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Topological defects—locations of local mismatch of order—are a universal concept
playing important roles in diverse systems studied in physics and beyond, including the
universe, various condensed matter systems, and recently, even life phenomena. Among
these, liquid crystal has been a platform for studying topological defects via visualization,
yet it has been a challenge to resolve three-dimensional structures of dynamically
evolving singular topological defects. Here, we report a direct confocal observation of
nematic liquid crystalline defect lines, called disclinations, relaxing from an electrically
driven turbulent state. We focus in particular on reconnections, characteristic of such
line defects. We find a scaling law for in-plane reconnection events, by which the
distance between reconnecting disclinations decreases by the square root of time to the
reconnection. Moreover, we show that apparently asymmetric dynamics of reconnecting
disclinations is actually symmetric in a comoving frame, in marked contrast to the two-
dimensional counterpart whose asymmetry is established. We argue, with experimental
supports, that this is because of energetically favorable symmetric twist configurations
that disclinations take spontaneously, thanks to the topology that allows for rotation
of the winding axis. Our work illustrates a general mechanism of such spontaneous
symmetry restoring that may apply beyond liquid crystal, which can take place if
topologically distinct asymmetric defects in lower dimensions become homeomorphic
in higher dimensions and if the symmetric intermediate is energetically favorable.
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Topologically nontrivial configurations of order, called topological defects, may appear
generically and spontaneously when order is formed. As such, topological defects have
been studied in diverse disciplines (1, 2), including cosmology (3), crystals and liquid
crystals (2), superconductivity and superfluid (4–9), and biology (10–19) to name but
a few. While there exist various kinds of defects characterized by different symmetries
and properties, defects may also enjoy common properties across different disciplines.
In this context, liquid crystal has the advantage that it is amenable to direct optical
observations; various compounds and techniques exist; and as a soft matter system, it
shows large response to external fields, being suitable for studying nonequilibrium and
nonlinear effects (2, 20). This advantage has been recognized and used for decades, with
a notable example of observing liquid crystal defects to test predictions for cosmic strings
(21). Moreover, the scope of studies of liquid crystalline defects has been recently extended
remarkably, including the use of defects as templates for molecular self-assembly (22)
and the recent surge of investigations of active nematic systems bearing relevance to life
phenomena (10–19).

Despite this history, resolving fully three-dimensional (3D) structures of liquid crystal
defects has not been straightforward, even for the simplest kind of defects, namely
nematic disclination lines. Well-known techniques for 3D observation of defects and
other orientational structures are fluorescence confocal polarizing microscopy (23, 24)
and two- or three-photon excitation fluorescence polarizing microscopy (25–27). Both
techniques allow one to reconstruct the 3D structure of the director field, by which one
can determine the position and structure of defects in principle. To do so, however, one
needs to reduce the effect of defocusing and polarization changes due to the birefringence
of liquid crystal. For singular defects, such as nematic disclinations, scattering at the core
gives another difficulty. The effect of birefringence can be significantly reduced by partial
polymerization of the medium (28), but this cannot be used to study dynamics of defects.

Here, we propose a method to capture dynamically evolving 3D structures of nematic
disclination lines by using confocal microscopy and a recently reported accumulation of
fluorescent dyes around the singular core of defects (29). This method allows us to visualize
the disclinations directly (Fig. 1), without reconstructing and analyzing the director field.
Using this technique, we observe reconnections of disclinations—a hallmark of such
topological defect lines—and characterize the reconnection dynamics in terms of scaling
and symmetry.
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Fig. 1. Reconnections and loop shrinkage. (A–C) Sketches of an in-plane
reconnection (A), an intersecting reconnection (B), and a loop shrinkage (C).
(D–F) Confocal observations of an in-plane reconnection (D), an intersecting
reconnection (E), and a loop shrinkage (F) (Movies S1–S4). E, Insets display side
views of the event shown in E. (Scale bars: D–F, 50 μm; E, Insets, 20 μm.)

Observations of Disclination Dynamics

To study disclination dynamics, we add fluorescent dye to liquid
crystal and observe the fluorescence from the dye localized at the
3D disclinations by confocal microscopy. Using the previously
reported apparent length scale of dye accumulation, ≈0.33 μm
(29), and the typical value of the diffusion coefficient of dye
molecules,≈10−10 m2/s (24, 30), we evaluate that dye can follow
the evolution of disclinations at the time resolution of roughly
1 ms. This is to compare with the timescale of the disclination
dynamics, which can be evaluated at γ1�2/K with Frank con-
stant K , rotational viscosity γ1, and characteristic length scale
� of disclination lines (such as the radius of curvature) (20).
For typical mesogens (including the one used in this work),
we have K ≈ 101 pN and γ1 ≈ 102 mPa · s (20), so that, for
example, disclinations of length scale �≈ 101 μm evolve over
a timescale of roughly 1 s. Therefore, the disclination dynamics
can be faithfully captured by confocal images acquired at a time
interval between 1 ms and 1 s (or longer for disclinations of larger
length scales). To fulfill this condition, we chose a laser-scanning
confocal microscopy equipped with a resonant scanner working at
8 kHz and a piezo objective scanner (Materials and Methods has
details).

A liquid crystal sample, MLC-2037 doped with fluorescent
dye Coumarin 545T and electrolyte tetra-n-butylammonium
bromide, was filled in a cell that consists of parallel glass
plates with transparent electrodes (indium tin oxide) separated
by 130 μm-thick spacers (Materials and Methods). The
planer alignment condition was imposed on the cell surfaces.
We generated a large density of disclinations by using an
electrohydrodynamic turbulence (20), induced by an electric
field applied to the liquid crystal sample. The electric field was
then removed, and disclinations started to undergo relaxation.
We indeed observed a large density of singular disclinations
upon removal of the electric field. The disclinations then

exhibited coarsening dynamics, including reconnections and
loop shrinkage (Fig. 1 and Movies S1–S4), similar to those
observed previously by bright-field microscopy (21, 31–34). We
also observed nonsingular disclinations terminating at singular
ones (SI Appendix, Fig. S1), as well as other kinds of defect
structure, as reported in past bright-field studies (31, 32).

Most disclination lines were found near the midplane between
the top and bottom surfaces and extended mostly horizontally
because of the homogeneous boundary condition we imposed. As
a result, most of the observed reconnections were classified into
the following two kinds: in-plane reconnections (Fig. 1 A and D
and Movie S2) and intersecting reconnections (Fig. 1 B and E and
Movie S3). An in-plane reconnection consists of a pair of curved
disclinations in a nearly single horizontal plane, which approach in
that plane and reconnect (Fig. 1D and Movie S2). An intersecting
reconnection consists of a pair of disclinations crossing at different
z positions, which approach vertically and reconnect (Fig. 1E
and Movie S3). In this case, the upper disclination appeared dark
above the intersection (Fig. 1 E, Insets) and apparently bent when
the pair is close enough, presumably because of the lensing effect
due to the lower disclination. Since this prevented quantitative
analysis, in the following we focus on the in-plane reconnections
and study their reconnection dynamics. We analyzed a total of
40 in-plane reconnections without any noticeable nonsingular
disclinations in the field of view.

Scaling Law for In-Plane Reconnections

Using the confocal images of the in-plane reconnections, we
extracted the 3D positions of the two disclinations until the
moment of the reconnection (Materials and Methods). Measuring
how the minimum distance between the two disclinations, δ(t),
decreases with time t (Fig. 2), we found the following scaling law
for all in-plane reconnections:

δ(t)� C |t − t0|1/2, [1]

with a coefficient C . This power law is identical to that for
annihilation of point disclinations in two-dimensional (2D) ne-
matics (35, 36) as well as that for reconnections of quantum
vortices in quantum fluids (6, 7, 36). It is interesting to note that
the interaction of disclinations in 3D nematics was theoretically

~ − /

Fig. 2. The scaling law for in-plane reconnections. Results for all 40 re-
connection events are shown with different colors. The error bars indicate
the uncertainty evaluated from the slicing and the Gaussian fitting used to
determine the coordinates of the disclinations (Materials and Methods).
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evaluated only very recently (37, 38) and that the power law in
Eq. 1 was derived in the case of straight disclinations. Although the
experimentally observed disclinations were not straight but curved
inward (Fig. 1D), we may argue that the time evolution of δ(t)
is dominated by the interaction between the two closest points,
so that the disclination curvature did not affect the observed
power law significantly. The scaling law (Eq. 1) was also observed
numerically for curved disclinations in ref. 38. Of course, it is
important to extend those theoretical approaches to the case of
curved disclinations and confirm the robustness of the power law
in Eq. 1.

Apparent Asymmetry in the Laboratory Frame

In the case of 2D nematics, disclinations are point like and char-
acterized by a topological invariant called the winding number.
Energetically stable are the disclinations of winding number±1/2
(see the sketches in Fig. 4A), and disclinations of opposite signs
attract each other, approach, and annihilate. Here, it is well known
that such a pair of +1/2 and −1/2 disclinations approaches in
an asymmetric manner, due to the different backflow generated
by the two defects (35, 39). It would be then natural to expect
analogous asymmetry to arise for line disclinations in 3D nemat-
ics. However, this is not so trivial from the viewpoint of topology
because+1/2 and−1/2 disclinations are topologically equivalent
(homeomorphic) in 3D nematics (1, 2, 20). Besides, unlike point
disclinations, line disclinations have shapes and are deformable,
giving additional potential sources of asymmetry.

Here, we inspected this asymmetry experimentally. Instead
of the distance δ(t) between reconnecting disclinations, we
measured the distance between each disclination line and the

D E

CA

B

Fig. 3. Apparent asymmetry of in-plane reconnections. (A) Definition of the
distances D1(t) and D2(t) from the reconnection point �X0. (B) Sketch of the
midpoint �M(t) of the points on the disclinations closest to the reconnection
point �X0. (C) Distance Di(t) measured in the laboratory frame for an example
pair of reconnecting disclinations. (D) Histograms of the asymmetry parame-
ter A (the square root of the ratio of the two slopes in C; see text) measured
in the laboratory frame (blue) and the comoving frame (red). Note that three
outliers are not displayed in the blue histogram, taking A ≈ 3.2, A ≈ 5.5, and
A ≈ 40 in the laboratory frame, but in the comoving frame, all data, including
those outliers, fell in the first bin (max A = 1.03 ± 0.01). (E) Distance D̃i(t)
measured in the comoving frame for the pair shown in C. E, Inset shows the
distance between the midpoint �M(t) and the reconnection point�X0 seen in the
laboratory frame. The error bars in C and E indicate the uncertainty evaluated
from the Gaussian fitting and the search for the reconnection point used here
(Materials and Methods).

reconnection point, D1(t) and D2(t) (Fig. 3A). Plotting Di(t)
2

against t − t0, we found a power lawDi(t)� Ci |t − t0|1/2 anal-
ogous to Eq. 1, with coefficients Ci that are typically asymmetric
between the two disclinations (Fig. 3C has an example). The
asymmetry was also clear from the defect motion (SI Appendix,
Fig. S2A). Using the coefficients Ci , we define the asymmetry
parameter A by

A≡ max{C1,C2}
min{C1,C2}

[2]

and determined it for each reconnection event. By definition,
A= 1 for symmetric reconnections, and A> 1 for asymmetric
ones. The histogram of A (blue bars in Fig. 3D) shows that most
in-plane reconnections appear to be significantly asymmetric. We
suspected that the different curvature of the two disclination lines
may contribute to this asymmetry, but this effect turned out to be
minuscule (SI Appendix).

Disappearance of Asymmetry in the Comoving
Frame

Let us now recall the fact that disclinations have extended line
structures and also, that the studied pairs were not the only defects
present in the system. It is, therefore, reasonable to consider that
the reconnection dynamics may be affected by such extrinsic fac-
tors, which may induce flow and director changes superimposed to
the intrinsic reconnection dynamics. These effects are expected to
add a drift to the intrinsic motion of reconnecting disclinations.
To evaluate this drift, we located the point on each disclination
that was closest to the reconnection point and inspected the
motion of the midpoint �M (t) of the pair of the closest points
(Fig. 3B). If the dynamics of the two disclinations is perfectly
symmetric, the motion of this midpoint is the drift itself and
will not show any singularity near the reconnection time. If the
dynamics is not symmetric, this midpoint will partly include the
reconnection dynamics, showing the same singularity as Di(t)∝
|t − t0|1/2. This was indeed confirmed for the case of pair an-
nihilation of 2D point disclinations reported by Tóth et al. (39)
(SI Appendix, Fig. S3). For 3D disclination lines, the behavior of
�M (t) is shown in Fig. 3 E, Inset for the pair displayed in Fig. 3C.
This clearly shows linear dependence on time, suggesting that the
intrinsic dynamics of reconnection is actually symmetric. More-
over, using the drift velocity �V evaluated by fitting d �M

dt , we define
the comoving frame and measure the distance D̃i(t) between the
closest point and the reconnection point in this comoving frame.
The result shows that, remarkably, the reconnection dynamics
in this comoving frame is nearly perfectly symmetric (Fig. 3E
and SI Appendix, Fig. S2B). We carried out this analysis for all
reconnection events, and for all cases, the asymmetry parameter
became very close to one (red bar in Fig. 3D), the largest devia-
tion being A= 1.03± 0.01. Note that although the asymmetry
parameter A is expected to be independent of the choice of
reference frame in the limit t → t0, it does depend in practice
because the limit t → t0 is unreachable due to the finite time
resolution of the observation. Direct comparison of Di(t) and
D̃i(t) (SI Appendix, Fig. S4; also compare Fig. 3 C and E) shows
that the scaling law Di(t), D̃i(t)∝ |t − t0|1/2 appears longer
in the comoving frame than in the laboratory frame, indicating
that the results in the comoving frame are more reliable. This
will be supported in the next section on the basis of the director
configuration around the disclination pair.
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Spontaneous Symmetry Restoring

We have found that the asymmetry present in the 2D pair anni-
hilation of ±1/2 point disclinations disappears for the in-plane
reconnections of 3D disclination lines. Obviously, if two discli-
nation lines were straight and had ±1/2 director configurations
around (Fig. 4A), this pair would exhibit the same asymmetry as
its 2D counterpart. However, since +1/2 and −1/2 disclinations
are homeomorphic in 3D (1, 2, 20), the director can actually
take an intermediate configuration that continuously transforms
between these two limiting structures (Fig. 4A). More precisely,
the winding of the director around a disclination line is not
characterized by the winding number but by a unit vector that
specifies the rotation axis of the director, denoted by �Ω (e.g.,
refs. 37 and 38). With the unit tangent vector �t whose head
and tail are set arbitrarily, the director rotates right handed by
180◦ in the plane perpendicular to �Ω, along a closed path that
turns right handed about the tangent vector �t . If �Ω=�t [or the
angle β ≡ cos−1(�Ω ·�t) = 0], the director is essentially in the
plane perpendicular to the disclination line, and the defect is
equivalent to a +1/2 point disclination in that plane. Similarly,
if �Ω=−�t (β = π), it is equivalent to a −1/2 point disclination.
These two limiting structures, called the wedge disclinations, are
interpolated continuously by intermediate β. In particular, if
�Ω⊥�t (β = π/2), the director purely twists around the defect;
hence, it is called a twist disclination.

Now, for a pair of reconnecting disclinations in plane, we have
two tangent vectors �t1 and �t2, which are parallel near the recon-
nection point, so that we choose�t1 =�t2. Then, it is reasonable to
assume �Ω1 =−�Ω2 (β2 = π − β1) so that the disclinations may
attract each other most effectively, as inferred from the disclination
dynamics derived in the theoretical studies (37, 38). Indeed,

�Ω1 =−�Ω2 is expected in order to reduce the elastic energy cost
due to the existence of the disclination pair. This leaves one free
parameter, β1 (or �Ω1). If β1 = 0 or π, we have a pair of ±1/2
wedge disclinations (Fig. 4 B, Upper), which is equivalent to a pair
of annihilating point disclinations in 2D nematics and therefore,
approaches asymmetrically (35, 39). By contrast, if β = π/2,
we have a pair of twist disclinations (Fig. 4 B, Lower) with π
rotationally symmetric director field; in this case, the dynamics
of the two disclinations should also be symmetric.

Our experimental results of the vanishing asymmetry suggest
that all disclination pairs we observed spontaneously took the
symmetric twist configurations. This can be attributed to the
anisotropic elasticity of liquid crystal; bulk deformation of the
director can be decomposed into splay, twist, and bend defor-
mations, characterized by different elastic constants denoted by
K1, K2, and K3, respectively (20). For the mesogen used here,
MLC-2037, these are K1 = 11.6 pN,K2 = 6.1± 0.5 pN,K3 =
13.2 pN (Materials and Methods and SI Appendix, Table S1).
Similarly to other typical mesogens, the elastic constant for twist
deformations is lower than that for splay and bend deformations.
Then, it follows that the twist configuration of the disclination
pair (Fig. 4 B, Lower) is energetically favored over the wedge
configuration (Fig. 4 B, Upper), which involves splay and bend
deformations of the director field. This explains why the twist con-
figuration seemed to be exclusively observed in our experiments,
accounting for the disappearance of the asymmetry.

Moreover, we confirm the realization of the twist configuration
via the coefficient C of the power law in Eq. 1 as follows.
Balancing the drag force Jγ1(δ̇/2) according to Geurst et al. (40)
with a dimensionless coefficient J ≈ 1.9, the rotational viscosity
γ1, and the attractive force πK/2δ exerted to the pair with
�Ω1 =−�Ω2 under the one-constant approximation K1 =K2 =
K3 ≡K (37), we obtain

+1/2 wedge

B

A

−1/2 wedgetwist

C
Energy 

Asymmetry

topologically 
different in 2D

homeomorphic 
in 3D

topologically 
different in 2D

homeomorphic 
in 3D

1/2 d 1/2 dt i t

Fig. 4. Director configurations and asymmetry. (A) Director field around a disclination for different �Ω (or β). (B) Sketches of the director field around wedge
(Upper) and twist (Lower) disclination pairs. The xy (Left) and yz (Right) cross-sections are shown. The “T” symbols indicate that the directors are not in the plane
of the cross-section, with the T head above the paper. Note that the analyzed disclinations were not limited to those aligned in the x direction as sketched here.
(C) Spontaneous symmetry restoring.
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C 2 =
2πK

Jγ1
. [3]

However, since the actual elastic constant is anisotropic, Eq. 3
is expected to hold with K ≈K1,K3 for the wedge configuration
and K ≈K2 for the twist one. From our data (Fig. 2) and
γ1 = 132 mPa · s for our mesogen (SI Appendix, Table S1), we
obtain C 2 = 151± 27 μm2/s (the range of error being the SD),
which is close to the value for the twist configuration, C 2 ≈
1.5× 102 μm2/s, instead of that for the wedge one, C 2 ≈ 3.1×
102 μm2/s. This supports the realization of the twist configura-
tion in the disclination pairs we observed as well as the resulting
vanishing asymmetry we found in the comoving frame.

We also demonstrate the realization of the twist configuration
in a more direct but destructive manner through the pattern of
the electroconvection induced in the sample. It is known that
nematic liquid crystal with negative dielectric anisotropy and
positive conductivity anisotropy, such as the one used in the
present work, shows roll convection under a moderate applied
voltage (20). The direction of the rolls is determined by the
director near the midplane; it is normal to the director if the
director is parallel to the cell surfaces, while patches of rolls of
different directions are formed if the director is perpendicular
to the surfaces. Our observation reveals that the region between
disclinations shows convection rolls normal to those in the outer
region (SI Appendix, Fig. S5), indicating the twist director config-
uration as sketched in Fig. 4 B, Lower (SI Appendix has details).

While the twist configuration is expected from the energy
viewpoint, it is important to note that such a lowest-energy
configuration is to describe the equilibrium state, while our ob-
servations deal with relaxation to it. Upon quenching from the
turbulent state, we expect that there exist various types of discli-
nations, from wedge to twist and in between. However, since all
these configurations are homeomorphic, disclinations are allowed
to change the configurations continuously toward the lowest-
energy state (i.e., the twist configuration). This is not possible
for 2D nematics, for which +1/2 and −1/2 disclinations are
topologically distinct. Mathematically, this is a consequence of
the different homotopy groups between 2D and 3D nematics
(1, 20). For 2D, it is π1(RP

1) = Z, which distinguishes all
different winding numbers. In contrast, its 3D counterpart is
π1(RP

2) = Z2, which now distinguishes only the absence and
the presence of a nontrivial defect configuration. In particular,
wedge disclinations of winding number ±1/2 are now identified
through continuous transformation, with the symmetric twist
state found in the middle at the lowest energy (Fig. 4C ). This
results in the realization of the symmetric reconnection dynamics,
as we observed experimentally.

At this point, it is not difficult to generalize the argument. If
the space of the order parameter field accommodating topological
defects of interest is related to real space, such as the nematic case
(RPd−1 for d -dimensional space), the corresponding homotopy
group may also depend on the dimensionality. In the case where
there exist two asymmetric structures that are topologically dis-
tinct in a lower dimension but become homeomorphic in a higher
dimension, such as the case of ±1/2 nematic disclinations, the
defect in the higher dimension is allowed to take an intermedi-
ate structure that continuously interpolates the two asymmetric
analogs of those in the lower dimension. Then, it is likely that
a symmetric intermediate structure exists. If it is energetically
favored, the asymmetry present in the lower dimension will tend
to disappear in the higher dimension spontaneously. In brief, if
two topologically distinguished and asymmetric configurations in
a lower dimension become homeomorphic in a higher dimension

and if the newly allowed symmetric configuration is energetically
favorable, symmetry is spontaneously restored. The symmetry in
the structure results in the symmetry in the dynamics. Our results
on reconnecting nematic disclinations constitute a clear example
of such spontaneous restoring of symmetry.

Concluding Remarks

We carried out a direct confocal observation of disclination dy-
namics in 3D nematics using the accumulation of fluorescent dyes
to disclinations. Our method successfully resolved characteristic
dynamics of disclination lines, such as reconnections and loop
shrinkage. Studying in-plane reconnection events in depth, we
demonstrated the distance-time scaling law (Eq. 1) predicted
for straight disclination pairs, despite the curved shape of the
observed disclinations. Moreover, we revealed that the dynamics
of reconnecting disclinations is only deceptively asymmetric in
the 3D case, being actually symmetric in the comoving frame.
This is explained by the spontaneous realization of symmetric
twist configurations, which are energetically favored because of
the lower twist elasticity. These observations led us to propose
a mechanism of such spontaneous symmetry restoring from a
general viewpoint of topology and energy. In this regard, it is im-
portant to investigate the generality and limitation of this concept
in future studies. The first step would be to study intersecting
reconnections. Although we restricted the analysis to in-plane
reconnections in the present work, our argument suggests that
the spontaneous symmetry restoring also holds for intersecting
reconnections. Simulations in ref. 38 showed that at least the same
scaling law holds for intersecting reconnections. Furthermore, it is
of prominent importance to test the fate of the symmetry restoring
in the case where the condition K2 <K1,K3 is not satisfied
and consequently, the twist configuration does not correspond to
the lowest-energy state. Such a situation may be realized by using
the divergence of K2 near the nematic–smectic transition (20),
by the drop of K3 near the transition to the twist–bend nematic
phase (41), or by using nematic discotic liquid crystals (42).

Since the concept of topological defects is universal, it is impor-
tant to think of similarities and dissimilarities in defect properties
across different disciplines of physics. For example, quantum
vortices in superfluid 4He are known to have similar interaction
energy and show the same scaling law of δ(t) (Eq. 1) as observed
experimentally (6, 7, 36), while the corresponding homotogy
group is different, and the rotation axis �Ω, if defined analogously,
is fixed to �Ω=�t or −�t . Further, it is tempting to seek examples
of the spontaneous symmetry restoring we proposed in this work.
Disgyration of superfluid 3He is particularly interesting in this
context, for which the homotopy group is π1(SO(2)) = Z for
2D and π1(SO(3)) = Z2 for 3D, and its asymmetric structures
as well as energy have been thoroughly discussed (5). We hope
that such approaches to general mechanisms will accelerate the
multidisciplinary understanding of topological defects and that
the visualization of nematic disclination dynamics reported here
will be a useful tool in this line.

Materials and Methods

Sample Preparation and Defect Generation. The experimental sample was
prepared as follows for the main results on the in-plane reconnections, while
changes for other experiments are described in the end of this subsection. The
liquid crystal sample was nematic compound MLC-2037 (Merck; discontinued
product) doped with 0.5 wt% tetra-n-butylammonium bromide and 0.005 wt%
fluorescent dye Coumarin 545T. The mesogen MLC-2037 was chosen for its
low birefringence Δn = 0.0649 and negative dielectric anisotropy Δε < 0
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(SI Appendix, Table S1), the latter of which was used to induce electroconvection
to generate disclinations (20). The sample was introduced to a handmade cell,
which consists of a coverslip and a glass plate both coated with indium tin
oxide and 130 μm-thick polyimide tapes used as spacers. The inner surfaces
were coated with polyvinyl alcohol and rubbed to realize a homogeneous planar
alignment.

To study disclination dynamics, we generated a large density of disclinations
by applying an alternating electric field (rms amplitude 150 V, frequency 50 Hz)
to the sample, inducing an electrohydrodynamic turbulence called the dynamic
scattering mode 2 (20, 43). Then, we removed the electric field and observed
relaxation of disclinations by a confocal laser scanning microscope (Leica SP8;
objective 20×, numerical aperture 0.75, oil immersion) equipped with a reso-
nant scanner working at 8 kHz and a piezo objective scanner. The fluorescent dyes
were excited at 488 nm by laser light polarized in the direction perpendicular to
the nematic easy axis, represented by x and y axes, respectively. The fluorescence
signal in the range between 500 and 600 nm was confocally detected by a
photomultiplier tube detector (pinhole size 20 μm, roughly 0.35 times the Airy
unit). The voxel size in the xy plane was 0.91μm, and the spacing between z slices
was 1 μm. The numbers of voxels were 512, 128, and 21 in the x, y, z directions,
respectively. The time interval between consecutive confocal images was 0.255 s.
Compared with this, the time needed for fluorescent dyes to follow the evolution
of disclination lines is expected to be much shorter, which we evaluate to be
roughly 1 ms, using a length scale 0.33 μm reported as the apparent size of dye
accumulation in ref. 29 and the typical value of the diffusion coefficient of dye
molecules, 10−10 m2/s (24, 30).

Below, we describe the experimental conditions used for other observations.
Conditions and parameters that are not specified below were kept unchanged
from those for the in-plane reconnections. The intersecting reconnection dis-
played in Fig. 1E was observed in a sample that contained 0.25 wt % tetra-n-
butylammonium bromide and 0.2 wt % Coumarin 545T. After an alternating
voltage of rms amplitude 150 V and frequency 100 Hz was removed, we observed
the intersecting reconnection in a manner similar to the case of the in-plane
reconnections, except that the number of voxels was 512 × 64 × 36 and the
time interval was 0.300 s. The loop shrinkage displayed in Fig. 1F was observed
in a sample that contained 0.05 wt % tetra-n-butylammonium bromide and
0.005 wt % Coumarin 545T.

Image Analysis. The data acquired by the confocal microscope were the fluo-
rescence intensity detected at the 3D position (x, y, z) and time t. Using the 3D
image at each time, we obtained cross-sections and extracted the coordinates of
the disclinations as follows. First, we chose the cross-sections to use, either in the
xz plane or in the yz plane, chosen so that the cross-sections become closer to
perpendicular to the disclination lines. In each cross-section, the two disclinations
appear as bright spots. These bright spots were fitted by a Gaussian function to
obtain the coordinates of the spot centers. Repeating this over all cross-sections,
we obtained a set of 3D coordinates along each disclination line. The closest
distance δ(t) between two disclinations (Fig. 2) was directly determined from
these coordinates.

The time and the position of each reconnection event, as well as the distance
Di(t) (i = 1, 2) of a disclination from the reconnection point, were determined
as follows. For the reconnection time t0, we determined it from the 2D image
constructed from the transmitted excitation laser to benefit from the finer time
resolution than that of the confocal images. For the position �X0 = (X0, Y0, Z0)
of the reconnection point, we first approximately located it from the series of
transmitted and confocal images (X0 and Y0 from the transmitted images, Z0 from
the confocal images). Using this and the coordinates of the disclinations, we could
evaluate the distance Di(t) in the laboratory frame, but for the analysis presented
in the paper, we evaluated Di(t) more precisely in the following manner. First,
we fitted the 3D coordinates of disclinations by smoothing splines to reduce the
noise and to interpolate the lines appropriately. In general, smoothing splines
s(x) for a dataset (xi, yi) is such a function that minimizes

p
∑

i

wi (yi − s(xi))
2 + (1 − p)

∫ (
d2s
dx2

)2

dx, [4]

with a smoothing parameter p and a weight wi, which is set to be one here. By
adjusting p, we obtained smoothing splines that reproduced the defect shape

without high wave number components, for the two coordinates that spanned
the cross-sections [i.e., for xz cross-sections, the obtained smoothing splines
were x(y) and z(y)]. Then, we also refined the estimate of the reconnection
point �X0 by using the coordinates of the disclinations before the moment of
the reconnection. Specifically, we determined �X0 in such a way that the scaling
Di(t)� Ci|t − t0|1/2 is satisfied most precisely in a time period before the
reconnection under the constraint that�X0 is not changed by more than 3μm from
the first rough estimate. This was done by evaluating Di(t) for each candidate
position�X0 in the range within 3 μm, fitting it to Di(t)2 = ai|t − t0|+ bi, and
choosing the candidate �X0 that minimizes b2

1 + b2
2. The distance D̃i(t) in the

comoving frame was also determined analogously by using the position�X0 that
drifts with the velocity of the comoving frame.

The errors in the estimates of δ(t), Di(t), D̃i(t)were evaluated as follows. For
δ(t), the error bars in Fig. 2 indicate the square root of the sum of the squares of
the uncertainties in all coordinates of the two closest points. For the coordinates in
the cross-section, we used the 95% CI of the Gaussian fitting as the uncertainty;
for the other coordinate, we used half the thickness of the cross-section (i.e., the
voxel size) as the uncertainty. For Di(t) and D̃i(t) (Fig. 3 C and E), the errors were
evaluated from the uncertainties in the coordinates of the reconnection point and
the closest point on the disclination line, again by the square root of the sum of
the squares. The uncertainties in the coordinates of the reconnection point were
considered to be half the size of the scanned region described above. For the
uncertainties in the coordinates of the closest point on the disclination line, since
the closest point was located on the smoothing spline, we only considered the
uncertainties (95% CI) for the coordinates in the cross-section that is closest to
the closest point on the spline.

Estimation of K2. The twist elastic constant K2 of MLC-2037 was evaluated
by using the Fréedericksz transition under an external magnetic field (20).
The Fréedericksz transition point Hc

i corresponding to the elastic constant Ki is
given by

Hc
i =

π

d

√
Ki

Δχ
, [5]

where d is the cell thickness and Δχ is the magnetic anisotropy. For MLC-
2037,Δχ was unknown, but K1 is known (SI Appendix, Table S1). Therefore, we
measured the Fréedericksz transition for both the splay and twist configurations,
obtaining Hc

1 and Hc
2, and used the ratio

Hc
2

Hc
1
=

√
K2

K1
[6]

to determine K2 from K1.
We used a ready-made cell with homogeneous planar alignment (EHC, KSRO-

25/B107M6NTS; d = 25 μm) filled with MLC-2037. Using a superconducting
magnet, we applied a magnetic field that was perpendicular to the cell surface for
the splay configuration and parallel to the cell surface but that was perpendicular
to the easy axis for the twist configuration. The Fréedericksz transition point
was determined by measuring the retardation change through the transmitted
light intensity that changed in a swept magnetic flux density B under crossed
Nicols (SI Appendix, Fig. S6). The measurement for the twist configuration was
performed at oblique incidence (5◦) to reduce the effect of polarization rotation
(44, 45).

We measured the Fréedericksz transition eight times for the splay configu-
ration and three times for the twist configuration. The light source was either a
halogen lamp or a light-emitting diode. For each measurement, we determined
the transition point twice: when the magnetic field was increased and decreased.
As a result, we obtained a total of 16 estimates of the transition point Bc

1 and
6 estimates of Bc

2. By using all of them, we determined our final estimates at
Bc

1 = 4.4 ± 0.1 T and Bc
2 = 3.2 ± 0.1 T. Then, it follows, by using Eq. 6 and

K1 = 11.6 pN (SI Appendix, Table S1), that K2 = 6.1 ± 0.5 pN.

Data, Materials, and Code Availability. Analysis results have been deposited
in figshare (https://doi.org/10.6084/m9.figshare.21130301) (46).
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