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Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective

intervention for medically refractory segmental and generalized dystonia in both children

and adults. Predictive factors for the degree of improvement after GPi DBS include

shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually

responding better than acquired combined dystonias. Other factors contributing to

variability in outcome may include body distribution, pattern of dystonia and DBS

related factors such as lead placement and stimulation parameters. The responsiveness

to DBS appears to vary between different monogenic forms of dystonia, with some

improving more than others. The first observation in this regard was reports of superior

DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no

difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression

and secondary worsening after effective GPi DBS, has been described. Myoclonus

dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes

following GPi DBS have also been documented in X-linked dystonia Parkinsonism

(DYT3). In contrast, poorer, more variable DBS outcomes have been reported in

DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other

monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B

(DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying

results in smaller numbers of patients. In this article the available evidence for long term

GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular

perceptions of expected outcomes and revisit whether genetic diagnosis may assist in

predicting DBS outcome.
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INTRODUCTION

Dystonia is a chronic neurological condition characterized by sustained or intermittent muscle
contractions resulting in abnormal movements, postures and tremor (1, 2). Genetic dystonias
can be defined as those in which an underlying gene is identified as the cause. The genetic
understanding of dystonia has expanded with an increasing number of dystonia genes identified.
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The identification of causative genes has reduced the number of
truly idiopathic cases, as many patients previously classified as
having idiopathic isolated dystonia can now be attributed to a
specific gene. Some genetic dystonias have neurological features
beyond pure dystonia and are classified as combined phenotypes.
Conceptual shifts in dystonia classification, improved genetic
diagnosis, and recognition of phenotypic spectrums for
individual genes have allowed for better characterization of
dystonic syndromes and their response to treatment both
medical and surgical. Globus pallidus internus (GPi) deep
brain stimulation (DBS) is the most effective known treatment
for medically refractory dystonia with established efficacy in
segmental and generalized dystonia of idiopathic, genetic or
acquired causes. The potency and versatility of GPi DBS has
encouraged its use in an expanding range of medically refractory
genetic dystonias with varying degrees of success. In this article
we review available information for the effectiveness of GPi
DBS in dystonia due to various causative genes in an effort to
stratify whether genetic diagnosis may offer some assistance in
predicting the DBS treatment outcome.

OVERVIEW OF GPi DBS IN DYSTONIA

GPi-DBS is effective in medically refractory dystonia (3–
8). Improvement in dystonia after GPi DBS is progressive
over months (5, 9–11). Mobile components of dystonia
tend to respond more quickly than the tonic elements (12,
13). Isolated dystonia either idiopathic or genetic (primary)
dystonia improves to a greater degree than acquired combined
(secondary) dystonia (14–17). However, exceptions include
acquired tardive dystonia secondary to neuroleptic exposure, (18)
and dystonia in neurodegeneration with brain iron accumulation
(19, 20), which respond well to GPi DBS (see section on
NBIA/DYT-PANK2). Conversely idiopathic isolated craniofacial
and laryngeal dystonia may show a poorer than expected
response to DBS (21), emphasizing the importance of not only
etiology but also body distribution on DBS dystonia outcome.
Shorter disease duration has also been correlated with improved
GPi DBS outcome (22). Technical aspects of GPi DBS including
electrode placement and stimulation parameters also have a
significant effect on DBS outcome. Chronic stimulation in
the most posteroventral portion of GPi is most effective (23).
Dystonia DBS typically requires higher electrical parameters than
STN DBS for Parkinson’s disease, however longer stimulation
pulse widths above 60ms are not beneficial and are less
energy efficient (24–26), while lower frequency stimulation below
100Hz may be useful in selected patients (27). Rare treatment
failures after GPi DBS may occur in all categories of dystonia
including genetic isolated generalized dystonia and appear
independent of technical reasons such poor lead placement (28).

GENETIC FORMS OF DYSTONIA AND
RESPONSE TO GPi-DBS

We review the evidence for GPi-DBS in individual genetic forms
of dystonia (Supplementary Table 1).

DYT-TOR1A (DYT1)
DYT-TOR1A (DYT1) is the most common cause of young
onset familial isolated dystonia and typically begins between
9 and 12 years in a limb then spreads to become generalized
with relative sparing of cervical and bulbar segments (29, 30).
Among the earliest reports of GPi DBS for generalized dystonia
was the study of Coubes et al. reporting 6 children and 1
adult with medically refractory DYT1 generalized dystonia with
remarkable improvement after bilateral GPi DBS, resulting in
a mean improvement in Burke-Fahn-Marsden Dystonia rating
scale (BFMDS) motor score of 90% at 12 months (3). The
same group reported a tendency for superior GPi DBS outcome
in DYT1 dystonia in 15 patients compared with 17 idiopathic
non-DYT1 patients (31). Krause et al. reported superior GPi
DBS outcome in 4 DYT1 dystonia patients compared with
6 non-DYT1 patients, with improvements in BFMDS of 55.6
and 35.1% respectively, although one DYT1 patient showed
secondary worsening 3 years after DBS (12). Starr et al. also
reported marked but variable benefit in DYT1 dystonia following
GPi DBS with improvement approaching 100% in two patients,
51% in another and 14% in a patient with long disease duration
and fixed orthopedic deformity, factors known to limit overall
benefit (32, 33). Longer term studies of GPi DBS in DYT1 have
shown sustained benefit for up to 10 years (34) including a
large study of 47 DYT1 patients treated with GPi DBS which
reported average long-term improvement approaching 80% (35).
Some studies have reported a statistically superior outcome of
GPi DBS in DYT1 dystonia compared with non-DYT1 dystonia
(23), however larger studies with rater-blindedmethodology have
shown no significant difference (5, 6). A meta regression study by
Andrews et al. reviewed individual patient outcomes of GPi DBS
in 466 patients including 91 DYT1 and 108 non-DYT generalized
dystonia patients. They found DYT1 patients improved by
67.5% in BFMDS compared with 55.8% for non-DYT, and
in multivariate analysis DYT1 was in independent predictor
of superior outcome, along with shorter disease duration and
lower baseline severity score (16). A subsequent larger meta
regression study identified DYT1 as a predictor of improved
outcome in univariate analysis but found only higher baseline
severity score as a significant predictor of superior outcome in
multivariate analysis, however, DYT1 status was excluded from
the multivariate analysis owing to some studies not reporting
DYT1 status (36). A systematic review of GPi DBS outcomes in
children found a higher probability of >50% improvement in
DYT1 vs. non-DYT1- patients (65 vs 29%) and higher percentage
improvement among DYT1 patients compared with non-DYT1
(66 vs. 43%) but not reaching statistical significance (37).

While DYT1 dystonia usually responds well to GPi DBS,
especially in patients with shorter disease duration and without
orthopedic deformity, there are important exceptions where
secondary worsening of dystonia may occur. Cif et al. described
secondary worsening after several years in a subgroup of DYT1
dystonia patients with good initial response at 12 months (34). A
recent multicentre study reported secondary worsening in DYT1
dystonia after GPi DBS in 11 of 132 patients at 6 months to 3
years after DBS and was associated with younger age of onset,
faster disease progression and cranial involvement (38).
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DYT-THAP1 (DYT6)
DYT-THAP1 (DYT6) is an early onset dystonia syndrome,
with prominent oromandibular and laryngeal involvement at
disease onset that typically spreads to the limbs, becoming more
generalized (39, 40). The outcomes of GPi DBS in THAP1
dystonia appear poorer and more variable than idiopathic or
DYT1 isolated dystonia with average improvements in BFMDS
of around 35% and ranging from 16 to 72% with a tendency for
limited or no improvement in speech or bulbar function (41–44).
However, a few reports have described better outcomes including
improvement in speech and swallowing (45, 46). There is some
evidence that THAP1 dystonia may take longer to improve after
GPi DBS than DYT1 or non-DYT1 dystonia but eventually
responds to a similar degree albeit with more variable outcomes
(47). A recent larger study of 14 THAP1 dystonia patients treated
with GPi DBS with median follow up of 4 years found an average
BFMDS improvement of 49% with limited improvements in
speech noted, two non-responders and four patients with delayed
worsening (48). Delayed worsening in THAP1with improvement
after lead repositioning has been reported in several patients
(41, 43, 49). Concerns for effectiveness of GPi DBS in THAP1
dystonia have led to alternative DBS targets being explored.
Mure et al. reported 80% improvement in BFMDS at 2 years
following bilateral ventral lateral anterior (VLa) thalamic nucleus
DBS in a single adult patient with THAP1 dystonia (50). The
reasons for poorer and more variable DBS response in THAP1
dystonia are still not fully understood but may in part relate to
prominent bulbar involvement which is a body region usually less
responsive to DBS. Another possibility is genetic heterogeneity in
DYT-THAP1 where many different pathogenic mutations have
been described whereas DYT1 dystonia is usually due to a single
common GAG deletion.

DYT/PARK-TAF1 (DYT3)
X-linked dystonia parkinsonism (XDP or “Lubag”) is associated
with a SINE-VNTR-Alu retrotransposon insertion within an
intron of the TATA box-binding protein–associated factor 1
(TAF1) gene (51, 52). It affects individuals with maternal origin
from the island of Panay, in the Philippines (53). In this disorder,
affected individuals develop focal or segmental dystonia in
adulthood; the dystonia rapidly becomes generalized over several
years (51). About 5–10 years after the onset of disease, dystonia
features become less prominent, and parkinsonian features
predominate (51). The dystonia in XDP is severe and disabling,
oral medications have inconsistent benefit and neuroablative
therapy targeting the bilateral pallidus and/or thalamus has
resulted in major adverse events; thus GPi-DBS has been used as
a therapeutic option (51, 54–56).

Perhaps the most comprehensive study of GPi-DBS to
date involved 16 males with XDP from the Philippines with
predominant dystonia (51). There was an improvement in
dystonia post-operatively as well as the Unified Parkinson’s
Disease Rating Scale Part III (UPDRS III). Additionally, T1-
based basal ganglia volumetry showed that caudate atrophy was
a predictor of a less beneficial outcome.

Improvements in both BFMDRS and UPDRS measures
suggests that GPi-DBS can be beneficial for both dystonia

and parkinsonian features in XDP (51). However, there may
be a differential effect of bilateral GPi-DBS, with an marked,
immediate and sustained improvement in dystonia but with a
lesser benefit for parkinsonism (56–58).

DYT-TUBB4A (DYT4)
Mutations in TUBB4A have been found to cause whispering
dysphonia (DYT4)–spasmodic dysphonia combined with other
focal or generalized dystonia, and a characteristic “hobby horse”
gait. (59–61). Mutations in TUBB4A can also cause other
neurological phenotypes such as hypomyelination with atrophy
of the basal ganglia and cerebellum (H-ABC) syndrome (62) or
hereditary spastic paraplegia (63).

There is a single case report documenting the response to DBS
in TUBB4A-related dystonia. A 44 year oldmanwith a p.Arg2Gly
variant in TUBB4A was found to have an improvement in
dystonia (55% reduction in BFMDRS) with a more prominent
improvement in cervical and facial dystonia with bilateral GPi-
DBS (64).

DYT-SGCE (DYT11)
DYT11 is an autosomal dominantly inherited condition due
to a heterozygous mutation in the SGCE gene, with paternal
expression and reduced penetrance with maternal transmission
(65). It results in early onset myoclonus dystonia usually
presenting in childhood with upper body myoclonus and
dystonia frequently with writer’s cramp, cervical dystonia,
and associated psychiatric problems including anxiety and
obsessive compulsive disorder (66–68). The initial reports of
beneficial effects of DBS in myoclonus dystonia were in patients
without confirmation of SCGE mutation, where suppression of
myoclonus without improvement in dystonia following staged
bilateral ventralis intermediate nucleus (VIM) DBS was reported
(69) and improvement in bothmyoclonus and dystonia following
GPi DBS (70, 71). The first report of GPi DBS for genetically
confirmed SGCE myoclonus dystonia was in an 8-year-old boy
with marked improvement of both myoclonus and dystonia
(72). Subsequently a number of studies reported good response
and improvement in both dystonia and myoclonus in DYT11
dystonia following GPi DBS (73–78).

Kosutzka et al. reported long-term outcomes in 9 DYT-SCGE
patients treated with bilateral GPi DBS who were followed up
for minimum of 5 years. In this study motor improvement was
marked with myoclonus improving by 94%, dystonia by 71%,
88% improvement in disability score and significantly improved
function and social adjustment (79). A recent meta analysis
of individual patient outcomes in 71 patients with myoclonus
dystonia and GPi DBS found an average improvement in unified
myoclonus rating scale of 79.5% and significant improvements
in dystonia motor and disability scores with possible predictive
factors for superior myoclonus outcome including shorter
disease duration (80). Thalamic stimulation targeting the VIM
nucleus appears to be an effective alternative to GPi DBS (73,
81), however pallidal stimulation is generally considered the
preferred target (82). Patients with isolated myoclonus SCGE
without dystonia also appear to benefit significantly from GPi
DBS (83, 84).
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While DBS can benefit the motor features of DYT-SGCE, it
should be noted that there may not be a parallel improvement in
psychiatric comorbidities (85).

DYT-ATP1A3 (DYT12)
Mutations in ATP1A3 can causes a wide spectrum of clinical
phenotypes including alternating hemiplegia of childhood type
2, cerebellar ataxia, areflexia, pes cavus, optic atrophy, and
sensorineural hearing loss (CAPOS) syndrome, rapid-onset
dystonia-parkinsonism (RDP, DYT12), as well as numerous
“non-classical” phenotypes (86). There are case reports of DBS
use in ATP1A3-related disorders, providing insights into the
likely beneficial response.

One report of a 21 year old woman with presumed RDP who
had bilateral GPi-DBS described no improvement in symptoms
(87). A 12 year old boy with a novel, de novo, ATP1A3
mutation had onset of dysphagia and dysarthria followed by
severe generalized dystonia resulting in inability to walk (88).
Following bilateral GPi-DBS he was temporarily able to walk
with a temporal improvement in BFMDRS but only a marginal
improvement in UPDRS. Two further reports suggested that
GPi-DBS was ineffective in ATP1A3-related dystonia (89, 90).
However, in a kindred with a novel ATP1A3 variant causing
generalized dystonia and paroxysmal dystonic attacks, bilateral
GPi-DBS resulted in a remission of paroxysmal episodes and an
improvement of interictal dystonia in one family member (91),
suggesting that the response to DBS in ATP1A3-related dystonia
is not uniformly poor but instead variable.

DYT-PRKRA (DYT16)
Mutations in PRKRA cause young onset autosomal recessive
dystonia parkinsonism (92). A response to GPi-DBS has been
shown in a small number of cases of DYT16; a study of 2 patients
showed an improvement in BFMDRS and walking times on gait
analysis (93), and GPI-DBS produced a sustained improvement
in cranial and limb dystonia over 10 years in one patient with a
homozygous PRKRAmutation (94).

DYT-ANO3 (DYT24)
Mutations in ANO3 have been associated with autosomal
dominant, adult-onset craniocervical dystonia and dystonic
tremor as well as myoclonic jerks (95).

To date, there have been at least 5 reported cases documenting
a response to bilateral GPi-DBS in ANO3-related dystonia (96–
100). For example, one patient with a de novo variant in ANO3
(p.Val561Glu) and early onset, generalized dystonia was found to
improve with bilateral GPi-DBS, resulting in a sustained benefit
allowing her to walk with assistance (99). Another patient with an
ANO3 mutation (p.Glu510Lys) had a substantial improvement
in dystonia and tremor but in this case myoclonus persisted
(96). A further patient with ANO3-related dystonia had a
successful response to GPi-DBS but continued to have episodes
of dystonic storms (97). We conclude that DBS is likely to result
in a successful but partial response in dystonia due to ANO3
mutations, but large case series are needed.

DYT-GNAL (DYT25)
Autosomal dominant mutations in the GNAL gene cause
primary torsion dystonia, typically with a craniocervical onset,
although progression to other sites and generalized dystonia
can occur, with a phenotype resembling THAP1-associated
dystonia (101–103).

There are several case reports or case series documenting a
response to GPi-DBS in GNALmutation carriers (104–108). One
patient with a novel missense variant (p.Met97Val) in GNAL
with an associated phenotype of late-onset cervical and truncal
dystonia had excellent long term and continuous benefit from
bilateral GPi-DBS at 5 years follow-up (104).

In a family with a novel GNAL mutation (p.Asp210Asn), the
index patient with cervical dystonia and tremor derived a 67%
improvement in BFMDRS following bilateral GPi-DBS (105).
The index patient’s younger sister also obtained a benefit from
dystonia in terms of an improvement in cervical and laryngeal
dystonia (105).

The largest case series so far documented the response of 3
unrelated individuals with isolated dystonia due to a mutation
in GNAL (108). All patients improved with bilateral GPi-DBS,
with a predominant improvement in cervical dystonia compared
to other regions. However, a case report of an individual with a
GNAL variant (p.Cys429Tyr) did report improvement in other
anatomical regions following bilateral GPi-DBS (107).

In summary, according to the limited patients reported,
GNAL-related dystonia is likely to result in a favorable though
incomplete response to GPi-DBS.

DYT-KMT2B (DYT28)
Heterozygous variants in the KMT2B gene are emerging as
one of the commonest causes of early onset dystonia, with a
caudocranial pattern evolving into generalized dystonia (109–
111). There may be additional features, such as a characteristic
facies, microcephaly, short stature, developmental delay, mild
psychomotor impairment, and superimposed choreoathetosis
or myoclonus (111, 112). Furthermore, MRI findings show
characteristic changes including bilateral pallidal hypointensity
that may serve as a clue to this disorder (110, 113).

While initially thought to be unresponsive to medical
therapy (110), pharmacotherapy with trihexyphenidyl alone or
in combination with clonazepam has been reported to reduce
dystonia in some cases (114, 115). The reported response to
bilateral GPi-DBS is more consistent, with improvements of
motor function and gait, and restoration of walking in some
patients (110).

A very recent study described the largest sample of
KMT2B-related dystonia to date, including 18 individuals
with medication-refractory dystonia (111). Significant
improvement of motor function and disability [BFMDRS
movement (BFMDRS-M) and BFMDRS disability (BFMDRS-
D)] was evident at 6 months, 1 year and last follow-up (up to 22
years). Therefore, one of the characteristic features of dystonia
due to KMT2Bmutations is a response to DBS, which may be the
preferred option in severely affected patients (116). The effect of
DBS is seen in all anatomical regions, apart from perhaps a less
beneficial effect upon laryngeal dystonia (111, 114).
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FIGURE 1 | Major monogenic forms of dystonia categorized according to evidence of response to deep brain stimulation.

ADCY5-Related Dystonia
ADCY5-dyskinesia is inherited in an autosomal dominant
manner and causes a spectrum of clinical features including
chorea, athetosis, myoclonus, dystonia, and ballistic bouts, with
an onset in infancy to late-adolescence (117, 118).

In the largest case series to date, 3 patients with ADCY5
mutations has bilateral GPi-DBS (119). There was a subjective
general improvement and a reduction in nocturnal episodic
dyskinesias. However, on objective measures there was only a
mild decrease in involuntary movements, and dystonia improved
in 1 of 3 patients.

GNAO1-Related Dystonia
De novo heterozygous mutations in GNAO1 cause a spectrum
of disorders including a neurodevelopmental delay, epileptic
encephalopathy, and involuntary movements (120). There are
numerous case reports and case series supporting DBS in
GNAO1-associated movement disorders (120–124). Of note,
emergency GPi-DBS in a severely ill patient produced a dramatic,
life-saving response with almost complete remission of the
hyperkinesia despite persistence of generalized dystonia (120).
Furthermore, GPi-DBS was shown to be effective in two cases of
status dystonicus due to GNAO1mutations.

NBIA/DYT-PANK2
Biallelic mutations in PANK2 cause neurodegeneration with
brain iron accumulation-1 also known as pantothenate kinase-
associated neurodegeneration (PKAN), and previously known as
Hallervorden-Spatz disease (125). The phenotype may be classic
(early onset dystonia, choreoathetosis, dysarthria and rigidity) or
atypical (late onset or slowly progressive forms) (19, 126). The
MRI findings including iron deposition in the basal ganglia which
may result in the characteristic “eye of the tiger sign” (126).

There are several case reports of dystonia due to PKAN treated
with GPi-DBS, with most documenting a good response (127–
131), although with one instance of no benefit (132). It is notable
that genetic testing was not always performed in these cases,
making it difficult to be sure of the genotype specific outcome.

A study of 6 individuals with PANK2mutation-positive PKAN
showed a major and sustained improvement in painful spasms,
dystonia, and ambulation (19). A further study from Korea
demonstrated a benefit in 2 patients with atypical PKAN but a
variable benefit in 2 individuals with typical PKAN (133).

The largest study of NBIA to date was of 16 centers
contributing 23 individuals who underwent GPi-DBS (20).
Fifteen of those had genetic testing, and 14 were found to have
PANK2 mutations. They reported an improvement in dystonia
severity, disability, and quality of life. However, the improvement
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was not as great as those with primary generalized dystonia
or other secondary dystonias. Additionally, patients with more
severe dystonia appeared to derive greater benefit.

OTHER GENETIC CAUSES OF DYSTONIA

There are rarer forms of monogenic dystonia in whom a
response to DBS has been reported but the evidence is limited
so far. STN-DBS was found to be efficacious in two patients
with GCH1 variants for parkinsonism and motor fluctuations
following long-term treatment with levodopa (134). A case
report of GNB1-related myoclonus dystonia showed an initial
marked response to GPi-DBS (135). KCTD17-related myoclonus
dystonia is known to have an excellent response to GPi-DBS
(136), including an improvement in orolingual dyskinesia and
speech (137). In a patient with deafness dystonia syndrome due
to an ACTBmutation (p.Arg183Trp), GPi-DBS was also found to
be effective (138).

A further case study reported 2 patients with doublemutations
in DYT1 and DYT11, who a successful response to bilateral VIM
DBS (followed by GPi-DBS in one patient) (139).

Heterozygous loss of function mutations in VPS16 have
recently been found to cause dystonia with prominent
craniocervical and upper limb involvement (140). It is notable
that some patients experience an improvement from DBS (140),
although further data is required.

GM1 gangliosidosis is one several neurometabolic causes of
dystonia (141). A patient with GM1 type 3 gangliosidosis was
reported was reported to have a significant functional benefit but
no change to disease progression with bilateral GPi-DBS (142).

SYSTEMATIC REVIEWS

A very recent systematic review and meta-analysis of GPi-DBS
for monogenic dystonia found robust support for DYT1, modest
support for DYT6 and PANK2-related dystonia, and promising
results for SGCE, DYT3, ACTB and GNAO1-related dystonia,
supporting the concept of a differential outcomes for the
individual monogenic forms (143). An early age at onset (DYT1
and SGCE) was associated with better outcomes. Moreover,
a shorter duration prior to GPi-DBS (DYT1 and DYT3) was
associated with a better outcome, suggesting that perhaps earlier
intervention would be beneficial in these individuals (143).

A recent systematic review demonstrated an improvement in
physical quality of life, but the improvement in mental quality of
life was less robust (144).

CONCLUSION

Pallidal DBS is effective across a range of monogenic forms
of DBS, with a suggestion of a gene-specific differential effect
(Figure 1). However, the evidence is limited by small cohort sizes
or case reports, particularly for the rarer subtypes. Within these
limitations, patterns of response between different monogenic
dystonias may assist in patient selection for DBS and determining
treatment prognosis, particularly if additional factors such as
body distribution, disease duration or the presence of orthopedic

deformity are included in the overall assessment. Patients should
still be warned of the small risks of treatment failure or secondary
worsening, even those with monogenic dystonias considered
highly responsive to DBS. In this context the genetic diagnosis
forms one part of the decision-making algorithm and perhaps
with the exception of DYT-ATP1A3, finding a particular gene
should not discourage consideration of GPi DBS if alleviation of
a disabling dystonic syndrome is clinically imperative. Systematic
reviews can be helpful as described (143), and international
registries may address this issue further (145), particularly if the
collection of clinical data is uniform, allowing for comparison
between centers.

We highlight the importance of identifying a genetic diagnosis
in dystonia, which, aside from multiple benefits including
assistance with genetic counseling and family planning, may help
guide expectations as to the likely outcome of DBS, for both
patients and clinicians. This supports the concept of routine
genetic testing of patients with dystonia prior to DBS (146). In
this case, the options would be targeted gene panel sequencing,
whole exome sequencing, or whole genome sequencing (96,
113)–the most cost effective approach is yet to be determined.
An additional advantage of a genetic diagnosis in dystonia
patients being considered for DBS is that it effectively excludes
an unrecognized acquired combined (secondary) etiology where
a poorer DBS outcome would be predicted.

It is uncertain whether GPi-DBS should be reserved for severe,
medication-resistant cases, or whether it should be instituted at
a much earlier point. What is well-accepted is that DBS should
be considered in medically refractory dystonia before orthopedic
deformity has developed. DBS responses may be variable and
depend on other factors such as age (146). Furthermore, DBSmay
have a differential effect for certain phenotypic manifestations
(e.g., improvement in dystonia greater than parkinsonism
for DYT/PARK-TAF1 or limited improvement in speech and
swallowing in DYT-THAP1).

While genetic testing may have a role with guiding
expectations in GPi-DBS for genetic forms of dystonia, ultimately
to decision to proceed should be based on the clinical phenotype.
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