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Active learning aims to select the most valuable unlabelled samples for annotation. In this paper, we propose a redundancy removal
adversarial active learning (RRAAL) method based on norm online uncertainty indicator, which selects samples based on their dis-
tribution, uncertainty, and redundancy. RRAAL includes a representation generator, state discriminator, and redundancy removal
module (RRM).-e purpose of the representation generator is to learn the feature representation of a sample, and the state discriminator
predicts the state of the feature vector after concatenation. We added a sample discriminator to the representation generator to improve
the representation learning ability of the generator and designed a norm online uncertainty indicator (Norm-OUI) to provide a more
accurate uncertainty score for the state discriminator. In addition, we designed anRRMbased on a greedy algorithm to reduce the number
of redundant samples in the labelled pool. -e experimental results on four datasets show that the state discriminator, Norm-OUI, and
RRM can improve the performance of RRAAL, and RRAAL outperforms the previous state-of-the-art active learning methods.

1. Introduction

In recent years, image processing tasks based on deep
learning [1–3] have achieved great success, but they mainly
rely on a large number of labelled datasets. Although su-
pervised learning has better performance than semi-
supervised learning [4–10] and self-supervised learning [11],
it is highly dependent on labelled data. In reality, it is very
difficult or even unrealistic to obtain a large number of
labelled datasets in many fields, and it inevitably consumes
many resources [12, 13]. To mitigate the impact of such
problems, some researchers have proposed active learning
[14, 15]. -e process of active learning is to select or syn-
thesize the most useful samples from the unlabelled samples
for model training, then use Oracle to label the selected
samples, and finally add the labelled samples to the labelled
pool to update the task model for training. -e process is
repeated until the performance of the task model meets the
requirements or the label budget is exhausted. At present,
active learning has been widely used in image classification
[16–18] and segmentation [19, 20] tasks and has made some
achievements.

-e recently proposed SRAAL method [21] uses an-
notated information and labelled/unlabelled state infor-
mation to select samples and has achieved competitive
performance. SRAAL inherited VAAL’s idea of adversarial
learning [22]; that is, SRAAL uses the adversarial approach
[23, 24] to learn the feature representation of labelled
samples and unlabelled samples and selects samples that can
increase the diversity of the labelled pool according to the
distribution of samples. In addition, SRAAL sets up an
online uncertainty indicator (OUI) for the unlabelled
samples to calculate the contribution of this sample to the
model. -e OUI considers the influence of the maximum
element and variance in the category vector on the uncer-
tainty. In summary, SRAAL comprehensively considers the
diversity and uncertainty of samples.

We performed a visual analysis of the samples selected by
SRAAL [21] and found that some samples have extremely
high similarity. In this paper, we refer to similar samples as
redundant samples. Redundant samples increase the an-
notation cost but contribute little to improvements in model
performance. To solve this problem, we designed the re-
dundancy removal module (RRM), which defines the
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threshold value for the feature distance of samples, effec-
tively avoiding the influence of redundant samples.

In addition, we found in the experiment that the OUI
used the whole category vector to calculate the uncertainty
score, and the score was positively correlated with the
variance of the vector. -is is not a good option. -e reasons
are as follows: due to the introduction of softmax, most
elements in the category vector of the sample are close to
zero, and we call these elements “tiny values.” For a dataset
with a small number of categories, these tiny values can
seriously affect the variance. For example, for a dataset with
10 categories, the variances of the vectors
[0.6, 0.4, 0, 0, 0, 0, 0, 0, 0, 0] and [0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, 0]

are 0.42 and 0.40, respectively, which are very similar nu-
merically, while in fact, their uncertainties are quite dif-
ferent. To remedy this drawback, we designed a new OUI
named Norm-OUI, which no longer relies on the variance to
calculate the uncertainty but uses the p-norm of the vectors.
Norm-OUI is more sensitive to the uncertainty of vectors.

-e main contributions of this paper are summarized as
follows:

(1) We propose a redundancy removal adversarial active
learning (RRAAL) method based on norm online
uncertainty indicator, which fully considers the di-
versity, uncertainty, and redundancy of samples

(2) We design a sample discriminator to improve the
representational learning ability of the generator and
proposed a Norm-OUI based on the p-norm to
calculate the uncertainty score of the samples

(3) We design an RRM to remove redundant samples
and thus reduce inefficient labelling

2. Related Work

Current mainstream active learning methods can be divided
into synthesis-based methods [25, 26] and pool-based
methods [27–29]. -e method in this paper is a pool-based
method. Pool-based methods can be divided into uncer-
tainty-based and distribution-based methods.

Uncertainty-based methods [30–33] select the most
uncertain samples for the model in each iteration. For ex-
ample, in the realm of Bayesian frameworks, Gaussian
processes [30, 31] are used to assess the uncertainty of
samples. In addition, Bayesian optimization [34, 35] has
many application scenarios. In the realm of non-Bayesian
frameworks, the distance from the decision boundary [32]
and expected risk minimization [33] are used to assess the
uncertainty of samples. Yoo et al. proposed a method based
on a loss prediction module (LPM) [36] to predict the
sample uncertainty. Uncertainty-based methods often de-
pend on the performance of the task model, and the samples
selected are directly related to the task model.

Distribution-based methods [22, 37] tend to select sam-
ples that increase the diversity of the labelled pool. By taking
advantage of the image distance, a core-set approach [37] can
select a set of data points from an unlabelled dataset and
obtain a result that a model learned from the selected subset
that is competitive for the remaining data points. VAAL [22]

uses the adversarial learning [23, 24] of a variational
autoencoder (VAE) [38] and discriminator to learn the
feature representations of labelled samples and unlabelled
samples and then uses the difference between them to make a
sample selection. In essence, themethod selects samples based
on their diversity, which is not equal to the amount of in-
formation contained in a sample, so the results of the method
may be unreliable. SRAAL [21] uses annotated information
and labelled/unlabelled state information to select samples
and fully considers the distribution and uncertainty of the
samples. Our method also takes into account the uncertainty
and diversity of the samples. In addition, we also consider the
redundancy of the samples. -e experimental results verify
that RRAAL is superior to the existing pool-based methods.

-e purpose of the synthesis-based methods is to syn-
thesize the most useful samples for the model by using the
generated model [24, 39]. -e idea was first proposed in
GAAL [25], which uses a GAN to generate samples closer to
the decision boundary than the existing samples. BGADL
[26] combines BDA [40] and BALD [41] to perform iterative
training on the task model and the generated model, thus
improving the performance of the task model. Similarly,
ARAL [42] also uses generated images to update the task
model. Synthesis-based methods have higher complexity,
and their performance depends on the performance of both
the generation model and the task model.

3. Method

In this section, we describe the RRAAL model presented in
this paper. RRAAL selects the unlabelled sample with the
most information based on the uncertainty, distribution,
and redundancy of the sample, and its overall architecture is
shown in Figure 1. RRAAL is composed of a representation
generator (Section 3.2), a state discriminator (Section 3.3),
and an RRM (Section 3.4). -e representation generator is
used to learn the feature representations of both labelled and
unlabelled samples.-e state discriminator predicts the state
value of the sample according to the concatenated feature
vector. -e RRM selects a set of samples with the lowest
redundancy on this basis. Section 3.4 introduces the sam-
pling strategy based on the above three modules.

3.1. Unified Representation Generator. -e unified repre-
sentation generator of SRAAL includes an encoder, an
unsupervised image reconstructor (UIR), and a supervised
target learner (STL). -e UIR learns the feature represen-
tation of the sample by reconstructing the sample, while the
STL is used to embed the annotation information of the
sample into the representation. -e UIR is composed of
transposed convolutional layers, and the STL is similar in
structure to the task model. To improve the reconstruction
ability of the UIR and further improve the ability of the
encoder and UIR to learn the sample representation, we
added a sample discriminator D1 after the UIR to guide the
reconstruction process of the encoder and UIR, as shown in
Figure 1. -e optimization objective of the sample dis-
criminant D1 is defined as follows:
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where LU
UIR is the objective function of the unlabelled sample,

LL
UIR is the objective function of the labelled sample, z is the

feature representation, ϕ parametrizes the decoder pϕ, and θ
parametrizes the encoder qθ.

Finally, the UIR reconstructs the image under the
guidance of Dl and learns the feature representation of the
sample. Previous experiments have indicated that adding
annotation information can improve the performance of
active learning models [29]. We use the same STL as in
SRAAL, whose objective function is defined as follows:

LSTL � E log pϕ yL|zL(   − DKL qθ yL|xL( 
����p(z)  . (3)

Because of the dependency on the label of the sample, the
STL can only be trained using the labelled sample. Finally,
the feature representation learned by the UIR and the

annotation information learned by the STL are concatenated
as the final sample representation.

3.2. State Discriminator and State Relabelling.
Considering that the uncertainty score calculated by the OUI
will be affected by a tiny value in the category vector, we
designed a new indicator function: the Norm-OUI. In this
method, the variance of the vector is no longer used to
calculate the uncertainty score, but the p-norm of the vector
is calculated. -erefore, we redefined the uncertainty score
function as follows:

score xU(  � 1 −
min norm(V)

norm(V)
× max(V), (4)

where V is the category vector and max(V) is the largest
element in vector V. Min norm(V) is defined as follows:
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By definition, min norm(V) is the minimum p-norm for
all the vectors whose largest element is max(V). -e ob-
jective function of the state discriminator D2 is as follows:

LD � −E log D2 qθ zL|xL( ( (  

− E log score xU(  − D2 qθ zL|xL( ( (  ,
(6)

where score(xU) is the new state value of unlabelled sample
xU. -e objective function of the representation generator in
the adversarial learning process with D2 is as follows:

Ladv � −E log D2 qθ zL|xL( ( (   − E log D2 qθ zU|xU( ( (  .

(7)
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Figure 1: Network architecture of RRAAL. XU represents the unlabelled pool, and (XL, YL) represents the labelled pool, where YL is the
label set. We used Oracle to label the unlabelled samples.
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-e total objective function for the representation
generator is as follows:

LG � λ1LUIR + λ2LSTL + λ3Ladv, (8)

where λ1, λ2, and λ3 are hyperparameters that control the
ratio of the function.

3.3. RRM. -e purpose of an RRM is to remove redundant
samples based on the state value predicted by the state
discriminator and the feature distance of the image to reduce
the cost of labelling. In this paper, the unlabelled samples are
first arranged in descending order according to the predicted
values as [x1, x2, x3, . . .], and then the feature representa-
tions learned by the representation generator are normal-
ized. -en, the normalized representations are used to
calculate the similarity between samples. -e similarity
between a pair of samples (xi, xj) is defined as follows:
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where N(xi) and N(xj) represent the normalized feature
representations of samples xi and xj, respectively. N(xi)k

and N(xj)k represent the k-th element of the feature rep-
resentations of N(xi) and N(xj), respectively. -e RRM is
based on the greedy algorithm for redundancy removal, and
the specific steps are shown in Algorithm 1. -e hyper-
parameter d is set in the algorithm to control the feature
distance between the two samples, and XS, which is finally
returned, is the sample that needs Oracle labelling.

3.4. Sampling Strategy in Active Learning. -e algorithm for
training the RRAAL algorithm at each iteration is shown in
Figure 1. In each iteration, the sampling process is divided
into two phases. In the first phase, the generator generates
feature representations for each sample, and the state dis-
criminator D2 predicts the state value of samples under the
guidance of the Norm-OUI. In the second stage, we arrange

the unlabelled samples as [x1, x2, x3, . . .] in descending
order according to the predicted value, input this sequence
into the RRM for sample selection, and finally obtain the
samples that need to be labelled. After each iteration, we
need to update the task model and the entire active learning
model.

4. Experiment

In this section, we evaluate the RRAAL algorithm in both
classification and segmentation tasks.

Dataset. -e datasets we selected in the classification ex-
periment include CIFAR-10 [43], CIFAR-100 [43], and
Caltech-101 [44]. Both CIFAR-10 and CIFAR-100 contain
60,000 images, of which 50,000 are training images and
10,000 are test images. CIFAR-10 has 10 categories with
6,000 images per category, while CIFAR-100 has 100 cate-
gories with 600 images per category. Caltech-101 contains
101 image categories and a background category, with a total
of 9,146 images, with 40 to 800 images per category. -e
dataset we selected in the segmentation experiment is
Cityscapes [45]; its training set contains 2,975 images, the
verification set contains 500 images, and the test set contains
1,525 images.

For each dataset, we randomly sampled M � 10%
samples from the entire dataset as the initial labelled pool
XL, and the remaining 90% of samples formed the initial
unlabelled pool XU. We select K � 5% samples from the
unlabelled pool for labelling each iteration and then position
these samples in the labelled pool until the labelled samples
reach 40%. For each active learning method, we repeated the
experiment five times with a different initially labelled pool
and reported the average performance.

Task Model. -e task model we used in the image classifi-
cation experiment is ResNet-18 [46], and the task model we
used in the segmentation experiment is a DRN [47]. We
compared the average accuracy of the task model in the five
experiments.

(i) Input: Initialized selected samples XS �, unlabelled pool [x1, x2, x3, . . .].
(ii) Hyperparameters: size K, j � 2, k � 0, distance d.
(1) repeat
(2) for i � 1 to (j − 1) do
(3) if S(xi, xj)≤d then
(4) k � 1
(5) end if
(6) i + +

(7) end for
(8) if k �� 0 then
(9) XS⟵XS ∪xj

(10) end if
(11) k � 0; j + +

(12) until size(XS) � K

(13) return the selected samples XS.

ALGORITHM 1: Redundancy removal strategy.
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4.1. Parameter Analysis. To explore the influence of the p-
norm on the model performance, we conducted a parameter
analysis experiment on the CIFAR-10 and Cityscapes
datasets. -is section compares the model performance with
the 2-norm, 3-norm, and 4-norm in the Norm-OUI. To see
the effect of the p-norm on the performance more clearly, we
added RRAAL without the Norm-OUI (using the OUI) as a
reference.-e experimental results of the parameter analysis
are shown in Figure 2.

As seen from the experimental results, the performance
of RRAAL with the 2-norm is the worst on the two datasets
and is lower than that of RRAAL without the Norm-OUI.
-e performance of RRAAL with the 3-norm and RRAAL
with the 4-norm is better than that of RRAAL without the
Norm-OUI, and RRAAL with the 3-norm achieves the
optimal performance. -erefore, the proposed RRAAL fi-
nally uses 3-norm.

4.2. Ablation Study. To evaluate the contribution of the
Norm-OUI, RRM, and sample discriminator D1 introduced
in RRAAL, we conducted an ablation study on the CIFAR-
10 and Cityscapes datasets. -e compared models include
RRAAL, RRAAL without the Norm-OUI (using the OUI),
RRAAL without the RRM, and RRAAL without both, and
SRAAL. It is worth noting that the difference between
RRAAL without both and SRAAL is that the former has a
sample discriminator D1.

Figure 3 shows the results of the ablation study. On the
CIFAR-10 and Cityscapes datasets, the experimental re-
sults show that the overall performance of RRAAL is
always better than that of the other methods, and the
performance of RRAAL without both is slightly better
than that of SRAAL and lower than that of the other three
methods.

-e experimental results show that (1) the Norm-OUI,
RRM, and D1 can improve the performance of SRAAL; (2)
the performance is optimized when the three components
are combined.

4.3. Classification Experiment. We compare RRAAL with
the current mainstream methods: SRAAL [21], LLAL [36],
core-set [37], Monte Carlo dropout (MC dropout) [48],
VAAL [22], and Random. Figure 4 shows the experimental
results of our proposed RRAAL and other methods on the
three datasets. On the CIFAR-10 dataset, RRAAL out-
performed the other methods throughout the process. When
the data rates were 20%, 30%, and 40%, the mean accuracies
of RRAAL were 0.83%, 0.71%, and 0.62%, respectively,
higher than those of the second best method (SRAAL). -e
experimental results show the superiority of RRAAL in
datasets with a small number of categories.

-e number of categories in the CIFAR-100 dataset is 10
times larger than that in CIFAR-10, which makes the dataset
more challenging. On the CIFAR-100 dataset, RRAAL is
obviously superior to VAAL, core-set, MC dropout, and
Random and slightly superior to SRAAL and LLAL. When
the data rates are 20%, 30%, and 40%, the mean accuracies of
RRAAL are 0.98%, 1.01%, and 0.98% higher than those of
SRAAL and 1.20%, 1.50%, and 1.31% higher than those of
LLAL, respectively. -us, it can be seen that RRAAL still has
advantages.

We calculated the final performance of each method on
the three datasets, and the results are shown in Table 1. As
can be seen from Table 1, compared with other methods,
RRAAL achieves the best performance on all three datasets.

In addition, we calculated the computational costs on
three datasets. -e computational cost of Random is the
smallest, so the computational cost of Random is taken as
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Figure 2: Basic rocket ship design. -e rocket ship is propelled with three thrusters and features a single viewing window. -e nose cone is
detachable upon impact. (a) CIFAR-10. (b) Cityscapes.
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detachable upon impact. (a) CIFAR-10. (b) Cityscapes.
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Figure 4: Continued.
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unit 1. -e experimental results are shown in Table 2. As can
be seen from Table 2, although RRAAL has a higher
computational cost, it is very similar to SRAAL and VAAL
and achieves higher performance than them. Because the
computational cost is much less than the manual cost,
RRAAL is still useful.

4.4. SegmentationExperiment. We compare RRAALwith the
current mainstream methods: SRAAL [21], VAAL [22], core-
set [37], query-by-committee (QBC) [49], MC dropout [48],

and Random. Image segmentation is more challenging than
image classification. Figure 5 shows the experimental results
of our proposed RRAAL method and the other methods on
the Cityscapes dataset. RRAAL has the best performance, and
SRAAL and VAAL rank second and third, respectively. -e
performance of core-set and QBC is similar, which is better
than that of MC dropout and Random. When the data rates
were 20%, 30%, and 40%, the mIoU of RRAAL was 1.16%,
0.73%, and 0.56 higher than that of SRAAL and 1.70%, 1.23%,
and 0.69% higher than that of VAAL, respectively. -is result
fully verifies the superiority of RRAAL.
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Figure 4: Active learning results of image classification on the (a) CIFAR-10; (b) CIFAR-100; (c) Caltech-101 dataset.

Table 1: Experimental results of RRAAL and other methods on CIFAR-10, CIFAR-100, and Caltech-101.

Methods CIFAR-10 CIFAR-100 Caltech-101
Random 90.59 62.29 85.79
MC dropout 91.33 63.13 86.09
Core-set 91.59 64.39 87.32
VAAL 91.81 65.21 88.06
LLAL 92.01 65.78 88.13
SRAAL 92.25 66.11 88.95
RRAAL 92.87 67.09 89.58

Table 2: Time cost of RRAAL and other methods on CIFAR-10, CIFAR-100, and Caltech-101.

Methods CIFAR-10 CIFAR-100 Caltech-101
Random 1.00 1.00 1.00
MC dropout 1.05 1.06 1.06
Core-set 1.51 1.54 1.52
VAAL 2.07 2.11 2.03
LLAL 1.28 1.31 1.33
SRAAL 2.15 2.18 2.12
RRAAL 2.21 2.17 2.19
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5. Conclusions

In this paper, we first analysed the problems existing in
SRAAL, such as an impractical state indicator function and
excessive redundancy, and then proposed RRAAL to solve
these problems. RRAAL uses the distribution, uncertainty,
and redundancy for sample selection and includes a rep-
resentation generator, a state discriminator, and an RRM.
First, we analysed the parameters of the Norm-OUI and
selected the 3-norm. -en, we set up an ablation study to
verify the contributions of the Norm-OUI, RRM, and sample
discriminator D1. Finally, we verified the effectiveness of
RRAAL with classification and segmentation tasks. -e
performance of RRAAL is 0.62%, 0.98%, and 0.63% higher
than that of the state-of-the-art method (SRAAL) in clas-
sification datasets and 0.56% higher than that of SRAAL in
segmentation datasets. -e experimental results show that
the overall performance of RRAAL on the four datasets is
better than that of the existing mainstream methods.
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[49] W. Kuo, C. Häne, E. Yuh, P. Mukherjee, and J. Malik, “Cost-
sensitive active learning for intracranial hemorrhage detec-
tion,” in Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pp. 715–723, Granada, Spain, September 2018.

10 Computational Intelligence and Neuroscience


