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Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited thera-
peutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune
responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed
to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines.
The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational
development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of
cancer vaccines including fusions of DC and whole tumor cell.

1. Introduction

The mechanism of action for most cancer vaccines is mainly
mediated through cytotoxic T lymphocytes (CTLs). We are
now gaining a clear understanding of the cellular events lead-
ing to an effective CTL-mediated antitumor immunity. The
antigen-presenting cells (APCs) most suitable for cancer vac-
cines are dendritic cells (DCs), which can be distinguished
from B cells and macrophages by their abundant expression
of costimulatory molecules and abilities to initiate a strong
primary immune response [1, 2]. DCs are specialized to
capture and process tumor-associated antigens (TAAs),
converting the proteins to peptides that are presented on
major histocompatibility complex (MHC) class I and class
II molecules [3]. After TAAs uptake and inflammatory
stimulation, immature DCs in peripheral tissues undergo a
maturation process characterized by the upregulation of cos-
timulatory molecules [2, 3]. During this process, mature DCs
migrate to T-cell areas of secondary lymphoid organs, where

they present antigenic peptides to CD8+ and CD4+ T cells
through MHC class I and class II pathways, respectively, and
become competent to present antigens to T cells, thus ini-
tiating antigen-specific CTL responses [4]. Antigen-specific
CTLs in turn can attack tumor cells that express cognate anti-
genic determinants or can provide help for B-cell responses
that produce antibodies, which can also lead to tumor cell
death in some cases [5]. Thus, the mechanism of action for
cancer vaccines, based on harnessing host immune cells to
infiltrate tumors and to exert CTL responses, is quite differ-
ent from that of a traditional cytotoxic chemotherapy [6].

2. DC-Based Cancer Vaccines

A major area of investigation in induction of antitumor
immunity involves the design of DC-based cancer vaccines
[7]. DCs derive their potency from constitutive and inducible
expression of essential costimulatory molecules including
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B7, ICAM-1, LFA-1, LFA-3, and CD40 on the cell surface
[1, 8, 9]. These proteins function in concert to generate
a network of secondary signals essential for reinforcing
the primary antigen-specific signals in T-cell activation.
Therefore, many strategies have been developed to load TAAs
onto DCs and used as cancer vaccines. For example, DCs
are pulsed with synthetic peptides derived from the known
antigens [10], tumor lysates [11], tumor RNA [12, 13], and
dying tumor cells [14] to induce antigen-specific antitumor
immunity. Although the production of DC-based cancer
vaccines for individual patients with cancer has currently
been addressed in clinical trials, a major drawback of these
strategies comes from the limited number of known anti-
genic peptides available in many HLA contexts. Moreover,
the results of clinical trials using DCs pulsed with antigen-
specific peptides show that clinical responses have been
found in a small number of patients [15, 16]. To overcome
this limitation, we have proposed the fusions of DCs and
whole tumor cell (DC/tumor) to generate cell hybrids with
the characteristics of APCs able to process endogenously
provided whole TAAs [17]. The whole tumor cells may be
postulated to serve as the best source of antigens [17–21].

3. DC/Tumor Fusion Vaccines

The fusion of DC and tumor cell through chemical [17],
physical [22], or biological means [23] creates a heterokaryon
which combines DC-derived costimulatory molecules, effi-
cient antigen-processing and -presentation machinery, and
an abundance of tumor-derived antigens including those
yet to be unidentified (Figure 1). Thus, the DC/tumor
fusion cells combine the essential elements for presenting
tumor antigens to host immune cells and for inducing
effective antitumor responses. Now, it is becoming clear
that the tumor antigens are processed along the endogenous
pathway, through the antigen processing machinery of
human DC. Thus, it is conceivable that tumor antigens
synthesized de novo in the heterokaryon are processed and
presented through the endogenous pathway. The advantage
of DC/tumor fusion vaccines over pulsing DC with whole
tumor lysates is that endogenously synthesized antigens have
better access to MHC class I pathway [18–21]. Indeed, it
has been demonstrated that DC/tumor fusion vaccines are
superior to those involving other methods of DC loaded with
antigenic proteins, peptides, tumor cell lysates, or irradiated
tumor cells in murine models [18–21]. The efficacy of anti-
tumor immunity induced by DC/tumor fusion vaccines has
been demonstrated in murine models using melanoma [24–
32], colorectal [17, 30, 31, 33–41], breast [42–47], esophageal
[48], pancreatic [49, 50], hepatocellular [51–55], lung
[22, 41, 56–59], renal cell [60] carcinoma, sarcoma [61–
66], myeloma [67–74], mastocytoma [75], lymphoma [76],
and neuroblastoma [77]. The fusion cells generated with
human DC and tumor cell also have the ability to present
multiple tumor antigens, thus increasing the frequency of
responding T cells and maximizing antitumor immunity
capable of killing tumor targets such as colon [78–84], gastric
[85, 86], pancreatic [87], breast [47, 88–93], laryngeal [94],
ovarian [95–97], lung [85, 98], prostate [99, 100], renal cell

[101, 102], hepatocellular [103–105] carcinoma, leukemia
[106–111], myeloma [112, 113], sarcoma [114, 115], me-
lanoma [116–119], glioma [120], and plasmacytoma [121].

4. Monitoring of DC/Tumor Fusion
Cell Preparations

Despite the strong preclinical evidences supporting the use
of DC/tumor fusions for cancer vaccination, the results of
clinical trials so far reported are conflicting [18–21]. One
of the reasons is the evidence for fusion cell formation
used as clinical trials is not definitive [23]. The levels of
fusion efficiency, which can be quantified by determining
the percentage of cells that coexpress tumor and DC
antigens, are closely correlated with CTL induction in vitro
[82, 83]. Another reason is immunosuppressive substances
such as TGF-β derived from tumor cells used for fusion
cell preparations [35, 47]. Although tumor-derived TGF-β
reduces the efficacy of DC/tumor fusion vaccines via an in
vivo mechanism [35], the reduction of TGF-β derived from
the fusions inhibits the generation of Tregs and enhances
antitumor immunity [47]. Moreover, the therapeutic effects
in patients vaccinated by DC/tumor fusions are correlated
with the characteristics of the DCs used as the fusion vaccines
[82, 83]. Indeed, patient-derived fusions show inferior levels
of MHC class II and costimulatory molecules and produce
decreased levels of IL-12 and increased levels of IL-10,
as compared with those obtained from fusions of tumor
cell and DC from healthy donors [87, 103]. However,
the fusion vaccines induce recovery of DC function in
metastatic cancer patients [103]. Therefore, it is important
to assess the phenotype and function of DC/tumor fusion
cell preparations used in each vaccination.

5. In Vivo Monitoring

The delayed-type hypersensitivity (DTH) is an inflammatory
reaction mainly mediated by CD4+ effector memory T cells
that infiltrate the site of injection of an antigen against which
the immune system has been primed by cancer vaccines
[122]. Actually, soluble proteins, peptides, or antigens pulsed
DCs have been injected intradermally, and the diameter of
erythema or induration after 48–72 h is measured. CD4+
effector memory T cells that recognize the antigens presented
on local APCs mediate the immune responses by releasing
cytokines, resulting in an increased vascular permeability
and the recruitment of monocytes and other inflammatory
cells in the site. CD8+ T cells less frequently also mediate
similar responses [123]. It has been reported that antigen-
specific T cells can be readily detected in skin biopsies
from DTH sites, much less in abdominal lymph nodes, and
not in peripheral blood and tumor site [124]. Moreover,
there is a significant correlation between favorable clinical
outcome and the presence of vaccine-related antigen-specific
T cells in biopsies from DTH sites [122]. Indeed, the
increased DTH reactivity against tumor antigens has been
observed in clinical responders by DC/tumor fusion vaccines
[125]. In almost patients with cancer, T cells from lymph
nodes and the tumor site itself are not readily available for
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Figure 1: A model of antigen processing and presentation by DC/tumor fusion cell. DC/tumor fusion cell expresses MHC class I, class II,
costimulatory molecules, and tumor-associated antigens. Tumor-associated antigens can be processed and presented through the antigen
processing and presentation pathway of DC.

monitoring purposes. Therefore, functional assessment of
antigen-specific T cells from such DTH sites may serve as
an additional strategy to evaluate antigen-specific antitumor
immune responses [122, 126, 127].

6. T-Cell Monitoring In Vitro

The mechanism of cancer vaccines, based on inducing CTLs,
infiltrating tumors, and exerting T-cell-mediated cytotoxic
effects, is quite different from that of cytotoxic chemo-
therapy. As cancer vaccines do not work as quickly as
chemotherapy which has a direct cytotoxic effect, the Re-
sponse Evaluation Criteria in Solid Tumors (RECIST) and
WHO criteria [128, 129], designed to detect early effects
of cytotoxic chemotherapy, cannot appropriately evaluate
the response patterns observed with cancer vaccines. The
RECIST criteria are highly dependent upon measurement
of tumor size. They presume that linear measures are an
adequate substitute for 2-dimentional methods and regis-
ter four response categories: CR (complete response), PR
(partial response), SD (stable disease), and PD (progressive
disease). However, in the solid tumors, there exist not

only antigen-specific CTLs but also immune suppressive
cells such as myeloid-derived suppressor cells (MDSCs)
[130], immunosuppressive tumor-associated macrophages
(TAMs) [131], and cancer associated fibroblasts (CAFs)
[132] (Figure 2). After vaccination, the solid tumors may
become heavily infiltrated by immune-related cells resulting
in an apparent increase in size of lesions, which is, at
least in part, due to the infiltration of CTLs induced by
cancer vaccines. Therefore, the development of new response
criteria, including immunologic cellular monitoring, is of
great importance in the development of cancer vaccines.

In clinical trials, the peripheral blood T-cell responses
are generally accessible for serial analyses. The currently
used methods of assessing T-cells from patients treated with
cancer vaccines are T-cell proliferation, cytokine profile,
cytotoxic T lymphocyte assays (CTL assays), CTL-associated
molecules (CD107, perforin, granzyme B, and CD154),
multimer analysis, T-cell receptor (TCR) gene usage, and
immune suppression assays (Table 1). While these assays
can be also used for monitoring cellular immune responses
induced by DC/tumor fusion vaccines, none has been stand-
ardized. As DC/tumor fusion vaccines can induce defined
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Figure 2: Immune suppressive responses at the tumor microenvironment. Tumor cells secrete various factors such as VEGF, IL-6, IL-10,
TGF-β, Fas-L, IDO, PD-L1, and microvesicles, all of which promote the accumulation of heterogeneous populations of tumor-associated
macrophage (TAM), myeloid-derived suppressor cell (MDSC), or tolerogenic DC. These immunosuppressive cells inhibit antitumor
immunity by various mechanisms, including elaboration of reactive oxygen species (ROS) and nitrogen oxide (NO). The tumor
microenvironment also promote the accumulation of regulatory T cell (Treg) that suppresses CD8+ CTL function through secretion of
IL-10 or TGF-β from Tregs and tumor cells.

and undefined antigen-specific antitumor activities, immu-
nologic cellular monitoring for the fusion vaccines is much
more complex. Furthermore, as immune responses induced
by DC/tumor fusion vaccines are a balanced mosaic of both
immune stimulatory and suppressive responses [92], multi-
ple monitoring assays for the clinical efficacy parameters may
be needed to evaluate the antitumor immune responses.

6.1. T-Cell Proliferation. T-cell proliferation assay assesses
the number and function at the level of the entire T-cell
population in the culture. Therefore, the ability to detect T-
cell responses is based on the proliferative potential of the
cells in response to antigens. The most commonly used in
vitro method for measuring antigen-specific T-cell prolife-
ration is the assessment of T-cell clonal expansion following
incubation of T-cells with antigens in the presence of a radio-
labeled nucleotide (e.g., [3H] thymidine) in vitro. CFSE
(5-(and-6)-carboxyfluorescein diacetate succinimidyl ester)
staining can be also used to directly detect proliferative
responses of T-cells [82]. Because CFSE is partitioned equally
during cell division [133], this technique can monitor T-
cell division and determine the relationship between T-
cell division and differentiation in vitro and in vivo. The
extensive T-cell proliferation can be demonstrated by the
few undivided T-cells left and from proper accumulation
of activated T cells, as shown by the increase in T-cell
counts correlating with the decrease in CFSE label for
each division. The CFSE-based assays are equivalent to
traditional measures of antigen-specific T-cell responsiveness
and have significant advantages for the ability to gate
on a specific population of T-cells and the concomitant
measurement of T-cell phenotype [134]. After vaccination,
DC/tumor fusion cells can migrate to the T-cell area in the

Table 1: Immunologic monitoring.

Inflammatory
skin reaction

DTH

T-cell
proliferation

[3H] thymidine uptake

CFSE dilution

Cytokine profile
ELISPOT assay

Secretion of cytokines

Intracellular cytokines

CTL assays
51Cr-release assays

Flow cytometry-based cytotoxicity assays
(Caspase-3, Anexin-V)

CTL-associated
molecules

Perforin

Granzyme B

CD107a and b expression in CD8+ T cells

CD154 expression in CD4+ T cells

T cell phenotype
Multimer analysis

TCR analysis

Immune
suppression
assays

CD25, FOXP3, IL-10, TGF-beta

DTH; delayed type hypersensitivity

CFSE; 5-(and-6)-carboxyfluorescein
diacetate succinimidyl ester

TCR; T-cell receptor

regional lymph nodes and form clusters with CD8+ and
CD4+ T cells [34]. Simultaneous recognition of cognate
peptides presented by MHC class I and class II molecules
on DC/tumor fusion cell is essential in the induction of
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efficient CTLs. Therefore, measuring antigen-specific CD8+
and CD4+ T-cell proliferation is essential to evaluate the
induction of vaccine-specific immune responses. Although
T-cell proliferation assay is usefulness to detect immune
responses in vitro, the results are strongly influenced by the
in vitro stimulation procedures. Stimulation of naive T cells
from healthy donors with DC/tumor fusions in vitro results
in potent proliferation of CD4+ and CD8+ T cells [34, 80].
Therefore, to assess DC/tumor fusion vaccines, antigen-
specific CD4+ and CD8+ T cells need to be expanded
by stimulation with autologous tumor lysates [103]. In
addition, the frozen peripheral blood mononuclear cells
(PBMCs) obtained before and after vaccination must be
processed in the same set of experiments [103, 135, 136].
As T-cell proliferation assay is biologically irrelevant and
imprecise for the reasons stated above, this assay may not be
emphasized in future studies.

6.2. Cytokine Production. There is a currently great interest
in the assay of polyfunctional T cells, secreting multiple
cytokines (e.g., secreting IFN-γ and TNF-α rather than
either alone), or expressing multiple surface markers. As
the release of Th1 cytokines such as IFN-γ and TNF-α is
important to determine long-lasting antitumor immunity,
a shift to Th1 response by cancer vaccines is essential
for therapeutic potential in murine models [36, 37, 67,
77, 137, 138]. Therefore, it is important to test whether
cancer vaccines can induce a Th1 response in the tumor-
specific T cells, and what impact might this have on
the clinical responses. Cytokine production by T cells in
response to antigens can be detected in individual T cells
by enzyme-linked immunospot (ELISPOT) assay [18–21,
139]. Moreover, production of IFN-γ captured by antibodies
bound to T-cell surface can be detected by flow cytometry
analysis [96, 140]. The actual state of antigen specific T-
cell reactivity directly from peripheral blood T cells can
be quantified by IFN-γ ELISPOT assay and flow cytometry
analysis [18–21, 141]. As the IFN-γ ELISPOT assay shows
highly reproducible results among different laboratories, the
ELISPOT may be an ideal candidate for robust monitoring of
T-cell activity [18–21, 142]. Coculture of CD4+ and CD8+
T cells from healthy donors with DC/tumor fusions results
in high levels of IFN-γ production and low levels of IL-10
production [50, 54, 80, 143]. Therefore, to assess DC/tumor
fusion vaccines precisely, T cells obtained before and after
vaccination might be directly quantified with stimulation
of autologous tumor lysates in vitro [103]. In effective
clinical responders, comparable levels of IFN-γ production
in response to tumor lysates may be detected in PBMCs
obtained before vaccination. A correlation between IFN-γ
ELISPOT outcome and effective clinical responses (period
free of relapse or survival) has been found in patients
treated with cancer vaccines including DC/tumor fusions
[103, 135, 136, 144].

6.3. CTL Assays. For immune monitoring of cancer vaccines,
T-cell-mediated CTL assays are appealing because measure-
ment of the ability of CTL to kill tumor targets is thought

to be a relevant marker for antitumor activity. It has been
assumed that the cytotoxicity has been measured in 51Cr-
release assays in vitro. One drawback to the CTL assays
is their relative insensitivity. Instead of 51Cr release assays,
flow cytometry-based methods have been developed to assess
CTL activity [145, 146]. Flow cytometry CTL assays can
be predicated on measurement of CTL-induced caspase-3
or annexin-V activation in target cells through fluorescence
detection, which are more sensitive to conventional 51Cr
release assays [145–147]. These assays show increased sen-
sitivity at early time points after target/effector cell mixing
and allow for analysis of target cells in real time at the single-
cell level. However, it is unusual to detect antigen-specific
killing by T cells directly isolated from the patients vaccinated
with DC/tumor fusions even with the use of flow cytometry-
based CTL assays [103, 148]. Therefore, there is a need to
stimulate and expand the antigen-specific T cells in vitro for
several days. These stimulations may distort the phenotype
and function of the T-cell populations from tumor state.
Moreover, it is difficult to obtain sufficient numbers of viable
tumor cells from primary lesion due to the length of culture
time and potential contamination of bacteria and fungus
[79]. Thus, semiallogeneic targets with shared TAAs and
MHC class I molecules are necessary instead of autologous
targets. Importantly, a majority of the antigen-specific CD8+
CTLs in peripheral blood may not be tumor reactive due
to various mechanisms such as downmodulation of MHC
class I molecules on tumors and presence of Tregs at the
tumor site. Indeed, cytotoxic activity against autologous
targets has been observed in peripheral blood T cells from
patients vaccinated with DC/tumor fusions by CTL assays
[103, 148], but the clinical responses from early clinical trails
in patients with melanoma, glioma, gastric, breast, and renal
cancer are muted [103, 130, 134, 135, 142, 143, 148–154].
The defects of the clinical responses may be caused by the
immunosuppressive influences derived from the local tumor
microenvironment [103]. In addition, therapeutic antitumor
immunity depends on highly migratory CTLs capable of
trafficking between lymphoid and tumor sites [155]. There-
fore, localization of antigen-specific CTLs demonstrated by
analysis of biopsy samples from tumor sites may be directly
associated with clinical responses [155].

6.4. Tumor-Specific CD8+ and CD4+ T Cells. The population
of CD8+ CTLs can destroy tumor cells through effector
molecules (e.g., perforin and granzyme B) [156]. Degran-
ulation of CD107a and b is a requisite process of per-
forin/granzyme B-dependent lytic fashions mediated by res-
ponding antigen-specific CTLs. These perforin/granzyme B-
dependent lytic fashions require degranulation of CD107a
and b in CD8+ CTLs [5]. Therefore, measurement of
CD107a and b, perforin, or granzyme B expression by flow
cytometric analysis can be combined with intracellular IFN-
γ staining to more completely assess the functionality of
CD8+ CTLs [83, 87]. Moreover, autologous tumor-induced
de novo CD154 expression in CD4+ T cells is highly
sensitive for tumor-specific Th cells [157]. The coupling
of CD154 expression with multiplexed measurements of
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IFN-γ production provides a greater level of detail for the
study of tumor-specific CD4+ T-cell responses. Although
DC/tumor fusion vaccines have abilities to induce CD107+
IFN-γ+ CD8+ T cells and CD154+ IFN-γ+ CD4+ T cells
upon autologous tumor encounter in vitro [83, 87], it has
now been unclear the correlation of the assay with clinical
outcome.

6.5. Multimer Assays. Now, it has become possible to analyze
antigen-specific CD8+ and CD4+ T cells by flow cyto-
metric analysis using multimeric MHC-peptide complexes,
measuring the affinity of the TCR to a given epitope
[158]. The MHC-peptide multimer analysis is more sensitive
to conventional CTL assays [158]. Although DC/tumor
fusion vaccines can induce defined and undefined antigens-
specific CD8+ and CD4+ T cells, the multimer analysis can
only be used to detect immune responses against defined
antigenic epitopes expressing in tumor cells [21]. MHC-
peptide multimers stably bind to the TCR exhibiting a certain
minimal avidity. Hence, there are principal limitations of
the multimeric analysis including the suitability and speci-
ficity of multimers and the lack of information about the
functionality of multimer-positive T cells [158]. The specific
role of the multimer-positive T cells for cancer vaccine
efficacy has not yet been well established in the setting of
clinical trials. Recent studies suggest that effective cancer
vaccines not only stimulate CTL activity, but also sustain
long-term memory T cells capable of mounting strong
proliferative and functional responses to secondary tumor
antigen challenge [159]. Therefore, it is more important
to assess whether multimer-positive T cells are effector
or effector-memory cells. Moreover, the combined use of
multimers and functional assays such as IFN-γ analysis may
have provided some insight into the functional activity of
these cells. It has been demonstrated that cryopreserved
PBMCs from melanoma patients vaccinated with gp100
peptide show that the majority of multimer-positive CD8+ T
cells had either a long-term “effector” (CD45RA+ CCR7−)
or an “effector-memory” (CD45RA− CCR7−) phenotype
[160]. Interestingly, after vaccination, the resected melanoma
patients can mount a significant antigen-specific CD8+ T
cell immune response with a production of IFN-γ and
high proliferation potential [160]. To date, no studies have
evaluated the functional activity of multimer-positive T cells
in the blood after vaccination with DC/tumor fusions.

6.6. TCR. Only T cells having a TCR specific for a given
antigen are triggered by interaction with cancer vaccines.
This activation results in the clonal expansion of antigen-
specific T cells that can be followed by TCR Vβ gene usage.
Recently, the availability of a large panel of monoclonal
antibodies against TCRs, mainly Vβ epitopes, allows one
to study the TCR repertoire by flow cytometry [161]. PCR
techniques can also be used to detect a restricted TCR
repertoire from small amounts of T cells without biases
caused by ex vivo expansions [162]. Although DC/tumor
fusion vaccines have resulted in selection and expansion of
T-cell clones [87], the generation of antitumor immunity

by CTLs has not correlated with clinical responses. Tumors
may evade surveillance of CTLs by distinct mechanisms.
Immunogenic tolerance to a particular set of antigens is the
absence of an immune response to those antigens, which
can be achieved by processes that result in T-cell anergy
(antigen-specific unresponsiveness), T-cell unresponsiveness
(generalized dysfunction), and T-cell deletion (apoptosis)
[163]. Future fusion vaccine studies should be designed to
determine whether T-cell dysfunction correlated with clinical
outcome.

6.7. Immune Suppression Assays. Although antigen-specific
CTLs can be generated and detected in the circulation of
vaccinated patients, these do not usually act against the
tumor. It has been documented that immune suppressive
cells can counteract antitumor immune responses. In tumor
microenvironment, there are not only CTLs but also many
immune suppressive cells such as CD4+ CD25high+ Foxp3+
Tregs [103, 164], MDSCs [130], TAMs [131], and CAFs [132]
(Figure 2). Moreover, tumor cells produce immunosuppres-
sive substances such as transforming growth factor β (TGF-
β) [165] vascular endothelial growth factor (VEGF) [166],
IL-6 [167], IL-10 [167], soluble Fas ligand (Fas-L) [168],
programmed death-1 ligand (PD-L1) [169], indolamine-
2,3-dioxygenase (IDO) [170], and microvesicles [171]. Type
1 regulatory T cells (Tr1) expressing CD39 may mediate
suppression by IL-10, TGF-β, and adenosine secretion,
and whereby accumulation strongly correlates with the
cancer progression [172]. The mechanisms that suppress
the immune system provide a fundamental reason why
cancer vaccines fail to induce consistently robust antitumor
immune responses. In DC/tumor fusion vaccines, CD4+
CD25high+ Foxp3+ Tregs were promoted in the presence
of the local tumor-related factors in vitro [103]. Moreover,
increased CD4+ CD25high+ Foxp3+ Tregs impaired the
effector function of CTLs induced by DC/tumor fusion vac-
cines [103]. Therefore, monitoring of immune suppressive
cells in cancer patients vaccinated with DC/tumor fusions is
also essential.

7. Conclusion

The development of assays for detecting immune responses
associated with clinical outcome has been limited. A variety
of assays had been introduced to provide monitoring tools
necessary for following changes in the frequency of antigen-
specific CTLs and to assess the impact of cancer vaccines
on the immune system. As the mechanisms of immune
response that cause tumor regression are not simple, the cur-
rently available assays may not actually measure a function
with direct relevance to how tumors are actually attacked
immunologically in cancer patients. A high reproducibility of
results among different laboratories leads to the conclusion
that cytokine flow cytometry or ELISPOT may be an ideal
candidate for robust and reproducible monitoring of T-cell
activity in vivo. However, the widely used ELISPOT assay
often does not correlate the best with clinical outcome [173].
Therefore, it may be important to use a functional assay like
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cytokine flow cytometry or ELISPOT in combination with
a quantitative assay like multimers for immune monitoring.
Furthermore, it is necessary to understand the immune
responses seen in peripheral blood versus the responses at
the tumor site. Monitoring of antigen-specific CTLs at the
tumor site may be directly associated with clinical responses
[155]. However, T cells from lymph nodes and the tumor
site itself are not readily available for monitoring purposes
in almost all patients. Therefore, the ability to assess the
function of antigen-specific T cells from DTH site may
serve as an additional strategy to evaluate cancer vaccines
[122, 126, 127]. In our opinion, monitoring of multimer-
positive CD8+ (effector or effector memory) T cells from
the DTH sites or PBMCs with IFN-γ production by flow
cytometry may be sensitive markers particularly associated
with overall survival. In addition, the DC/tumor fusion
vaccine studies should be designed to determine whether T
cell dysfunction in the tumor microenvironment correlated
with clinical outcome. This informations may help us more
fully understand the mechanisms of cancer vaccines and its
potency to hasten the progress of efficient cancer vaccine
strategies into the clinic.
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