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Abstract: To provide a long-time reliable orientation, sensor fusion technologies are widely used
to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a
novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros,
an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic
disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust
orientation estimation for different statistical models of the sensors. The root mean square errors
(RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to
the reduction of system complexity achieved by smaller matrix operations, the mean total time
consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for
the system configuration, as it is possible to switch on or off the second stage filter to include or
exclude the magnetometer compensation for the heading. Online experiments were performed on
the homemade miniature orientation determination system (MODS) with the turntable. The average
RMSE of estimated orientation are less than 0.4˝ and 1˝ during the static and low-dynamic tests,
respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian
walking were carried out to evaluate the performance of the designed MODS when high accelerations
and angular rates were introduced. Test results demonstrate that the MODS is applicable for the
orientation estimation under various dynamic conditions. This paper provides a feasible alternative
for low-cost orientation determination.

Keywords: sensor fusion; orientation determination; Kalman filter; MEMS

1. Introduction

Accurate orientation is essential for the locating and tracking of moving objects relative to a
given frame in various kinds of applications, such as unmanned aerial vehicle (UAV) navigation [1],
autonomous underwater vehicle (AUV) [2], self-driving cars [3], intelligent robots [4], wearable
devices [5], and human position tracking [6–8] etc., in military and industrial areas. Inertial sensors,
such as the gyros and accelerometer make it possible to determine the orientation of moving object
by measuring kinetic physical quantities (acceleration and angular rate, etc.) without any external
additional information and other restrictions [9]. Gimbaled gyros, fiber optic gyros, and laser gyros
have been successfully used to provide the high-precision movement information for the aircraft and
missile systems in military and aviation industries. Given an initial assumption of the orientation, gyros

Sensors 2016, 16, 264; doi:10.3390/s16020264 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 264 2 of 17

can provide accurate orientation information via integrating the angular rates of the moving object
numerically [10]. However, high-performance gyros are usually very expensive and bulky. Even the
access to these devices may be limited. With the rapid expansions of the civilian and consumer markets,
more and more micro-electro-mechanical system (MEMS)-based gyros are used for the low-precision
orientation determination, benefited from their low price, small size, low-power dissipation, and
relatively high reliability [11].

However, due to the inherent noise and drifts with time, there are considerable cumulative
errors when only the gyros are used for the orientation determination. Various kinds of time series
models are used to estimate the stochastic process of the gyro [12]. All of the published literature
shows that the cumulative errors cannot be eliminated only according to the stochastic model of
the gyro. Even for the extremely expensive MEMS gyros, the cumulative errors still cannot be
neglected. Accordingly, it is necessary to integrate the gyro with some other sensors which there
are no drifts and cumulative errors existing. Yun, et al. proposed a factored quaternion method for
the orientation estimation [13]. Derivations of half-angle formulas were proposed in their paper.
Taking advantage of the gravity decomposition, attitude angles (namely, the pitch and roll angles)
are easily obtained from the accelerometer. Sequentially, the heading angle is available when the
magnetometer is used. However, the gravity is coupled with the kinematic accelerations so strongly
that it cannot be separated from the accelerometer outputs accurately, especially in the case of long-term
high dynamics. Simultaneously, the geomagnetic field is very susceptible to the additional magnetic
field induced by surrounding hard or soft magnet materials [14]. Due to the deviations among the
directions of the geomagnetic field in different locations, it is not appropriate to use the magnetic data
for the pitch and roll estimation. All the reasons above make the accelerometer and magnetometer
play the role of aided sensors.

Nowadays, typical MEMS-based orientation systems usually consist of three single-axis gyros
and an electronic compass which includes a tri-axis accelerometer and a tri-axis magnetometer [15–17].
It is crucial to develop appropriative embedded data fusion solutions for the orientation systems.
The Kalman filter (KF) has already become the most commonly used sensor fusion technique for MEMS
orientation systems. Various filter models were developed for different orientation representations,
such as the direction cosine matrix, Euler angles, and quaternion. To simplify the implementation
of KF, Zhu, et al. developed a linear KF in which the state vector was composed of the gravity and
geomagnetic field in body frame [18]. A linear Kalman model was designed and the effect of the
forgetting factor on the time lag was also investigated in their paper. Han and Wang proposed an Euler
angle errors-based method to express errors in the local level frame rather than the body frame so as
to achieve a linear KF [19]. Though the nonlinearity problem was avoided, the observation model
was still faced with the singularity problem in their approach when the pitch angle gets through the
area near ˘π/2. Li and Wang developed an improved linear KF based on the psi-angle propagation
equation [20]. The residuals of heading angle and accelerations were defined as the observation vector.
In their paper, an adaptive gain is tuned for the KF according to the dynamic scale determined by
the accelerometers when the system is in a high dynamic mode. However, not only the heading,
but also that of the pitch and roll, would be affected if the magnetometer measurements were used
with the accelerometer measurements directly. Furthermore, Sabatelli, et al. designed a two-stage
extended Kalman filter (EKF) to calculate the attitude angles and the heading angle separately [21].
The accelerometer was used for the attitude determination in the first stage filter and the magnetometer
was used for the heading correction in the second one. Due to the nonlinearity of the measurement
equations in their method, high-order matrix operations lead to considerable increases in iterative
computations eventually. Instead of implementing EKF, we designed an unscented Kalman filter
(UKF) to obtain the high-accuracy indoor heading estimation in our previous works [22]. The UKF was
deemed to be more accurate and less computationally costly than EKF, while too many trigonometric
functions and Taylor expansions greatly increased the complexity of system. What is worse, the
singularity problem was unavoidable in the UKF-based method.
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In this paper, we focused on the requirements of a complete system for the low-cost orientation
determination. A novel dual-linear Kalman filter was designed for the multi-sensor system.
The kinematic models were based on the propagation equations of the local gravity and geomagnetic
field in the body frame. The outputs of accelerometer and magnetometer were defined as the measured
quantities in the two independent observation models. Benefited from the specific design, only
the gyro and accelerometer are enough to run the first stage filter for the attitude estimation and a
magnetometer could be integrated optionally if the heading is needed. Considering the different
statistical models for sensor errors, the proposed filter can achieve optimal orientation estimation if
the sensor statistical error is assumed to be white noise. The proposed strategy precludes the impacts
of geomagnetic distortions on the pitch and roll which the heading is subjected to. The RMSE of
attitude angles are reduced by 30.6% under magnetic disturbances. Meanwhile, owing to the reduction
of system complexity, total time consumption of the proposed method is reduced by 23.8% than
that of a standard one, which means that a higher frequency can be implemented for the update
of orientation. Furthermore, the separated filter design offers greater flexibility and robustness to
magnetic anomalies for the system configuration, as it is possible to switch on or off the second
filter to include or exclude the magnetometer compensation for the heading. Online experiments
were performed on the homemade real-time miniature orientation determination system (MODS).
Furthermore, we carried out more realistic tests on the two-wheel self-balancing vehicle driving and
indoor pedestrian walking to evaluate the performance of the designed multi-sensor system when
high linear accelerations and angular rates were introduced. The test results demonstrated that the
accuracy and stability of MODS were well guaranteed. This paper provides a feasible alternative for
low-cost orientation determination.

The kinematic modeling is introduced for the multi-sensor system in Section 2. The dual-linear
filter is proposed in Section 3. Noise characteristics are analyzed for the sensor models in Section 4.
Hardware design is described for the MODS in Section 5. Real-time experiments performed on the
homemade MODS are presented and discussed in Section 6. Finally, the forecasts are put forward for
further study in Section 7.

2. System Modeling

The orientation system is usually applied to determine Euler angles which are regarded as the
essential parameters for the navigation and motion control. So-called Euler angles are defined as
the rotation angles from the given inertial frame (usually called the navigation frame, denoted by n)
to the body frame (fixed to the moving object and denoted by b), including yaw ψ, pitch θ, and roll
φ. The body frame xyz is attached to the orientation system. The x-axis is aligned with its forward
direction, the z-axis points to the bottom of the system and the y-axis rounds up the right-handed
orthogonal coordinate frame. In this paper, the navigation frame n is attached to the local level north
frame, namely the North, East, Down (NED) frame, as shown in Figure 1.
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Here, we designate a column vector
Ñ
u , whose components are generally functions of the time t.

The transformation between the vector
Ñ
u in the frame b and the frame n is as:

Ñ
u

n
ptq “ Cn

b pφ, θ, ψq
Ñ
u

b
ptq (1)

where Cn
b pφ, θ, ψq represents the direction cosine matrix (DCM) used to transform the measured

quantities from the frame b into the frame n. Henceforward, the parameter t will be omitted for the
convenience of readers. Cn

b can be carried out through three different separate rotations about the three
axes. Cz

ψ, Cy
θ , and Cx

φ represent the rotation ψ angle about the z-axis, θ angle about the y-axis, and φ

angle about the x-axis, respectively, which are defined as:

Cz
ψ “

»

—

–

cosψ ´sinψ 0
sinψ cosψ 0

0 0 1

fi

ffi

fl

, Cy
θ “

»

—

–

cosθ 0 sinθ

0 1 0
´sinθ 0 cosθ

fi

ffi

fl

, Cx
φ “

»

—

–

1 0 0
0 cosφ ´sinφ

0 sinφ cosφ

fi

ffi

fl

(2)

Then:

Cn
b “ Cz

ψCy
θCx

φ “

»

—

–

cosψcosθ cosψsinθsinφ´ sinψcosφ cosψsinθcosφ` sinψsinφ

sinψcosθ sinψsinθsinφ` cosψcosφ sinψsinθcosφ´ cosψsinφ

´sinθ cosθsinφ cosθcosφ

fi

ffi

fl

(3)

The propagation equation of Cn
b accords with the following equation in [23]:

.
C

n
b “ Cn

b ¨

»

—

–

0 ´r q
r 0 ´p
´q p 0

fi

ffi

fl

“ Cn
b ¨Ω

b
nb (4)

where Ωb
nb is the skew symmetric matrix of ω “

”

p q r
ıT

, which is the angular rate of the moving
object in the frame b. Differentiating Equation (1) with respect to the time:

.
Ñ
u

n
“

.
C

n
b ¨
Ñ
u

b
`Cn

b ¨

.
Ñ
u

b
(5)

Then, the propagation equation of
Ñ
u in the body frame can be derived as:

.
Ñ
u

b
“ ´Ωb

nb ¨
Ñ
u

b
(6)

The vectors of the gravity and the geomagnetic field will both yield to Equation (6):

$

’

&

’

%

.
Ñ
g

b
“ ´Ωb

nb ¨
Ñ
g

b

.
Ñ
m

b
“ ´Ωb

nb ¨
Ñ
m

b
(7)

where
Ñ
g

b
“

”

gb
x gb

y gb
z

ıT
and

Ñ
m

b
“

”

mb
x mb

y mb
z

ıT
represent the vectors of the gravity and

the geomagnetic field in the frame b, respectively.

3. Dual-Linear Kalman Filter Design

As discussed in the introduction, the orientation angles obtained from the accelerometer and
magnetometer provide long-term accuracy with high noise while the gyro-derived orientation angles
suffer from drifts and cumulative errors. Neither of them will achieve accurate and stable orientation
when only one method is used alone. Therefore, a dual-linear Kalman filter is designed to integrate
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these two approaches together for accurate orientation estimation in this paper. Unlike Zhu et al. [18],

defining the system state vector as S “
”

Ñ
m

b Ñ
g

b
ıT

, we define two state vectors which are the gravity
and geomagnetic field in the body frame b in this paper, respectively:

Ñ
x 1 “

Ñ
g

b
,

Ñ
x 2 “

Ñ
m

b
(8)

Similarly, the accelerometer and magnetometer outputs are defined as the two observation vectors
corresponding to the state vectors:

Ñ
z 1 “

Ñ
a ,

Ñ
z 2 “

Ñ
m (9)

The unified discrete-time dynamic equation of the system state can be expressed as follows:

Ñ
x

n
“ Φ

Ñ
x

n´1
`
Ñ
w

n´1

Ñ
z

n
“
Ñ
x

n
`
Ñ
v

n (10)

where
Ñ
w

n
and

Ñ
v

n
are the process and measurement noises vectors, respectively. The system transfer

matrix Φ is given as:
Φ “ exp

´

´Ωb
nb ¨ ts

¯

(11)

where ts is the sampling interval. After estimating of the state vectors, the pitch, roll, and heading are
obtained by the following arc-tangent formulas:

$

’

’

’

’

’

&

’

’

’

’

’

%

θ “ ´arctanp
gb

x
c

´

gb
y

¯2
`
`

gb
z
˘2
q, φ “ arctanp

gb
y

gb
z
q

ψ “ arctanp
´mb

ycosφ`mb
zsinφ

mb
xcosθ `mb

ysinφsinθ `mb
zcosφsinθ

q

(12)

The next task is to compute the Kalman gain which is defined as:

Kn “ P´n HT
´

HP´n HT ` Rn

¯´1
(13)

where Rn is the covariance matrix of measurement noise (Ra for the accelerometer and Rm for the
magnetometer). As the inverse of the 3ˆ 3 order matrix HP´n HT`Rn is formulized, time consumption
will be drastically reduced.

When the orientation system is in stable states, it is easy to achieve the optimal Rn. However,
inertial sensor measurements may be unreliable and even useless in dynamic states. An adaptive
mechanism is designed for the covariance matrixes of sensors noise in the filtering processes according
to [20,24]. In the absence of magnetic disturbances, the locus of magnetometer output lies on the
surface of a sphere. However, deviations of the magnetometer measurements are very large if magnetic
disturbances exists. There are abundant literatures regarding the magnetometer calibration [25–27].
The method proposed in [28] was executed for the magnetometer calibration. The strategy will be
performed for Rm as follows:

Rm “

$

&

%

σ2
m I, if

ˇ

ˇ

ˇ

ˇ

||
Ñ
mi`1||´ ||

Ñ

h ||
ˇ

ˇ

ˇ

ˇ

ă ξm

8, otherwise
(14)

The schematic of the proposed dual-linear filter algorithm is shown in Figure 2. The state vectors
are divided into two independent linear filters and updated separately.
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4. Noise Characteristics

The covariances of the process noise and measurement noise are regarded as the primary design
parameters to achieve the minimum variance of estimation errors. In this paper, the process noise is
mainly derived from the angular rates measured by the gyros. We can assume that there is a small
perturbation δω “

”

δp δq δr
ı

to ω:

ω “ ω` δω (15)

where ω “

”

p q r
ı

is the mean of ω. The state equation can be rewritten as:

»

—

–

.
x1
.
x2
.
x3

fi

ffi

fl

“ ´

»

—

–

0 ´pr` δrq pq` δqq
pr` δrq 0 ´pp` δpq
´pq` δqq pp` δpq 0

fi

ffi

fl

»

—

–

x1

x2

x3

fi

ffi

fl

“ ´

»

—

–

0 ´r q
r 0 ´p
´q p 0

fi

ffi

fl

»

—

–

x1

x2

x3

fi

ffi

fl

´

»

—

–

0 x3 ´x2

´x3 0 x1

x2 ´x1 0

fi

ffi

fl

»

—

–

δp
δq
δr

fi

ffi

fl

looooooooooooooooooooomooooooooooooooooooooon

Ñ
w

(16)

The second term on the right side of the Equation (16) is regarded as the process noise
Ñ
w. For a

discrete-time system, the covariance matrix of the process noise
Ñ
w is obtained:

Q “ L ¨ Rg ¨ LT (17)

where

Rg “ diag
”

σ2
p σ2

q σ2
r

ı

, L “

»

—

–

0 x3 ´x2

´x3 0 x1

x2 ´x1 0

fi

ffi

fl

(18)

where σ2
p , σ2

q and σ2
r are the variances of p, q, and r.

The performance of the proposed filter is strongly linked with the quality of stochastic models
used to describe the different sensors’ noise. In this paper, the sensors’ noise is assumed to be a
white noise according to pertinent literatures. A generalized method of wavelet moments (GMWM)
proposed by Guerrier et al. [12] was used to analyze the impacts of different sensor error models on
the filter. A numerical simulation was implemented to evaluate three different models: (1) a white
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noise, (2) a Gauss-Markov (GM) process, and (3) a sum of three GM processes. Firstly, we created a
theoretical trajectory as shown in Figure 3. The attitude angle is expressed as follows:

θ “
π

2
sinp0.2tq (19)

where t is the simulation time at a sampling instant.

Sensors 2016, 16, 264 7 of 17 

 

noise, (2) a Gauss-Markov (GM) process, and (3) a sum of three GM processes. Firstly, we created a 
theoretical trajectory as shown in Figure 3. The attitude angle is expressed as follows: 

sin(0.2 )
2

t


   (19) 

where t is the simulation time at a sampling instant. 

 
Figure 3. Assumed trajectory for different sensor models. 

The “perfect” inertial observations (angular rates and accelerations) were obtained by inverse 
strapdown. Then, we corrupted these perfect observations by three types of errors generated from 
the three different sensor models. Finally, the proposed filter was executed with the three kind of 
corrupted observations. Figure 4 shows the time-varying pitch estimation error based on three 
different sensor models. Figure 5 shows performance comparisons of the absolute pitch estimation 
error. As shown in the plots, the proposed filter can achieve robust orientation estimation for different 
sensors errors models. It can be seen that the proposed filter provides the optimal estimation when 
the sensors’ noise is assumed as a white noise. Meanwhile, the results of the Gauss-Markov model 
are very close to the white noise model. 

 
Figure 4. Time-varying pitch estimation errors based on three different sensor models. 

 
Figure 5. Performance comparisons of the absolute pitch estimation error. 

0 100 200 300 400
-10
-5
0
5

10

 

Time (s)

 Model 3
-10
-5
0
5

10

E
rr

or
 (

d
eg

re
e)

 Model 2
-10
-5
0
5

10

 

 Model 1

Mean Standard Deviation 50th Percentile 75th Percentile

0.0

0.5

1.0

1.5

2.0

2.5

A
bs

ol
ut

e 
E

rr
or

 (
de

gr
ee

)

 Model 1
 Model 2
 Model 3

Figure 3. Assumed trajectory for different sensor models.

The “perfect” inertial observations (angular rates and accelerations) were obtained by inverse
strapdown. Then, we corrupted these perfect observations by three types of errors generated from the
three different sensor models. Finally, the proposed filter was executed with the three kind of corrupted
observations. Figure 4 shows the time-varying pitch estimation error based on three different sensor
models. Figure 5 shows performance comparisons of the absolute pitch estimation error. As shown
in the plots, the proposed filter can achieve robust orientation estimation for different sensors errors
models. It can be seen that the proposed filter provides the optimal estimation when the sensors’ noise
is assumed as a white noise. Meanwhile, the results of the Gauss-Markov model are very close to the
white noise model.
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5. Hardware Design

In order to verify and implement the proposed filter in practice, we developed a homemade
prototype which is a real-time miniature multi-sensor system, as shown in Figure 6. The multi-sensor
system is comprised of three single-axis MEMS gyros (full-scale range of ˘450˝/s), a tri-axis
accelerometer (full-scale range of ˘5 g) produced by Analog Devices, and a tri-axis magnetometer
(full-scale range of ˘0.8 Gauss) produced by Honeywell. Considering the electromagnetic interference,
the magnetometer was welded on the back of the PCB. The sensor data fusion processes are handled
by the microprocessor of the STM32F4 series for its excellent performance on dealing with large
numbers of floating point arithmetic. The raw sensors data and orientation angles are collected from
the miniature orientation determination system (MODS) when it is connected to the upper computer
via USB or Zigbee.
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6. Experiments and Results

6.1. Noise Variances Determination

Firstly, we removed the mean of the original gyro signal produced in static tests at a frequency of
100 Hz (448,915 measurements). The time-varying errors are available and are presented in the time
domain in Figure 7 (upper panel), together with the Haar wavelet variance (WV) and the corresponding
GMWM for this process with 95% confidence intervals (lower panel). Similar results are achieved
by the GMWM for a white noise process and a GM process, which validate the previous results in
Section 4 again. The WV computed from the gyro signal give an indication for the underlying stochastic
processes. The GMWM estimates of the parameters and their corresponding 95% confidence intervals
using the WV covariances are summarized in Table 1. The suitability of the estimated models can be
judged graphically by a matching of the empirical WV and the parametric WV using the estimates in
Table 1.
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Table 1. Estimated parameters with associated 95% confidence intervals for three different stochastic
models with the gyro signal data.

Model Parameter Estimate IC (0.95)

Model 1 σ2 4.654064e´06 (4.639158e´06; 4.668971e´06)

Model 2
σ2 4.653360e´06 (4.639986e´06; 4.666734e´06)
β 5.342647e´02 (5.106282e´02; 5.579013e´02)

Model 3

σ2
1 9.246705e´12 (5.989062e´12; 1.250435e´11)

β1 9.990636e´01 (9.990636e´01; 9.990636e´01)
σ2

2 8.794771e´13 (4.427838e´13; 1.316170e´12)
β2 9.999861e´01 (9.999861e´01; 9.999861e´01)
σ2

3 4.658634e´06 (4.640222e´06; 4.677046e´06)
β3 3.307696e´02 (3.307696e´02; 3.307696e´02)

6.2. Time Consumption Emulation

A time consumption test was designed to validate the effects of proposed filter for reducing the
system complexity and computing time by smaller matrix operations. We collected 31,120 row data
from an existing orientation system [29] at 100 Hz which were used to run our filter in MATLAB ten
times, repeatedly. Table 2 shows the comparisons of time-varying pitch errors estimated by our filter
(Method A) and the proposed filter in [18] (Method B). The proposed filter precludes the impacts of
geomagnetic distortions on the pitch and roll which the heading is subjected to. As shown in Table 2,
the average RMS errors of proposed filter are reduced by 30.6% compared with Method B under strong
magnetic disturbances. Meanwhile, mean computation times are reduced by 23.8%, which means that
higher frequency can be implemented for the orientation updates.
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Table 2. Comparisons of Method A and Method B.

Method Mean Time Consumption Mean Attitude Error

Method A 8.72 s 0.25˝

Method B 11.45 s 0.36˝

6.3. MODS Evaluation

Three kinds of experiments were carried out to verify the performance of the designed MODS.
Firstly, the static and dynamic tests for MODS were implemented on a tri-axis turntable that allows
precise and repeatable tests. Then, the MODS was mounted on a homemade two-wheel self-balancing
vehicle for driving control. Finally, the MODS was tied on the shoes of pedestrian for the indoor
walking and stair-climbing experiments to validate the robustness on the attitude estimation when
high linear accelerations and angular rates were introduced.

6.3.1. Tri-Axis Turntable Experiments for the MODS

As shown in Figure 8, the MODS was fixed on the static turntable relative to the ground during
the static tests. In the majority of existing published literatures, orientation systems were usually kept
at the zero input point so as to evaluate the static performance. In our paper, different static input
points were tested in our static experiments. The attitude angles were tested from ´80˝ to 80˝ and
the heading was from 0˝ to 90˝. The turntable was turned by 10˝ every time and would be held for a
few seconds. During the dynamic test, the MODS was mounted on the running turntable which was
controlled to execute the pre-set motions.
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As shown in Figure 9, the static test results are very smooth and steady. The dynamic test
results are plotted in Figure 10. The proposed filter achieves an excellent performance on orientation
estimation, which is free from the drifts of gyros and transient disturbances on the compass successfully.
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Figure 10. Estimated orientation during dynamic tests (a) pitch angle; (b) roll angle; (c) yaw angle.

Overall, the results of MODS are quite consistent with the reference, virtually without any time
lag whatsoever in the tests. We can see clearly that gyro-derived orientation angles deviate from the
reference due to the inherent biases of the gyros. On the other hand, the orientation angles estimated
by the accelerometer and magnetometer tend to follow the reference well in the quasi-static state, but
large errors and poor reliability appear in the transient high dynamic state. Table 3 indicates that the
root mean square (RMS) errors of the pitch and roll angles are less than 0.1˝, and approximately 0.4˝

for the heading angle in static tests. Meanwhile, the RMS errors are below 0.5˝ for the pitch and roll
angles, and less than 1˝ for the heading angle in dynamic tests.
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Table 3. RMS errors of the MODS in the turntable tests.

Test State Pitch Roll Yaw

Static 0.045˝ 0.064˝ 0.352˝

Dynamic 0.301˝ 0.386˝ 0.845˝

6.3.2. Experiments on the Two-Wheel Self-Balancing Vehicle Driving

For the purpose to validate the performance of the designed MODS in practical applications, we
mounted it on a homemade two-wheel self-balancing vehicle, as shown in Figure 11a. The pitch angle
θ is one of the most important parameters for driving the self-balancing vehicle. The servo motors will
adjust the driving torque Td on the wheels to keep the dynamic balance of the vehicle body according
to the variation of the pitch angles, as shown in Figure 11b. At the beginning, the two-wheel vehicle
was kept static for a few seconds. Then, the two-wheel vehicle was controlled to drive along the
preplanned route until commanded to slow down and stop. Figure 12 shows the time-varying pitch
and roll angles during the whole test.
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Figure 11. Tests on the two-wheel self-balancing vehicle (a) with MODS fixed on the vehicle; (b)
schematic diagram for the vehicle driving.
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Figure 12. Estimated attitude angle during two-wheel self-balancing vehicle test (a) pitch angle; (b)
roll angle.

The pitch angle changes rapidly at the time of 11 s and 23 s corresponding to the starting and
stopping of the two-wheel vehicle, respectively. The variations of pitch angles are relatively stable
during the vehicle running. Meanwhile, the roll angle changes stably within 1˝ during the whole test.

6.3.3. Indoor Pedestrian Walking and Stair-Climbing Experiments

For the further validation of the accuracy and stability of the MODS in more realistic motions,
indoor pedestrian walking and stair-climbing tests were carried out in our college building, as shown
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in Figure 13. The MODS was tied on the shoes of the pedestrian. During the waking tests, the
pedestrian was required to walk straight along the preplanned route on the floor. The floor tiles can be
regarded as the natural tags to repeat the walking tests. Raw sensor data and orientation angles were
collected from the MODS. As shown in Figure 14, norms of the walking accelerations are much higher
than the gravity, even close to the maximum scale range of accelerometer (5 g). Similarly, norms of
walking angular rates are close to the maximum scale range of gyros (450˝/s). Therefore, high linear
accelerations and angular rates are introduced into the proposed filter to verify the robustness of the
attitude estimation. The walking cycles are shown clearly by identifiable peak points which can be
applied to indoor pedestrian navigation and human health monitoring.
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Figure 13. (a) Indoor pedestrian walking tests and (b) stair-climbing tests.
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Figure 14. Inertial sensors measurements during walking (a) acceleration; (b) angular rate.

Figure 15 shows the real-time attitude angles of the MODS during walking tests. Similar to
the variations of accelerations and angular rates in Figure 14, attitude angles change periodically
with the pedestrian waking cycles. The MODS can provide stable enough attitude estimation for the
pedestrian walking.
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Figure 15. Estimated attitude angle during walking (a) pitch angle; (b) roll angle.

During the stair-climbing tests, the pedestrian was required to climb three floors including six
half floors climbing and six corners walking which are corresponding to the red segments and the blue
segments of the time-varying curves of the accelerations and angular rates in Figure 16. We can find
out that the variation ranges of the climbing accelerations are much larger than that of the walking
accelerations, but the variation ranges of the angular rates show an inverse tendency. Therefore,
the proposed filter will rely more on the gyro outputs during the pedestrian walking, while the
accelerometer outputs are considered more in the quasi-static attitude updates.
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Figure 16. Inertial sensors measurements during stair-climbing (a) acceleration; (b) angular rate.

Figure 17 shows the real-time attitude angles estimated by the MODS during the pedestrian
stair-climbing tests. The pitch and roll angles of the walking have a larger variation range than that of
climbing stairs. The results are very consistent with the realistic motions because the pedestrian’s feet
can stretch completely when walking while they will be blocked by the steps when climbing stairs.
Figure 18 is the close-ups relevant to the pitch and roll angles in Figure 17, which shows an excellent
convergence and dynamic performance.
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Figure 18. Close-ups relevant to the estimated attitude angle during stair-climbing (a) pitch angle; (b)
roll angle.

7. Conclusions

In this paper, a novel dual-linear Kalman filter was designed for the orientation determination
system using low-cost MEMS-based sensors. The propagation equations of the local gravity and
geomagnetic field in frame b are used to establish the dynamic models. The accelerometer and
magnetometer outputs are defined as the two measured quantities in the same, but independent,
observation models. The proposed strategies precludes the impacts of magnetic disturbances on the
pitch and roll angles which the heading is subjected to. The RMSE of estimated attitude angles are
reduced by 30.6% compared with a standard filter under magnetic disturbances. The proposed filter
can achieve optimal orientation estimation if the sensor statistical error is assumed to be white noise.
Owing to the reduction of system complexity, time consumption is reduced by 23.8% compared with a
standard filter, which means that higher frequency can be implemented for the orientation updates.
The proposed separated method offers greater flexibility for the system design. Online experiments
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performed on a real-time homemade MODS demonstrate that the proposed sensor fusion algorithm
can maintain an accurate and stable estimation for the orientation. The average RMSE are less than
0.4˝ and 1˝ in the static and low-dynamic turntable tests, respectively. More realistic tests were carried
out on the two-wheel self-balancing vehicle driving and indoor pedestrian walking to evaluate the
performance of the MODS. The results demonstrate that the accuracy and stability of the MODS are
guaranteed even with high linear accelerations and angular rates, which shows remarkable robustness
over the applicable operating range. Therefore, the proposed approach provides a feasible alternative
for the low-cost real-time orientation determination system.

Further research will focus on the calibration of MEMS devices to improve the performance of
orientation determination systems. Meanwhile, some additional sensors and modules, such as the
barometer and GPS, can be optionally integrated into the existing MODS. In this case, a complete
orientation and position determination system would be achieved.
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