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Abstract

Resting-state fMRI has shown the ability to predict task activation on an individual

basis by using a general linear model (GLM) to map resting-state network features to

activation z-scores. The question remains whether the relatively simplistic GLM is

the best approach to accomplish this prediction. In this study, several regression-

based machine-learning approaches were compared, including GLMs, feed-forward

neural networks, and random forest bootstrap aggregation (bagging). Resting-state

and task data from 350 Human Connectome Project subjects were analyzed. First,

the effect of the number of training subjects on the prediction accuracy was evalu-

ated. In addition, the prediction accuracy and Dice coefficient were compared across

models. Prediction accuracy increased with the training number up to 200 subjects;

however, an elbow in the prediction curve occurred around 30–40 training subjects.

All models performed well with correlation matrices, which displayed correlation

between actual and predicted task activation for all subjects, exhibiting a strong diag-

onal trend for all tasks. Overall, the neural network and random forest bagging tech-

niques outperformed the GLM. These approaches, however, require additional

computing power and processing time. These results show that, while the GLM per-

forms well, resting-state fMRI prediction of task activation could benefit from more

complex machine learning approaches.
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1 | INTRODUCTION

Recent work has shown that resting-state fMRI (rs-fMRI) can be used

to predict task activation on an individual basis by fitting a general lin-

ear model (GLM), where resting-state network components are

mapped to task activation (Parker Jones, Voets, Adcock, Stacey, &

Jbabdi, 2017; Tavor et al., 2016). These studies work under the

assumption that although underlying similarities exist between indi-

viduals’ brain responses to certain tasks, these responses differ across

subjects in specific, predictable ways. For example, Tavor et al. (2016)

used high spatial and temporal resolution data from the Human

Connectome Project (HCP; Glasser et al., 2013; Van Essen et al.,

2013) which includes four 15-min rs-fMRI scans and multiple tasks

across several domains per subject. They extracted rs-fMRI and struc-

tural components and mapped those components to the task activa-

tion data using a GLM. They showed intersubject variability in task

activation could be predicted across several task domains including

language, motor, and working memory, among others. They also were
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able to accurately predict language lateralization. In a follow-up study,

a GLM was used to predict task activation in a clinical population with

lower spatial and temporal resolution data (Parker Jones et al., 2017).

Using a covert category fluency task, they were able to accurately

predict patients’ activation using a model trained on a group of

healthy control subjects.

The question remains as to whether the GLM approach is optimal

to accomplish this prediction. The GLM is a multiple linear regression

approach and typically is used in fMRI to compute task activation. For

fMRI, one or more regressors model the task, and additional nuisance

regressors (i.e., motion parameters) can be added to remove unwanted

signals from the data. As implied by the name, the GLM assumes a lin-

ear dependence between the variables. It also assumes the error is

normally distributed, the error at each measurement is the same, and

there are no correlations between the errors. These assumptions are

not necessarily true for fMRI data. For the GLM prediction, the

regressors are the rs-fMRI-derived features.

Other regression-based learning models exist including the neural

network (NN) and ensemble approaches. A typical feed-forward NN is

comprised of an input layer consisting of one or more features to be

used for prediction, one or more hidden layers, and an output layer

(Sperber & Karnath, 2017). Each hidden layer contains hidden nodes,

or neurons, that are connected to the nodes in the subsequent layer

via weighted edges. The input layer is connected to the first hidden

layer and the output layer is connected to the last hidden layer. The

NN machine learning approaches model nonlinearities in the data. In

ensemble learning, multiple models are combined to improve learning

results. One type of ensemble learning that can be used for regression

is random forest bootstrap aggregation (RFbag), also referred to as

“bagging.” Bagging can be used in combination with decision trees

(Breiman, 2017), where data are split based on the values of the input

features and terminate in leaves that contain the predicted values. In

bagging, several different trees are trained on different subsets of ran-

domly chosen data to create a so-called forest of trees, and the values

from the different trees are then averaged (Breiman, 1996, 2001).

This reduces the variance. In the RFbag approach, the features are

also randomly selected at each split in the decision tree.

When using the GLM approach, Tavor et al. (2016) found that not

all tasks performed equally. In general, although variability existed

within domains, the language, relational, and working memory

domains performed better than the motor domain. Thus, one goal of

this study was to evaluate whether the use of alternative approaches

could improve the poorer performing domains.

In their study, Tavor et al. (2016) used only 98 subjects from the

much larger HCP dataset to train and predict via a leave-one-out

approach. Here, we have repeated the study by Tavor et al. using a

larger subset of 350 HCP subjects. We examined the effect of the

number of training subjects on the accuracy of the predictions. Also,

we expanded on Tavor et al.'s method by comparing the NN and bag-

ging approaches to the GLM approach. We evaluated all approaches

in terms of their ability to predict task activation from rs-fMRI based

on the spatial correlation and overlap between the actual and

predicted maps. Finally, we compared the spatial correlation and Dice

coefficient (DC) between the approaches.

2 | MATERIALS AND METHODS

2.1 | Subjects

Subjects were selected from the Human Connectome Project dataset

(www.humanconnectome.org; Van Essen et al., 2013). In total,

350 subjects were selected for this analysis. Subjects were required

to have four resting-state scans and data from all seven task domains

(described below).

2.2 | HCP imaging

The HCP imaging protocol includes resting-state and task fMRI data.

Acquisition parameters for all datasets are described in detail in Smith

et al. (2013). In short, each subject underwent four 15-min sagittal

multiband resting-state fMRI scans with TR/TE = 720/30 ms,

2 × 2 × 2 mm isotropic resolution, and MB-factor = 8. Scans alternated

between left–right (LR) and right–left (RL) phase-encode directions.

Task fMRI data also were acquired sagittally with TR/TE = 720/30 ms,

2 × 2 × 2 mm isotropic resolution, and MB-factor = 8. As with the

resting-state scans, scans with both LR and RL phase encoding direc-

tions were collected. Total imaging times were different based on the

task but lasted approximately 5 min in general. Tasks varied across sev-

eral domains including language, motor, emotion, gambling, relational,

social and working memory. These are described in Barch et al. (2013).

For this study, 25 contrasts across all seven domains were chosen for

further analysis and are shown in Table 1. Structural and diffusion-

weighted scans were collected but were not used in this study.

2.3 | HCP preprocessing

The minimally preprocessed datasets, as described in Glasser et al.

(2013) were used for all analyses. All functional data were denoised

using FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). The data

were then resampled to a set of 91,282 grayordinates in standard

space (CIFTI; Glasser et al., 2013). This structure represents the cortex

on a surface and the subcortical space and cerebellum on a voxelwise

volume basis.

2.4 | Feature extraction

All analyses were performed in MATLAB (2018). Resting-state fMRI

features were extracted following the methods outlined in Tavor et al.

(2016). First, group features were derived from concatenated rs-fMRI

time series across the four scans per subject and across subjects.

Group principal component analysis was performed to reduce the

dimensionality to 1,000. Next, group independent component analysis

was applied to each hemisphere separately to extract 40 components

per hemisphere. Features with LR symmetry were kept, resulting in

34 components per hemisphere. These 34 components were then
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used in a dual-regression analysis to extract individual features for all

350 subjects (Filippini et al., 2009). In the dual-regression step, first,

resting-state data for each subject were normalized to zero mean and

standard deviation equal to one. Next, each of the 34 components

was used as a spatial regressor in a GLM, and the temporal signal

associated with the network was extracted. This signal was then used

as a regressor in a second GLM to find the spatial maps associated

with each component at the individual level.

Subcortical structures were extracted as in Tavor et al. and resulted

in 32 subcortical structures. To obtain the final features, the individual

maps derived from dual regression and the subcortical parcellation were

regressed against the individual time series to obtain one time series

per component for each subject. Each time series was then correlated

with each grayordinates’ time series. This resulted in 100 total features

(32 subcortical plus L/R hemisphere of the 34 ICA components). The

final individual feature maps (Xi) were normalized to zero mean with a

standard deviation equal to one and then paired with the corresponding

individual z-score maps derived from the task fMRI data (yi).

In addition, the brain was parcellated. Unlike the study by Tavor

et al., where parcels were based on a group independent component

analysis (ICA), a random parcellation scheme was used in this study

with 50 parcels per hemisphere. Parcels were contiguous and were

created using a Voronoi tessellation from seeds randomly spread

across the surface. Parcels did not correspond to any functional or

structural brain network.

Three different approaches were used to map the resting-state

features to the task data: GLM, NN, and RFBag.

2.5 | Data preparation

Subjects were randomly separated into 200 training subjects, 100 test

subjects, and 50 subjects used for hyperparameter optimization for

the NN and RFBag models. The same 100 test subjects were used for

each model. In addition, a separate model was computed for each par-

cel. To examine the effect of the number of training subjects on pre-

diction accuracy, each model was trained with 10, 20, 30, 40, 50, 100,

150, and 200 subjects selected randomly from the group of training

subjects. The same training subjects were used for each model. Each

of the trained models was then applied to the 100 test subjects. Train-

ing was accomplished by first, aggregating data from the training

TABLE 1 Prediction accuracy and statistical comparisons for the GLM, NN, and RFBag methods

Prediction accuracy Repeated measures ANOVA Pairwise P-values

Domain Contrast GLM NN RFBag F-score p-value NN > GLM RFBag > GLM RFBag > NN

Language MATH 0.546 0.558 0.583 5,184 2.6E−87 2.6E−07 1.4E−33 8.8E−21

STORY 0.596 0.604 0.624 3,903 2.3E−81 2.5E−04 2.5E−27 2.9E−25

MOTOR CUE 0.673 0.689 0.702 6,572 2.5E−92 4.7E−15 1.6E−35 1.7E−13

LF 0.528 0.536 0.557 2,569 1.3E−72 1.0E−03 8.5E−31 1.5E−15

LH 0.507 0.521 0.544 2,298 2.5E−70 2.0E−05 3.7E−33 3.0E−15

RF 0.531 0.542 0.559 2,957 1.5E−75 7.8E−07 2.1E−31 2.0E−15

RH 0.509 0.517 0.545 3,049 3.5E−76 5.8E−03 6.2E−35 1.8E−17

T 0.548 0.553 0.571 2,730 6.8E−74 2.5E−02 2.3E−28 5.4E−18

AVG 0.536 0.546 0.565 3,247 1.7E−77 4.4E−05 1.3E−29 6.7E−15

Emotion FACES 0.644 0.654 0.669 5,129 4.3E−87 1.5E−08 4.4E−37 1.6E−21

SHAPES 0.624 0.631 0.655 4,420 5.8E−84 1.8E−03 6.8E−37 1.4E−25

Gambling PUNISH 0.693 0.719 0.725 10,439 3.6E−102 7.6E−28 4.1E−40 1.7E−04

REWARD 0.708 0.733 0.742 11,176 1.3E−103 1.4E−25 9.0E−44 2.4E−06

Relational MATCH 0.761 0.784 0.791 11,416 4.5E−104 1.6E−27 5.7E−50 6.5E−08

REL 0.775 0.795 0.804 14,503 3.5E−109 2.6E−21 7.7E−49 1.1E−11

Social RANDOM 0.728 0.757 0.766 15,829 4.8E−111 3.0E−31 9.1E−46 7.2E−13

TOM 0.759 0.786 0.794 32,426 2.2E−126 1.8E−29 8.8E−45 9.7E−12

Working

memory

2BK BODY 0.680 0.698 0.706 7,575 2.4E−95 7.7E−22 9.1E−42 6.3E−09

2BK FACE 0.662 0.685 0.693 7,504 3.8E−95 5.3E−26 3.9E−51 7.9E−07

2BK PLACE 0.703 0.721 0.730 10,727 9.6E−103 2.2E−20 2.5E−44 3.9E−09

2BK TOOL 0.672 0.687 0.700 5,916 4.2E−90 1.4E−15 9.1E−43 1.5E−15

0BK BODY 0.613 0.624 0.641 3,783 1.1E−80 3.0E−09 6.5E−45 8.7E−20

0BK FACE 0.589 0.604 0.616 5,679 3.0E−89 8.4E−12 6.1E−37 9.1E−13

0BK PLACE 0.707 0.726 0.736 10,517 2.5E−102 5.2E−22 1.4E−42 5.4E−12

0BK TOOL 0.683 0.694 0.710 8,194 5.2E−97 4.9E−10 1.5E−46 6.3E−18

Pairwise p values are Bonferroni corrected.
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subjects to form one large dataset, which was used to train a model

using the three methods. This model was then applied to the 100 test

subjects. These methods are schematized in Figure 1.

2.6 | GLM prediction

A GLM was used to determine β coefficients (βi) for each training sub-

ject or group of training subjects by fitting the features (Xi) to the z-

scores (yi) for each task (Equation 1). A different GLM was fit for each

parcel. Thus, each group of training subjects had 100 × 100 beta

values, one for each feature and parcel. Trained β values (βt) were then

matrix multiplied by each test subject's feature maps (Xj) to generate

predicted activation maps for that test subject (yj; Equation (2)).

βi =pinv Xið Þ•yi ð1Þ

y j =X j �βt ð2Þ

2.7 | NN prediction

The NN approach used the same features, tasks, and parcellation

scheme as the GLM approach. A feed-forward NN was created using

the fitnet function in MATLAB. A schematic of the NN model is shown

in Figure 2.

2.7.1 | Hyperparameter optimization

First, hyperparameter optimization was performed for each task on

the 50 hyperparameter optimization subjects. For the

hyperparameter optimization step, no parcellation was performed.

Data was subdivided by randomly setting aside 20% of the data for

testing and 20% for validation. The test data was used to evaluate

model performance using the root mean square error (RMSE). Three

parameters were tuned: Number of hidden layers, hidden layer size,

and learning rate. First, hidden layer size was iterated from 1 to

50 and the size that minimized the RMSE was selected. Next, the

number of hidden layers was iterated from 1 to 3 and the number

that minimized the RMSE was selected. Finally, the learning rate

was iterated from 0.001 to 0.1 at increments of 0.002. Results of

the hyperparameter optimization are shown in Figure 3a. Hidden

layer size had the largest effect on model accuracy. The number of

hidden layers had very little impact on model accuracy. Thus, one

hidden layer was chosen for subsequent analyses. Finally, RMSE

F IGURE 1 Schematic depicting
the training and prediction scheme
for the NN and RFBag models. In the
training step, data from the N training
subjects were aggregated and used to
train M separate models. Data were
randomly split into 60% training, 20%
validation, and 20% testing for each
model separately. Then, for each test
subject, each of the M models was
used to predict activation resulting in
M predicted maps per subject. The M
predicted maps were then averaged
to produce one predicted map for
each test subject. Both N and M were
varied to examine the effects of the
number of training subjects and
number of averages respectively on
the accuracy of the predicted maps

F IGURE 2 Schematic of output from the feed-forward NN
employed in this study, from the view command in MATLAB. In this
example, the input consisted of 100 rs-fMRI-derived features
connected to one hidden layer with 10 neurons; however, the hidden
layer size varied with task according to the hyperparameter
optimization. The hidden layer was, in turn, connected to the output
layer, resulting in one predicted activation value for each

grayordinate. W represents the weights of the connections between
layers and b is the bias term
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fluctuated randomly with the learning rate. Therefore, a learning

rate of 0.001 was chosen for subsequent analyses. The hidden layer

size were varied based on task, but the same value was used

regardless of the number of training subjects.

2.7.2 | Model training

Additional parameters for the feed-forward NN included a tanh acti-

vation function for the hidden layer, a Nguyen–Widrow layer initiali-

zation function (Nguyen & Widrow, 1990), and the resilient

backpropagation training function (Riedmiller & Braun, 1993a). The

network was then trained using the train function, with the mean

square error as the cost function. The network was train several times

with the number of training subjects varying from 10 to 200 (see

section 2.5). To control for overfitting, the training data was further

subdivided by randomly setting aside 20% of the data for testing and

20% for validation. Training stopped when the mean square error

reached a minimum on the validation data or 1,000 epochs were

reached. The majority of cases reached a mean square error minimum.

Trained models were then used to predict activation for the test sub-

jects using the test subjects’ features as input.

As another means of controlling for overfitting and to improve

prediction accuracy, the model was trained several times for each

number of training subjects. Each trained model was used to predict

activation for the test subjects and the results from each model were

averaged to produce the final predicted activation map (Figure 1).

Thus, for each task, 100 × #averages models were trained, one for

each parcel and each average. To examine the effects of the number

of averages on the prediction accuracy, 1, 5, 10, 20, and 50 averages

were used for 50 training subjects.

2.8 | Random forest bootstrap aggregation
prediction

Bagging also used the same features, tasks, and parcellation scheme as

the GLM approach, and a separate model was trained for each parcel.

Bagging generates many decision trees by randomly selecting subsets of

the data with replacement and a random subset of features at each split.

2.8.1 | Hyperparameter optimization

Hyperparameter optimization was also performed for the RFBag

approach using the 50 hyperparameter optimization subjects and no

parcellation. Data were subdivided by randomly setting aside 20% of

the data for testing, which was used to evaluate model performance

using the RMSE. Three parameters were tuned: Number of decision

F IGURE 3 Plots of RMSE for several hyperparameters of interest for the NN model (a) and RFBag model (b). Light gray lines show individual
tasks; thick black lines show the average across tasks. For comparison purposes, all plots were normalized so the first data point was equal to one
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F IGURE 4 Plots showing the correlation between actual and predicted activation as a function of the number of subjects used for training for
all approaches and all 25 tasks (a) and averaged across tasks (b). The plots for all approaches and the majority of tasks have an elbow around 30 or
40 training subjects, although the correlation continues to increase up to 200 subjects. Also, for all of tasks, the RFBag approach had the highest
correlation across training numbers

F IGURE 5 Plots showing the correlation between actual and predicted activation as a function of the number of models trained and averaged
for all approaches and all 25 tasks (a) and averaged across tasks (b). For the NN model, the correlation reached an asymptote around 20 averages.
The RFBag model, the correlation did not significantly past five averages. Averaging multiple models did not have as large of an effect for the
RFBag model compared to the NN model, although correlation was higher for the RFBag model across averages. In some cases, NN correlation
with 50 averages did not reach the RFBag correlation with no averages
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trees, number of predictors to sample, and the minimum leaf size. First,

the number of trees was iterated from 1 to 200 and the size that mini-

mized the RMSE was selected. Next, the number of predictors to sam-

ple was iterated from 1 to 99 and the number that minimized the RMSE

was selected. Finally, the minimum leaf size was iterated from 1 to 30.

Results of the hyperparameter optimization are shown in

Figure 3b. Results were consistent across tasks. The number of trees

had the largest effect on model accuracy, followed by the number of

sampled predictors, and the minimum leaf size had a small effect. Based

on the results, 100 trees, 33 sampled predictors, and a minimum leaf

size of 5 was chosen for subsequent analyses for all tasks and all num-

bers of training subjects.

2.8.2 | Model training

Models were trained using the TreeBagger function in MATLAB. Trained

models were then used to predict activation for the test subjects using

the test subjects’ features as input. Several models were trained with

the number of training subjects varying from 10–200 (see section 2.5).

Also, as with the NN approach, the model was trained several times for

each number of training subjects. Each trained model was used to pre-

dict activation for the test subjects and the results from each model

were averaged to produce the final predicted activation map. Like the

NN, for each task 100 × #averages models were trained, one for each

parcel and each average. To examine the effects of the number of aver-

ages on the prediction accuracy, 1, 5, 10, 20 and 50 averages were used

for 50 training subjects.

2.9 | Model evaluation

To evaluate the prediction accuracy of each model, Pearson correla-

tion coefficients (CC) were calculated between each test subject's

predicted maps and all other test subjects’ task maps, resulting in a

100 × 100 matrix for each approach and task. For these matrices, a

strong diagonal component indicates actual and predicted activation

maps are more similar for the same subject compared with the other

subjects, and therefore predict individual activation well. The matrices

were row and column normalized to account for the different vari-

ances of the actual and predicted maps. The correlation between

actual and predicted activation was compared across models with a

F IGURE 6 Non-normalized (top) and normalized (bottom) correlation matrices for the GLM (left), NN (middle), and RFBag (right) approaches.
Nine tasks are shown, including at least one task from each of the seven domains. Higher correlation along the diagonal can be seen for all
approaches and tasks. The diagonal trend is strongest for REL and TOM tasks. The diagonal is heightened for the normalized correlation matrices.
Qualitatively, the matrices look very similar across approaches, although the diagonal is slightly more prominent for the RFBag approach
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repeated-measures analysis of variance (ANOVA). Maps were also

thresholded for each subject and modeled separately using a mixture

model consisting of a Gaussian and two gamma functions (Jones et al.,

2017), and the DC was computed (Equation (3)). The median of the

upper gamma was used as the threshold. The DC was also compared

across models using repeated-measures ANOVA. Finally, to examine

the effect of the number of training subjects and number of averages

on accuracy, the mean CC value between actual and predicted activa-

tion was plotted versus number of training subjects and number of

averages respectively for each approach and task.

It is important to note there were two methods used for model per-

formance evaluation. During training, model performance was evaluated

using the mean square error on the testing subset of data from the

training subjects. Once the models were trained, they were used to pre-

dict activation for the 100 separate test subjects. Here prediction accu-

racy was defined as the Pearson's correlation between the actual and

predicted tasks.

DC =
2 A1\A2j j
A1j j+ A2j j ð3Þ

3 | RESULTS

3.1 | Effect of the number of training subjects

Figure 4 shows plots of the mean CC values as a function of the num-

ber of training subjects for all approaches and tasks. For the majority

of approaches and tasks, the plots of the CC values had an elbow

around 30–40 subjects; however, increases in CC were seen up to

200 subjects. The results discussed in this section are all reported for

200 training subjects.

3.2 | Effect of the number of averages

Figure 5 shows plots of the mean CC values as a function of the num-

ber of averages for the NN and RFBag approaches and all tasks. For

the NN approach, the plots of the CC values had an elbow around

20 averages. For the RFBag approach, an elbow was seen around five

averages. Thus, 20 averages were used for the NN approach and five

averages were used for the RFBag approach.

TABLE 2 Dice coefficient and statistical comparisons for the GLM, NN, and RFBag methods

Dice coefficient Repeated measures ANOVA Pairwise p-values

Domain Contrast GLM NN RFBag F-score p-value NN > GLM RFBag > GLM RFBag > NN

Language Math 0.308 0.316 0.328 952 1.3E−52 1.7E−01 3.0E−05 2.1E−02

Story 0.494 0.508 0.514 1,581 1.1E−62 1.6E−02 7.0E−05 1.8E−01

Motor CUE 0.108 0.202 0.138 271 4.3E−30 2.3E−15 1.6E−04 3.1E−11a

LF 0.321 0.327 0.333 873 6.6E−51 4.7E−02 2.0E−08 7.4E−02

LH 0.284 0.295 0.297 600 8.4E−44 3.7E−02 1.7E−02 1.0E+00

RF 0.311 0.317 0.320 841 3.5E−50 2.4E−02 1.6E−05 3.2E−01

RH 0.280 0.286 0.291 699 1.2E−46 1.1E−01 4.5E−05 2.5E−01

T 0.324 0.336 0.345 725 2.4E−47 1.8E−05 2.0E−12 1.5E−03

AVG 0.297 0.302 0.309 927 4.5E−52 3.8E−01 1.1E−06 2.3E−02

Emotion Faces 0.466 0.472 0.480 856 1.6E−50 9.6E−02 2.7E−08 5.5E−05

Shapes 0.379 0.387 0.391 486 5.7E−40 2.3E−02 1.2E−03 3.1E−01

Gambling Punish 0.450 0.477 0.480 1,516 7.8E−62 8.6E−09 3.7E−10 8.7E−01

Reward 0.477 0.499 0.505 2,200 2.0E−69 4.9E−10 1.8E−13 5.8E−02

Relational Match 0.467 0.500 0.512 2,005 1.6E−67 1.0E−19 2.2E−31 7.1E−08

REL 0.484 0.497 0.509 1,966 4.0E−67 4.3E−05 2.1E−12 3.7E−05

Social Random 0.485 0.516 0.520 1,614 4.3E−63 7.1E−14 9.3E−18 7.1E−02

TOM 0.469 0.493 0.496 1,846 7.9E−66 9.1E−11 2.7E−13 3.1E−01

Working

memory

2BK Body 0.453 0.453 0.468 2,975 1.1E−75 1.0E+00 2.5E−11 2.9E−08

2BK Face 0.433 0.445 0.451 2,502 4.4E−72 5.4E−04 1.5E−09 2.9E−02

2BK Place 0.497 0.507 0.451 3,242 1.8E−77 1.4E−03 6.3E−19 2.6E−09

2BK Tool 0.442 0.452 0.462 2,640 3.4E−73 1.9E−04 7.2E−16 4.6E−04

0BK Body 0.437 0.441 0.457 1,715 2.5E−64 3.4E−01 6.6E−13 5.4E−11

0BK Face 0.421 0.434 0.440 1,748 1.0E−64 4.9E−04 6.0E−08 7.2E−02

0BK Place 0.519 0.545 0.556 2,032 8.6E−68 3.4E−09 2.8E−15 1.4E−04

0BK Tool 0.497 0.509 0.523 2,087 2.4E−68 8.4E−05 5.8E−16 9.2E−07

aNN > RFBag; Pairwise p values are Bonferroni corrected.
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3.3 | Comparison to Tavor et al.

First, we were able to replicate the results of Tavor et al. in a set of

350 HCP subjects, which included 252 subjects not included in the

original study. We saw strong diagonalization of the normalized and

nonnormalized CC matrices across tasks using the GLM approach.

3.4 | Prediction accuracy (correlation)

Overall, as in Tavor et al. (2016) and Jones et al. (2017), both the

actual and predicted activation maps varied between subjects in terms

of the strength and size of activation. For all approaches, prediction

accuracy varied across the task domain and between tasks within the

same domain. For example, for the motor domain, mean CC between

actual and predicted activation ranged from 0.544 for the LH task to

0.702 for the CUE task for the RFBag approach. In general, the gam-

bling, relational, and social domains performed the best, with a mean

CC > 0.7, while the motor domain performed the worst, with a mean

CC < 0.6. Mean CC values for all methods and tasks are summarized

in Table 1. Quantitatively, the RFBag and NN approach outperformed

the GLM approach, with significantly higher CC values for all tasks. In

addition, the RFbag approach had significantly higher CC compared to

the NN approach for all tasks.

Correlation maps between actual and predicted activation were

constructed and show the correlation between the actual activation

map and the predicted activation maps of all other subjects. They

showed a higher correlation along the diagonal for all approaches and

tasks, indicating the predicted activation maps more closely matched

the actual maps for the same subject compared to all other subjects.

This diagonal trend was stronger for the gambling, relational, and

F IGURE 7 Example actual (top), predicted (middle), and overlap (bottom) maps for the GLM, NN, and RFBag models for the RANDOM (left),
STORY (middle), and LH (right) tasks for one representative subject. Only positive activation is shown. Significant overlap is seen for all three
approaches and tasks; however, additional overlap can be seen for the RFBag approaches as illustrated by the red arrows. For the LH case, the
GLM model approach resulted in more spurious predicted activation compared to the NN and RFBag approaches (white arrow)
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social domains compared with the others. Correlation maps were also

row and column normalized to allow for comparison across subjects.

The diagonal component was heightened for the normalized matrices.

The normalized and non-normalized CC matrices were qualitatively

similar across approaches. Example matrices from nine tasks are

shown in Figure 6.

3.5 | Dice coefficient

Maps were thresholded using a mixture model method and used to

calculate the DC. Overall, the DC results mirrored the CC results. The

emotion, gambling, relational, and social tasks performed the best with

DC > 0.5 for all tasks within those domains. The RFBag approach per-

formed the best, with a significantly higher DC for the majority of

tasks as compared with the other approaches. Quantitative DC results

are shown in Table 2. Visually, the overlap was similar across

approaches. Figure 7 shows examples of actual, predicted, and overlap

maps for the RANDOM, STORY, and LH tasks.

4 | DISCUSSION AND CONCLUSIONS

In this study, several regression models to predict task activation from

rs-fMRI were compared, including GLMs, neural networks, and ran-

dom forests. First, the effect of the number of training subjects on

accuracy was analyzed by varying the number of subjects used for

training from 10 to 200 subjects. Accuracy increased with training

number for all approaches up to 200 subjects, but an elbow occurred

around 30–40 subjects. The effect of averaging the results of multiple

models was also investigated for the NN and RFBag approaches.

Increasing accuracy was seen as a function of number of averages. In

addition, the results from Tavor et al. (2016) in which a GLM was

used, were replicated on a set of 350 HCP subjects. Similar results

were found in our analysis, including a strong diagonalization of the

cross-correlation matrices and variable correlation strengths across

tasks. Next, the analysis was expanded using more complex regression

models. Significantly higher accuracy, defined as the correlation

between actual and predicted activation, was achieved by using the

RFBag approach compared to NN and GLM approaches.

The effect of the number of training subjects on prediction accu-

racy was analyzed for all approaches and tasks. CC increased with

training number for all tasks and models up to the maximum number

of subjects (200) tested. These results indicate all models can benefit

from additional training subjects; however, practically, 200 subjects

may not be feasible. These results also indicate similar results can be

obtained for the GLM approach with 200 subjects and the NN and

RFBag approaches with 30–50 subjects. In addition, although the CC

versus training number curves increased up to 200 subjects, they have

an elbow at 30–40 raining subjects, which indicates that fewer train-

ing subjects may produce adequate results.

The accuracy of both the NN and RFBag approaches improved by

averaging the results of several trained models; however, the NN

approach benefitted more. This averaging technique essentially

creates an ensemble method, which acts as a regularizer decreasing

bias and/or reducing variance. The random forest method is already

an ensemble method, averaging the predictions from multiple models.

Thus, averaging the results of several models had a smaller effect and

tended to level off around five averages. On the other hand, the NN

technique is not inherently an ensemble method, so more averages

had a larger effect.

There are several NN training types available in MATLAB, includ-

ing resilient backpropagation, Levenberg–Marquardt, and scaled con-

jugate gradient backpropagation, among others. Of the methods we

tested, we found that the resilient back propagation method worked

best for the type of analysis used in this study. Resilient back propaga-

tion is a gradient descent algorithm that is dependent on only the sign,

not the magnitude, of the partial derivatives (Riedmiller & Braun,

1993a). This approach typically converges faster than other gradient

descent algorithms.

One issue with NN approaches is that they have the potential to

overfit the training data, which leads to a model that fits the training

data very well but does not generalize when applied to new data. To

account for this, 20% of the training data was set aside as test data and

20% as validation data. Throughout the training, the model was tested

on the test data, and the loss function (i.e., mean square error) was

computed on the validation data. The training stopped when the valida-

tion loss function was minimized. The test data is not seen by the model

when training, which allows the model to be tested on unseen data. In

this way, the generalizability of the model can be maintained. Another

approach to reduce NN overfitting is the dropout method where nodes

and their connections are randomly dropped during training (Srivastava,

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). This creates a

number of “thinned” networks. During testing, all nodes remain and

their weights are multiplied by the probability a node is present at train-

ing time. It may be worthwhile comparing this method to the NN

approach with averaging as it also creates a NN ensemble.

Although hyperparameter optimization was used for the RFbag

approach, another option that can be used is feature reduction, which

determines the importance of individual features and excludes less

important features from the training process. Feature reduction was

not used in this study.

The HCP dataset consists of more than 80 task contrasts collected

across seven task-fMRI scans. Previous work by Tavor et al. analyzed

43 of these contrasts and found a wide variability in the ability of rs-

fMRI to predict task activation, with correlation values between actual

and predicted task activation ranging from 0.12 for the GAMBLING

−PUNISH−REWARD task to 0.80 for the RELATIONAL−MATCH task

(Tavor et al., 2016). In this study, 25 tasks were selected to provide a

range of correlation values to evaluate the ability of the more

advanced regression approaches to improve predictions for both

“good” and “bad” tasks across several task domains. Thus, several

motor tasks were chosen that performed poorly in the Tavor et al.

study. These included MOTOR−LH, MOTOR−RH, MOTOR−LF, and

MOTOR−RF. We also selected tasks that performed well in the Tavor

et al. study. These include gambling, relational, social, and multiple

WM-2BK tasks. For all tasks, the NN and RFbag models resulted in
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higher actual and predicted task correlation compared with the GLM,

and they did not improve the poorer performing tasks more than the

better-performing tasks.

It does appear, however, that the NN prediction accuracy was

closer to the RFBag prediction accuracy for tasks with higher correla-

tion in general. For example, the majority of motor tasks had mean

correlation values <0.6 (Table 1 and Figure 4). For these tasks, there

was a large gap between the NN and RFBag correlation values. For

the PUNISH and REWARD tasks where correlation values were

greater than 0.7, the NN and RFBag correlation values were much

closer. For many of the tasks with lower correlation values, there was

not much difference between the GLM and NN approaches, especially

with lower numbers of training subjects.

Despite significantly higher CCs between actual and predicted

maps for the RFBag and NN models compared with the GLM, both

the un-normalized and normalized CC matrices (Figure 6) looked qual-

itatively similar, and the diagonal component was strong for the

majority of tasks for all approaches. Furthermore, overlap maps of

actual and predicted activation also appeared qualitatively similar

despite the significantly higher DC for the NN and RFBag models

compared with the GLM. Of note, the DC and the overlap maps them-

selves are dependent on the threshold chosen. Here, a mixture model

was used to threshold the data by fitting a Gaussian and two gamma

functions—one positive and one negative—to the histogram of z-

scores. This was done separately for the actual task, predicted task,

model, and subject, and considered the lower values on average for

the predicted compared with the actual task z-scores.

The GLM is significantly faster and uses fewer computational

resources compared with the NN and bagging approaches. For exam-

ple, the NN model was trained using a GPU on a Linux workstation

with 256 GB of RAM and a GeForce GTX 1080 Titan graphics card.

Training all subjects took approximately 30 s per subject for the NN

model, whereas it took <1 s for the GLM, and prediction for the indi-

vidual approaches took up to 2 min per subject when the number of

training subjects was 200. Thus, if time is limited and/or the necessary

computational resources are unavailable, the GLM is a viable option.

This study was not without limitations. First, all approaches were

trained on a voxelwise (or gray ordinate wise) basis for each parcel.

Thus, aside from the parcellation, neither model incorporated spatial

information. Including a spatial component to the model could further

improve results. Machine learning approaches such as convolutional

neural networks (CNNs) inherently take spatial information into

account. CNNs can take 2D or 3D images as input to train a model.

They have been used in MRI for image reconstruction, tissue segmen-

tation, tumor segmentation, and fMRI analysis (Choi & Jin, 2016; Jang,

Plis, Calhoun, & Lee, 2017; Kamnitsas et al., 2017; Meszlenyi, Buza, &

Vidnyanszky, 2017; Pham, Ducournau, Fablet, & Rousseau, 2017; Qin

et al., 2019; Valverde et al., 2017). CNNs may be worth considering in

future studies. This study used HCP data, which has high temporal

and spatial resolution, and 1 hr of rs-fMRI scans per subject. Clinical

data typically are of lower quality and have shorter scan times and

lower resolution. Furthermore, patient data tend to be more variable

compared with that of control subjects. Parker Jones et al. (2017)

found promising results by extending the GLM model to a group of

patients who performed a category fluency task with only 5 min of

resting-state fMRI (TR = 3.5 s). Future studies are underway to apply

these models in a patient setting. As mentioned, feature selection was

not employed in this study. More extensive hyperparameter tuning

and feature selection might be explored in future studies.

In conclusion, advanced regression techniques were used to pre-

dict task activation from rs-fMRI data. All models accurately predicted

task activation for a wide range of task domains on an individual basis;

however, higher correlation between actual and predicted task activa-

tion was seen for the RFBag model compared to the NN model and

the previously studied GLM.
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