at 37 ◦C for 1 h [49,50]. Additionally, to determine the
thermal stability of APX activity, fruit samples were also pre-incubated at 95 ◦C for 5 min
before electrophoresis.

2.7. Protein Modeling

APX sequences were submitted to the M4T [51], Phyre2 [52], RaptorX [53], and Swiss-
model [54] servers. No restriction was imposed on the selection of the template. Since
each server implements a different algorithm (i.e., force field, search strategy, and score
function), results were further evaluated with the SAVES 6.0 server in terms of non-bonded
atom–atom interactions (ERRAT) [55], compatibility among the atomic model and the
amino acid sequence (VERYFY 3D) [56], stereochemical quality (PROCHECK) [57], and the
global score QMean4 [58]. Models were inspected with UCSF Chimera [59].

2.8. Other Assays

Protein concentration was determined using the Bio-Rad protein assay (Hercules, CA,
USA), with bovine serum albumin as standard. The intensity of the bands identified in the
gels was quantified using ImageJ 1.45 software (https://imagej.nih.gov/ij/, accessed on
3 December 2021).

3. Results
3.1. APX Genes/Proteins from Sweet Pepper Fruits: Sequence, Structure, and
Phylogenetic Analysis

APX is a heme peroxidase that constitutes a key enzyme in the metabolism of H2O2
produced in different subcellular compartments. To obtain a deeper knowledge of the APX
isozymes present in pepper fruit and how they could be modulated during ripening, the
identification of the APX genes was carried out based on the sweet pepper transcriptome
previously reported [6], and their corresponding protein sequences were further deduced.
Thus, considering the information available on APX, we identified a total of six APX genes
that were designated as CaAPX1 to CaAPX6 according to their distribution in the pepper
genome [60]. Table 1 summarizes some of the basic information about the nucleotide and
amino acid sequences of the six APXs including their subcellular location. Although it may
appear evident, the APXs were clearly identified because these enzymes contain two char-
acteristic motifs: the heme and the ascorbate-binding sites [61,62]. This analysis allowed us
to distinguish other APX homologs that were designated as APX-related (APX-R) (data not
shown) due to their display of ascorbate-independent heme peroxidase activity [63,64].

The chromosomal locations of CaAPX genes were physically mapped on the 12 chro-
mosomes of C. annuum, but they were distributed on chromosomes 2, 4, 6, 8, and 9. Thus,
chromosome 2 contained CaAPX1, which encoded the peroxisomal isozyme; chromosome
4 contained CaAPX2, which encoded a plastidial/mitochondrial isozyme; chromosome
6 harbored CaAPX3 and CaAPX4, and coded for a second plastidial/mitochondrial isozyme
and a cytosolic one, respectively; chromosome 8 hosted CaAPX5, encoding a second peroxi-
somal isozyme; and chromosome 9 contained CaAPX6 which coded for a second cytosolic
isozyme. The analysis of the protein sequences of these six CaAPX isozymes allowed
discrimination until the tenth motif, with the motifs 1 and 4 corresponding to the heme and

https://imagej.nih.gov/ij/
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ascorbate binding sites, respectively (Figure 1a). The distribution of these ten conserved
motifs in the six sweet pepper APX proteins is represented in Figure 1b.

The analysis of the primary structure of the six CaAPX isozymes revealed a high
degree of identity between CaAPX1 and CaAPX5 (85%), CaAPX2 and CaAPX3 (92%),
and CaAPX4 and CaAPX6 (87%) (Supplementary Table S1). A phylogenetic comparative
analysis among the APX proteins from six plant species including sweet pepper (Capsicum
annuum), Arabidopsis thaliana, rice (Oryza sativa), populus (Populus trichocarpa), tomato
(Solanum lycopersicum), and potato (Solanum tuberosum) allowed the identification of three
main APX groups, designated as I to III and depicted with different colors in Figure 2.
Group I represents plastidial and mitochondrial isozymes, and includes CaAPX2 and
CaAPX3. Group II resembles cytosolic APX isozymes and encloses CaAPX4 and CaAPX6.
Group III corresponds to peroxisomal APXs and includes CaAPX1 and CaAPX5.
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Figure 1. Identification and position of consensus amino acid motifs for sweet pepper APX isozymes.
(a) Ten amino acid motifs with various widths were identified including the haem and ascorbate
binding sites, motifs 1 and 4, respectively. The height of each amino acid symbol is proportional to
the degree of conservation in the consensus sequences depicted in the ten motifs. (b) The distribution
of conserved motifs, numbers 1–10, of the six sweet pepper APX proteins, are represented by boxes
of different colors. Sequence logos of conserved motifs were created by MEME.
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Figure 2. Phylogenetic analysis of CaAPX proteins from diverse plant species. The evolutionary
history was inferred by using the Maximum Likelihood method and JTT matrix-based model. The
tree with the highest log-likelihood is shown. This analysis involves 42 amino acid sequences.
Evolutionary analyses were conducted in MEGA X. The scale bar represents the phylogenetic branch
length. Clade I, II, and III include the chloroplastic/mitochondrial, cytosolic, and peroxisomal APX
proteins, depicted in green, red, and yellow, respectively. Species abbreviations: At (Arabidopsis
thaliana); Ca (Capsicum annuum); Os (Oryza sativa); Ptr (Populus trichocarpa); Sl (Solanum lycopersicum);
and St (Solanum tuberosum).

Table 1. Sweet pepper genes encoding APX isozymes. Protein length as the number of amino acids
(aa) corresponds to the pre-processed polypeptides. Theoretical pI and molecular weight (Mw) of
each mature protein were predicted in silico using the Compute pI/Mw tool on the ExPASy server.
Subcellular localization was predicted using WoLF PSORT.

Name Gene

Nucleotide Protein

LocalizationChromosome
Number

No.
Introns

CDS
Length (nt)

Length
(aa)

Mw
(kDa) pI

CaAPX1 LOC107859857 2 8 870 289 32.10 6.67 Peroxisome

CaAPX2 LOC107868078 4 12 1248 415 43.66 7.63 Plastid/
Mitochondrion

CaAPX3 LOC107873001 6 11 1038 345 37.84 8.67 Plastid/
Mitochondrion

CaAPX4 LOC107873435 6 9 753 294 32.45 5.85 Cytosol
CaAPX5 LOC107840564 8 8 864 287 31.61 7.10 Peroxisome
CaAPX6 LOC107842932 9 9 753 250 27.57 6.00 Cytosol

3.2. NO gas Differentially Modulates APX Genes and Protein Expression during Ripening

Once the six CaAPX genes were identified in the sweet pepper fruits, we analyzed
how their expression was modulated during ripening and the potential effect of NO gas
treatment in comparison to untreated fruits. Figure 3 displays the time course expression
analysis of these six CaAPX genes by RNA-Seq at different stages of pepper fruit ripening.
In general, we observed a dissimilar response to the different CaAPX genes which encoded
the six CaAPX isozymes present in diverse organelles. Thus, regarding the genes encoding
the peroxisomal isozymes it was found that, while CaAPX1 was downregulated from
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the green (G) to red (R) stages, CaAPX5 was upregulated. With respect to NO treatment
(BP2 + NO vs. BP2 − NO), CaAPX1 was downregulated by NO (green line) in comparison
to the untreated fruits (red line), and CaAPX5 was also slightly downregulated. In the case
of the genes that coded for the plastid and mitochondrion isozymes, it was observed that,
during ripening (R versus G), CaAPX2 was upregulated and CaAPX3 was downregulated.
However, the NO effect in the BP2 stage caused an increase in CaAPX3 expression but
a slight decrease in CaAPX2. Finally, in the genes that encoded the cytosolic isozymes,
CaAPX4 underwent a slight decrease during ripening and was unaffected by NO, whereas
the expression of CaAPX6 was upregulated by ripening and the NO treatment slightly
decreased its expression at the BP2 stage, in comparison to the untreated fruits.

Antioxidants 2022, 11, x FOR PEER REVIEW 8 of 19 
 

 

Figure 3. Time course expression analysis of six CaAPX genes (RNA-Seq). Samples of sweet pepper 

fruits at different ripening stages correspond to immature green (G), breaking point 1 (BP1), break-

ing point 2 with (green line) and without (red line) NO treatment (BP2 + NO and BP2 − NO, respec-

tively) and ripe red (R). 

The protein expression analysis was performed using the proteomes obtained by 

iTRAQ at each stage of fruit ripening. In the proteome, it was possible to identify only five 

CaAPX isozymes since the peroxisomal CaAPX1 was not detected. A comparative analy-

sis was made by comparing how the protein expression of these APXs changed by ripen-

ing, that is, considering green and red fruits. Figure 4a illustrates that the expression of 

CaAPX2 increased around 2.4-fold in ripe red fruits, CaAPX6 decreased about 3-fold and, 

by contrast, the protein expression of CaAPX3, CaAPX4, and CaAPX5 did not undergo 

significant changes. On the other hand, a comparative analysis of the expression of five 

isozymes after the NO treatment was also performed. Figure 4b shows that only the ex-

pression of cytosolic CaAPX6 underwent an increase of around 45% due to the NO treat-

ment, while the protein expression of the other CaAPX isozymes did not experience sig-

nificant changes. 

Figure 3. Time course expression analysis of six CaAPX genes (RNA-Seq). Samples of sweet pepper
fruits at different ripening stages correspond to immature green (G), breaking point 1 (BP1), breaking
point 2 with (green line) and without (red line) NO treatment (BP2 + NO and BP2 − NO, respectively)
and ripe red (R).

The protein expression analysis was performed using the proteomes obtained by
iTRAQ at each stage of fruit ripening. In the proteome, it was possible to identify only
five CaAPX isozymes since the peroxisomal CaAPX1 was not detected. A comparative
analysis was made by comparing how the protein expression of these APXs changed by
ripening, that is, considering green and red fruits. Figure 4a illustrates that the expression
of CaAPX2 increased around 2.4-fold in ripe red fruits, CaAPX6 decreased about 3-fold
and, by contrast, the protein expression of CaAPX3, CaAPX4, and CaAPX5 did not undergo
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significant changes. On the other hand, a comparative analysis of the expression of five
isozymes after the NO treatment was also performed. Figure 4b shows that only the
expression of cytosolic CaAPX6 underwent an increase of around 45% due to the NO
treatment, while the protein expression of the other CaAPX isozymes did not experience
significant changes.
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Figure 4. Time course protein expression analysis of five CaAPX isozymes identified by iTRAQ.
(a) Comparative protein expression of CaAPX isozymes between pepper fruit at green and ripe
red stages. (b) Comparative protein expression of CaAPX isozymes of pepper fruits, at breaking
points, treated or untreated with NO. Samples of sweet pepper fruits at different ripening stages
correspond to immature green, ripe red, and breaking point 2 with and without NO treatment
(BP2 + NO and BP2 − NO, respectively). Asterisks indicate that differences between values were
statistically significant at p < 0.05.

3.3. APX Isozyme Profile in Sweet Pepper Fruits

The biochemical characterization of the CaAPX isozymes by non-denaturing PAGE
during fruit ripening and under NO treatment was also accomplished. Figure 5 illustrates
the presence, in green fruits, of a total of six CaAPX isozymes designated to APX I to
APX VI, according to their increasing electrophoretic mobility. The activity intensity of
some of these isozymes was modulated during ripening and by NO effects. Overall, the
intensity of some bands diminished significantly, which is in good agreement with our
previous data, where the total APX activity assayed spectrophotometrically decreased
2.5-fold in red fruits [6]. The nomenclature attributed to the APX isozymes identified in
the non-denaturing gels by PAGE was different from the previous one because it was not
possible to establish a direct correlation between them and the CaAPX proteins detected by
iTRAQ. Making such a correlation would require the purification of each of the isozymes
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and subsequent analysis by native PAGE. Among the six CaAPXs detected in the gels, APX
II, III, and VI were the most prominent bands in green fruits, whereas in red fruits APX IV
and V diminished or even disappeared. Likewise, a new band above the APX IV isozyme
was detected in both ripe and BP stages, but not in green fruits (see arrow in Figure 5). At
the same time, APX VI, which appeared to be most prominent in green fruits, also lowered
drastically in red fruits. Overall, it is remarkable that, except APX I, most APX activity
bands were modulated either during ripening or by the NO gas treatment.
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Figure 5. Ascorbate peroxidase (APX) isozymes in samples of sweet pepper fruits at different stages
of ripening. Samples correspond to immature green (G), breaking point 1 (BP1), ripe red (R), and
breaking point 2 with and without NO treatment (BP2 + NO and BP2 − NO, respectively). Protein
samples (30 µg per lane) were separated by non-denaturing polyacrylamide gel electrophoresis
(PAGE; 10% acrylamide), and activity was detected by the nitro blue tetrazolium (NBT)-reducing
method. APX isozymes were labeled I–VI (on the left) according to their increasing electrophoretic
mobility. Arrows indicate some minority bands.

In previous studies, we have shown that pepper fruits undergo nitro-oxidative stress
since the metabolism of ROS and reactive nitrogen species (RNS) are significantly up-
modulated. Therefore, to obtain deeper knowledge on the CaAPX activity, we carried
out in vitro assays using different compounds involved in the RNS metabolism, including
SIN-1, a peroxynitrite (ONOO−) donor and nitrating reagent, S-nitrosoglutathione (GSNO)
and nitrosocysteine (CysNO) as NO donors, and the reducing compounds GSH, L-Cys, and
DTT, both by spectrophotometric assay (Figure 6a–c), as well as the in-gel APX activity assay
(Figure 6d). Figure 6a shows that the total APX activity in the presence of an increasing
SIN-1 concentration underwent a progressive inhibition that was around 67% with 1 mM of
SIN-1. A similar effect was observed with GSNO which, at 2 mM, caused an 80% inhibition
(Figure 6b). GSNO decomposes into GSH and NO, so the effect of GSH was also analyzed
(Figure 6c), and it was shown that GSH also had an inhibitory effect of about 30%. Figure 6d
illustrates the in-gel APX isozymatic analysis in the presence of several compounds. Thus,
CysNO increased the band intensity of APX I, whereas it diminished APX III. SIN-1 lowered
the APX III, but enhanced APX II and IV. DTT also diminished APX III, but GSH stimulated
this isoenzyme, as well as APX IV, V, and VI, slightly. On the other hand, L-Cys increased
the band intensity of APX V and VI. Finally, to evaluate the stability of these activities, the
fruit samples were heated at 95 ◦C for 5 min previous to electrophoresis and, surprisingly,
APX IV, V, and VI were unaffected.
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Figure 6. Effect of nitration, S-nitrosation and reducing agents on isoenzymatic ascorbate peroxidase
(APX) activity in green pepper fruits. (a) Effect of SIN-1 (peroxynitrite donor). (b) Effect of S-
nitrosoglutathione (GSNO). (c) Effect of reduced glutathione (GSH). (d) In-gel isozyme profile of
APX activity assay under different treatments including 5 mM nitrosocysteine (CysNO, a NO donor),
5 mM SIN-1, 5 mM DTT, 95 ◦C for 5 min, and 5 mM L-cysteine (L-Cys). Protein samples (30 µg per
lane) were separated by non-denaturing polyacrylamide gel electrophoresis (PAGE; 10% acrylamide),
and activity was detected by the nitro blue tetrazolium (NBT)-reducing method. APX isozymes were
labeled I–VI (on the left) according to their increasing electrophoretic mobility. Spectrophotometric
APX activity data represent the mean + SEM of at least three independent biological replicates.
Asterisks (*) indicate significant differences (p < 0.05) in comparison to the control. Arrow indicates
an induced band (CaAPX V) not detected in the control sample.

3.4. Modeling of the Tertiary Structure of the Six CaAPX Isozymes

To gain additional insight into the different behavior of the CaAPX isozymes, and
considering that the structures of different APXs are available at PDB, they were modeled
using the servers M4T, Phyre2, RaptorX, and the Swiss model. Since these servers imple-
ment different algorithms, the best results according to the score function of each server
were further evaluated in terms of non-bonded atom–atom interactions [55], compatibility
among the atomic model and the amino acid sequence, stereochemical quality, and the
global score QMean4. In general, the four servers succeeded in the modeling of the six
CaAPX isozymes, although those output by Phyre2 and the Swiss model showed the best
scores during the evaluation (see Supplementary Tables S2–S7).

The final CaAPX models were the coordinates obtained from the Swiss model, except
for plastid/mitochondrion APX3, which were from Phyrex2 (Supplementary Table S8). The
analysis of the models revealed that the folding was well preserved and that the resulting
structures were superimposable, with a normalized RMS (root mean square) value lower
than 1.0 Å (Supplementary Table S9). CaAPX1 and CaAPX5, sharing 85% amino acid
identity, and whose phylogenetic analysis placed them within Group III—corresponding
to peroxisomal APXs—are structurally quite similar, with an RMS of 0.073 Å. The same
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applies for plastidial/mitochondrial APX2/APX3 and cytosolic APX4/APX6, with RMSs
of 0.260 Å and 0.252 Å, respectively.

Previous studies on the modulation of the cytosolic pea APX have demonstrated
that it undergoes a dual regulation; it is inhibited by peroxynitrite and enhanced by
GSNO, with Y235 and C32 as the residues that undergo the corresponding NO-mediated
posttranslational modifications (PTMs) of nitration and S-nitrosation, respectively [44]. In
this context, the models of the CaAPX isozymes were further analyzed by the superposition
of the coordinates on the structure of pea APX (PBD accession code 1APX) (Figure 7a–c).
As expected, the models fit on 1APX with a root mean square deviation (RMSD) lower
than 1 Å, structural distance measure (SDM) scores [65] ranging from 6.7 to 19.6, and a
Q score [66] of 0.74 for the plastidial CaAPX2 and CaAPX3, and higher than 0.96 for the
other CaAPX isozymes (Supplementary Table S10). At this point, it is important to recall
that SDM is zero for identical structures and increases with dissimilarity, and that Q scores
range from zero for no superimposable structures to 1 for identical structures. Hence,
RMSD, SDM, and Q scores indicate that the CaAPX isozymes fit very well on pea 1APX,
and the matched residues are depicted in Figure 8. Both C32 and Y235 are preserved in the
six CaAPX isozymes. Additionally, the residues of R38, W41, H42, S160, H163, R172, and
W197 of pea 1APX, involved in the active site [62], are absolutely preserved, and H169 is
replaced by R in the plastidial/mitochondrial CaAPX2 and CaAPX3. Residues involved in
the interaction with the ascorbate are K30 and C32, although they play a minor role, and
I76, which lies on top of the ascorbate and contributes to maintaining the position for the
H-bonding with R172, is essential for the catalysis [62,67]. Interestingly, I72 is not preserved
in the plastidial/mitochondrial CaAPX2 and CaAPX3; however, it presents an extra loop
comprising position 188–203 (numbering of the alignment is shown in Figure 8).
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Figure 7. Comparative analysis of the models of plastidial/mitochondrial CaAPX3 and cytosolic
CaAPX4. (a) Superposition of CaAPX3 (magenta) on CaAPX4 (cyan) showing the extra loop of
CaAPX3 in orange, the heme group in yellow, and residues that undergo NO-derived PTMs (C32 in
green and Y235 in blue). (b) The surface of CaAPX4 shows the position of the CaAPX3 loop (orange)
and the access channels connecting the surface with the distal heme pocket. (c) The surface of CaAPX3
in the same orientation illustrates how the loop interferes with the orientation of the channel.
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Figure 8. Alignment of the primary structure of the six CaAPX isozymes and the pea cytosolic APX
(1APX) resulting from the superimposition of the coordinates of CaAPX isozymes on the structure
of 1APX. Residues comprising the active site of 1APX (R38, W41, H42, S160, H163, H169, R172, and
W179) are denoted by a number in red encircled in yellow. Residues involved in the interaction with
ascorbic acid (K30, C52, I76, R172) are denoted by a letter in red encircled in blue. Residues reported
to undergo NO-derived PTMs are highlighted by a red solid triangle and the peptide identified by
MS/MS is shown on a yellow background. The loops present in CaAPX2 and CaAPX3 are enclosed
in blue rectangles.

4. Discussion

H2O2 is part of the ROS metabolism and under physiological conditions exerts sig-
naling function [68,69]. Plants have a diverse battery of enzymatic antioxidant systems
to keep H2O2 content under control in different subcellular compartments, and APX is
one of the key enzymes that achieves this function [18]. Sweet pepper fruits are highly
consumed worldwide and have diverse culinary uses, thus promoting beneficial prop-
erties for human health [70]. At a physiological level, pepper fruit ripening is linked to
many phenotypical changes, its color shift being one of the most obvious. In previous
reports, we have shown that, during ripening, sweet pepper fruits undergo nitro-oxidative
stress [31–33], characterized by changes in some components of NO metabolism such as
S-nitrothiols content, GSNO reductase activity, protein tyrosine nitration [31,37,71,72], and
the modulation of the NADPH-generating system and antioxidant enzymes [49,50,73]. This
includes catalase [36,38], as well as enzymes involved in the metabolism of superoxide
radicals, including NADPH oxidase and superoxide dismutase (SOD) isozymes [7,35].
Furthermore, it has been demonstrated that the application of exogenous NO gas to pepper
fruits provides the capacity to delay the ripening process and to provoke a 40% increase
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in ascorbate content by affecting the gene expression and activity of galactono-1,4-lactone
dehydrogenase [37].

Both H2O2 and NO are candidates to be second messengers during plant responses
mediated by ROS/RNS, due to their relative long life, lower damage capacity, and higher
permeability across biological membranes. Physiological processes such as seed germina-
tion, stomatal closure, fruit ripening, and plant responses against abiotic and biotic stresses,
among others, are regulated by both molecules [74–76]. To obtain a deeper knowledge of
the implication of ROS and NO metabolisms and their crosstalk during the ripening of
sweet pepper fruits, the goal of this study was to focus on the implication of APX as the
key enzyme system that regulates the H2O2 content in different subcellular compartments,
and its modulation by NO.

The obtained data indicated that, during the ripening of pepper fruits, some out of
the six CaAPX isozymes identified underwent a complex regulation of gene and protein
expression levels, in addition to their activity levels, resulting in the downregulation of the
APX V and APX VI isozymes that were undetectable in the red stage. Furthermore, the
exogenous application of NO gas also exerted a positive effect on APX IV. This is in good
agreement with some previous studies where recombinant APXs from leaves of pea and
Arabidopsis underwent either an increase in activity due to S-nitrosation or an inhibition
by nitration [44,77–79]. In this sense, the pharmacological analyses using different NO and
ONOO− donors corroborate that the total APX activity from pepper fruits is susceptible to
be regulated by both PTMs.

On the other hand, the in vitro analysis of the CaAPX isozymes by non-denaturing
gels revealed how their activity might be dissimilarly modulated by different biological
compounds (CysNO, GSH, L-Cys) in a cellular context that, in most cases, is different than
the analyses performed using a single recombinant APX protein. It could be suggested
that NO can modulate the level of H2O2 by regulating, to some extent, the activity of APX
isozymes present in the cytosol, mitochondria, plastids, and peroxisomes, as these are
mechanisms of crosstalk between these two signal molecules [80]. This NO regulation
by PTMs has been described for other antioxidant enzymes [81], such as catalase [36,38],
superoxide dismutase [82], and monodehydroascorbate reductase [83], as well as for the
redox state of the cell through the regulation of diverse NADPH-generating dehydroge-
nases [49,50,84–86]. Furthermore, NO also negatively regulates superoxide-generating
NADPH oxidase [7,35,87], which finally affects the dismutation of superoxide radicals
to H2O2. Another factor that must be considered, and that might explain the differences
observed between isolated recombinant proteins and those analyzed in complex plant
extracts, is that NO is generated in different subcellular compartments [88], so its interac-
tion with specific antioxidant enzyme systems will depend on other factors, such as the
endogenous pH, redox state of a specific organelle, and the relative abundance of both NO
and the potential target protein.

From a structural point of view, the six CaAPXs share a common folding. The presence
of the residues, reported as targets of the PTMs that yield the regulation by peroxynitrite
(nitration) and by GSNO (S-nitrosation), suggest a similar dual regulation [44]. However,
some subtle changes are present in the plastidial/mitochondrial CaAPX2 and CaAPX3,
including the presence of a loop comprising residues 188–203 (numbering of the alignment
is shown in Figure 8), and the replacement of the I72 and H169 by Arg and Asn, respectively,
two residues in which pea 1APX is involved in the interaction with the heme group and
with the ascorbic acid-binding. The loop is located in the vicinity of the propionate side
chain of the heme, and one of the two access channels connecting the surface with the
distal heme pocket is positioned obliquely instead of horizontally, as in the other isozymes
(Figure 7). These features resemble the chloroplastic APX from tobacco plants and support
the chloroplastic location of APX2 and APX3 and augur enzyme instability in the absence
of ascorbic acid, a common characteristic of chloroplastic APX isozymes, and an eventu-
ality that has been justified as a consequence of a movable heme that becomes degraded



Antioxidants 2022, 11, 765 14 of 18

(Wada et al., 2003). Furthermore, these changes could also explain the observed differences
of the different CaAPX genes compared to the in vitro-tested compounds (Figure 6a).

5. Conclusions

APX, as part of the ascorbate–glutathione cycle, is responsible for controlling the levels
of H2O2 in the different subcellular compartments (cytosol, plastids, mitochondria, and
peroxisomes) where different isozymes are located. Thus, each specific activity, as well as
its gene and protein expression, must be coordinated with each other, as well as with other
antioxidant enzymes such as catalase, to break down H2O2. To our knowledge, the present
study provides the first instance of information on APXs from sweet peppers during
fruit ripening exposed to an enriched NO atmosphere. This study therefore provides
a wide landscape on gene and protein expression using high throughput sequencing
approaches (RNAseq and iTRAQ, respectively), plus isoenzymatic activity profiles. Thus,
six CaAPX genes were identified, encoding six isozymes present in cytosol (CaAPX4 and
CaAPX 6), plastids/mitochondria (CaAPX2 and CaAPX 3), and peroxisomes (CaAPX1 and
CaAPX 5) whose expression was modulated by both ripening and NO treatment. In vitro
analyses using different molecules involved in NO metabolism also indicate the complex
mechanisms of activity regulation. Some isozymes underwent nitration (APX III) and
S-nitrosation and experienced increased APX I activity, whereas the activity of APX III
was diminished, and others were unaffected. The global isoenzymatic balance, even at
high temperatures, suggests that these APX isozymes can keep the H2O2 content under
control, including in extreme circumstances, and therefore this might be a mechanism
to compensate the inhibition of some of the APX isozymes. The present data highlight
the crosstalk between two signal molecules, NO and H2O2, during fruit ripening [89], a
physiological process that is characterized by highly regulated nitro-oxidative stress [32],
where NO seems to function upstream of ROS metabolism by differentially regulating
the different CaAPX isozymes. The provided information could be useful for postharvest
technology, since both molecules have proven to regulate the shelf life and nutritional
quality of pepper fruits.
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