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Introduction. Family health history (FHx) is an important factor in breast and ovarian cancer risk assessment. As such, multiple risk predictionmodels rely strongly on
FHx data when identifying a patient’s risk. These models were developed using verified information and when translated into a clinical setting assume that a patient’s
FHx is accurate and complete. However, FHx information collected in a typical clinical setting is known to be imprecise and it is not well understood how this
uncertainty may affect predictions in clinical settings.
Methods. Using Monte Carlo simulations and existing measurements of uncertainty of self-reported FHx, we show how uncertainty in FHx information can alter risk
classification when used in typical clinical settings.
Results.We found that various models ranged from 52% to 64% for correct tier-level classification of pedigrees under a set of contrived uncertain conditions, but that
significant misclassification are not negligible.
Conclusions.Our work implies that (i) uncertainty quantification needs to be considered when transferring tools from a controlled research environment to a more
uncertain environment (i.e, a health clinic) and (ii) better FHx collection methods are needed to reduce uncertainty in breast cancer risk prediction in clinical settings.
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Introduction

Studies have shown a strong association between family health history
(FHx) and disease susceptibility for a number of high-frequency
chronic conditions such as diabetes, cardiovascular disease, and
various cancers [1, 2]. FHx is comprised of information on a relative’s
demographics, disease diagnosis, and age of onset in a pedigree often
tracing up to 3 generations [3]. The record helps to characterize
a combination of shared environmental factors, genetic susceptibility,
and common behaviors to provide an independent variable for risk
analysis [4]. These associations can then facilitate patient risk stratifi-
cation based solely on FHx. For example, patients with an FHx that
meet certain disease-specific guidelines can be characterized as either
moderate risk or high risk. Patients identified as high risk can then

receive earlier and/or more frequent screenings, recommendations
for behavioral changes in health management, and other evidence-
based measures for prevention of the identified disease [5].

The American Cancer Society (ACS) has published guidelines to identify
patients at high risk for breast and ovarian cancers [6]. These guidelines
also provide recommendations informing genetic testing and screening
for early detection and prevention. Specifically, the ACS established
breast cancer screening guidelines that include annual screening mam-
mography and magnetic resonance imaging (MRI) for patients with
known BRCA gene mutations and those with an approximate lifetime
risk of 20% or greater. To calculate lifetime risk, the ACS recommends
the use of risk assessment models that rely heavily on FHx [ie, Claus
model [7], the Tyrer-Cuzick model [8], BRCAPRO [9], and the Breast
and Ovarian Analysis of Disease Incidence and Carrier Estimation
Algorithm (BOADICEA) [10, 11] over those that do not. Although each
of these models rely on FHx as input, they are derived using various
methods and populations, resulting in each model stratifying a unique
group of patients into each risk category [12].

These models have been developed and validated for highly controlled
cohorts in which all data have been verified from original sources
[13–15]. Hence, the models assume that FHx information provided for
risk calculation is accurate. However, the clinical application of risk
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prediction models should allow for realistic data inaccuracies in a clinical
setting. For instance, it has been observed that FHx information collected
in a clinical setting is imprecise, with the most frequently used method to
obtain FHx, self-reporting, as a common cause of error [16]. Therefore,
the translational value of these models should be evaluated in light of
such practical limitations when translating these population science
discoveries from the research environment to the clinic.

Studies on self-reported family history have shown that inaccuracies in
FHx of general diseases can range from 10% to 70%, depending on
disease and degree of relatedness [17]. Self-reported FHx error
originates from a lack of family history knowledge or recall bias during
reporting. These errors, which may lead to uncertainty in the risk
prediction, have been shown to vary based on the demographics of the
patient, type of disease, and degree of the relative. For example, a false
negative in the family history may result in an underestimation of risk,
creating a missed opportunity for proper care [18]. Alternatively,
a false positive in the family history may result in overestimation of risk,
resulting in unnecessary, expensive and/or risky procedures, and
unnecessary referrals for genetic testing or counseling (Fig. 1) [19]. For
breast cancer, it has been previously shown that the effect of uncertain
family history can seriously distort carrier probabilities and therefore
lifetime risk estimates using the BRCAPRO model [20]. However, the
effect of this distortion on clinical guidelines, as well as on other risk
prediction models, has not been quantified.

Considering the uncertainty surrounding self-reported FHx, we focus
our work in assessing its effect on breast cancer risk prediction models.
It is important to quantify this effect as it aids in gaining a better under-
standing of how to transition complex prediction models from the
research environment to the clinic, which can have an important impact
on clinical guideline development and determine potential patient treat-
ment. We present a general approach for this translational issue using a
general Monte Carlo (MC) approach to quantitatively assess the uncer-
tainty factors discussed above. The aim of this study was to develop a
framework to evaluate commonly used risk assessment models heavily
reliant on family history under uncertain conditions. The methods
developed are quite general and can be applied to any biomedical pre-
dictive model including other cancer-related applications.

Methods

A comprehensive experimental design to estimate the effect of
uncertainty in self-reported FHx on breast cancer risk classification

requires an adequately large number of pedigrees to be tested over a
plausible range of uncertain conditions. For each pedigree considered
in the analysis, we built a large number of derivative pedigrees or
replicas with FHx input data modified according to the distributions
expected for their uncertainties as derived from published data. In this
study we use the self-reported FHx accuracy assessments from the
recent analysis of Tehranifar et al. [21], with the understanding that our
analysis will be restricted by the inherent limitations in their study.
We used these accuracies to build probability distributions for age at
onset and affected status of all the members of the pedigree under
consideration and used the MC method to sample these distributions
[22, 23]. MC simulations provide an effective method for estimating
classification error and there is extensive literature for using this
approach. Age at diagnosis was also considered because of its inclusion
in all risk models considered here and its importance in determining
hereditary cancer. As Tehranifar et al. did not include validation of age
at diagnosis, we used data from Schneider et al. [24] showing 53% of
reported ages at onset were within 5 years for relatives with heredi-
tary breast or ovarian cancer syndrome.

Considering the wide variation in pedigree structures, we contrived
simulated pedigrees for each MC simulation with the goal of achieving a
wide range of familial risk which could be selected from to evaluate the
effect of uncertainty across the risk spectrum [25]. The initial simu-
lated pedigrees were classified by the ACS guidelines for MRI screening
adjunct to mammography (Table 1). MC simulations were used for
generating replicas of the original pedigrees perturbed to simulate
uncertainty. Then, recalculation of the lifetime breast cancer risk using
each of the models considered was performed to allow assessment of
the effect of uncertainty upon final risk classification in contrast to the
original risk classification strata of each pedigree. The effect of
uncertainty was summarized for each pedigree by the total percentage
of MC replicas whose risk tier was classified correctly (ie, same as

Fig. 1. Sensitivity in lifetime risk estimates of various models to uncertainty in an example pedigree. A hypothetical situation where a proband is assessing her lifetime
risk for breast cancer (BR) based on her family knowledge. The proband is marked by the triangle and lifetime risk (risk of developing cancer from age 20 to age 80) is
assessed by each model. The proband has a mother with BR with age at onset of 53 years and is uncertain of the cancer status of the 60-year-old aunt. The table on the
right shows how each tool evaluates the proband’s lifetime risk under the scenario of the 60-year-old maternal aunt being unaffected for BR or ovarian cancer (OV) in
the first column, followed by proband’s lifetime risk for BR under the perturbation that the aunt had affected status for BR or OV at various onset ages. IBIS,
International Breast Intervention Study; BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm.

Table 1. American Cancer Society risk classification strata for breast screening

Lifetime risk (%) Recommendations

High risk 20–25 Annual MRI screening
Moderate risk 15–20 Insufficient evidence for screening
Low risk <15 Recommend against MRI screening

MRI, magnetic resonance imaging.
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initial pedigree) or misclassified (ie, change of risk-tier classification
from initial pedigree).

Risk Prediction Models

As multiple models are available, and each model can potentially per-
form differently under uncertain conditions, we tested the 4 ACS
recommended models that have widespread use: Claus, BRCAPRO,
International Breast Intervention Study (IBIS), and BOADICEA [7–10].
For continuity across models we followed the BOADICEA guideline
for lifetime risk. Lifetime risk for breast cancer was assessed by setting
the age of the proband to 20 years and computing risk at 80 years of
age, with the exception of the Claus model, which was measured as the
cumulative probability of a woman at 79 years of age.

The Claus model was developed using data from the Cancer and Steroid
Hormone Study, a large population-based study with histologically con-
firmed breast cancer cases and controls [13]. The model is based on
segregation analysis for a rare single autosomal dominant allele. For this
study we used the complete set of published risk tables, including the
subsequently published ovarian cancer tables [26]. These risk tables
include combinations of affected first-degree and second-degree rela-
tives, however, some risk combinations are not provided (ie, mother and
maternal grandmother). For the missing combinations we used a similar
degree of relative combinations to extrapolate risk, comparable with
what has been done in other studies [27]. A complete table can be found
in online Supplementary Table S1. As the Claus table requires a max-
imum of 2 affected first-degree and second-degree relatives with age at
onset, we found all possible affected combinations for a given pedigree
and considered only the highest as the lifetime risk.

BRCAPRO is a Mendelian model that uses Bayesian statistics to obtain
a probability of lifetime risk by combining the likelihood ratio that an
individual carries a BRCA1 or BRCA2 mutation, extrapolated from
family history information with mutation prevalence and penetrance
data. The variables for BRCAPRO include a pedigree of any degree
with ages of breast and ovarian cancer diagnosis, current age of family
members, ethnicity with optional germline testing results (BRCA1/2
positive, negative, or untested), and tumor marker status (Estrogen
Receptor, Progesterone Receptor, and Human Epidermal Growth
Factor Receptor 2 [Her2/neu]). For this study we used the imple-
mentation available in the R package BayesMendel 2.1.1 and excluded
all optional variables [28, 29]. The model was used with default pene-
trance and risk objects.

IBIS, also known as the Tyrer-Cuzick model, was developed using
results from the International Breast Intervention Study and a Swedish
population study on Familial Breast and Ovarian Cancer [14]. The
model is based on the assumption of an underlying gene that leads to
breast cancer predisposition in addition to the BRCA genes. It uses
family history in conjunction with Bayes theorem and Mendelian
genetics to estimate the likelihood of a proband carrying any predis-
posing genes, as well as the likelihood of developing breast cancer. For
this study we used version 7 of the windows desktop application.
Model variables included affected status and age at onset for breast and
ovarian cancer for first-degree and second-degree relatives in addition
to half-siblings and affected cousins and nieces. Of note, IBIS also
includes many personal health history variables. All other personal
health history variables were entered as missing data including age
at menarche, parity, age of first child, menopause, menopause age,
hormone therapy use, and genetic testing.

The BOADICEA model was developed using complex segregation
analysis on 2785 families collected through multiple population-based
studies of breast cancer. The model uses probabilities for BRCA1/2
mutations, as well as a polygenetic component that represents the
aggregative effects of a large number of genes, to generate risk.

BOADICEA has input values for first-degree, second-degree, and
third-degree relatives with affected status for breast, ovarian, prostate,
and pancreatic cancers. The model also includes values for genetic
testing for BRCA1 and BRCA2, age at onset of cancer, age of relatives,
patient ethnicity, and tumor pathology (ER, TN, and basal markers).
For the present study, we used a batch mode implementation of
BOADICEA based on the version 7 release (personal communication).
As with other models, all non-breast and ovarian cancer variables were
entered as missing.

These models are fundamentally different as they require unique input,
methodologies, and output [30]; however, no additional steps were
taken to normalize risk estimates between models. For example, even
though the risk estimates for the Claus and IBIS models include both
invasive breast cancer and ductal carcinoma in situ, neither BRCAPRO
nor BOADICEA include ductal carcinoma in situ in their risk esti-
mates. Although this could potentially lead to outcome differences in
terms of economic and health impact, the purpose of this study was to
assess uncertainty on each model and not on model validity.

Pedigree Simulation

Custom python scripts were used to simulate pedigrees. Because each
risk assessment program requires a unique input format, pedigrees
were initially simulated using the BOADICEA format and then con-
verted to the required input format for the other risk assessment
programs. Pedigree simulation started with a backbone pedigree of
proband (age 20, unaffected), parents, grandparents, and great-
grandparents. All other first-degree, second-degree, and third-degree
relatives were added randomly within the limitations of the risk
assessment tools (eg, IBIS limits the proband to a maximum of 5 sisters,
paternal aunts, and maternal aunts). Affected status for only breast
cancer and ovarian cancer, along with age at onset, were then added
randomly with a 10% chance of breast cancer and 5% incidence of
ovarian cancer. Affected status was only applied to females as the
accuracies of self-reported FHx for male breast cancer is, to our
knowledge, unknown. In addition, breast and/or ovarian cancer was
only applied to females over 30 years of age. The lifetime risk of the
proband was then calculated using each risk assessment model. Pedi-
grees were then classified into low-risk, medium-risk, and high-risk
categories with 50,000 pedigree simulations in each (50 pedigrees for
each risk category with 1000 MC perturbation simulations for each
pedigree). All pedigrees were assessed by each model. For the high-
risk category, we used a cut-off of 35% in order to model more rea-
listic pedigrees. Fig. 2 shows the distribution of initial risks in the
simulated pedigrees used to assess the BOADICEA model. Similar
distributions were used for each of the other models.

Sample Size Justification

Before performing the MC simulation, an analysis was done to justify
the number of MC replicas needed per pedigree and the number of
pedigrees per risk stratification classification that were necessary to
achieve stable results. To start, 3 sample pedigrees were run through
the simulation using increasingly larger number of replicas, up to
1 million. After each iteration the pedigree replicas were classified; it
was found that the proportion of correctly classified simulations
stabilized around 500–1000 iterations, depending on pedigree size.
Using 1000 iterations, we calculated the 95% confidence interval (CI)
around the percentage of correctly classified pedigrees. The CI around
a binomial proportion population estimate (p) can be calculated
(Equation 1) for a given critical value (z, z= 1.96 for a 95% CI),
calculated proportion of correct classification (p, p is assessed for each
risk tool), and sample size (n, n= 1000 in each of our simulations).

CI= p ± z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
p ð1�pÞ

r
: (1)
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The average calculated CI across the 4 models was within ±0.03 from
each calculated proportion for each simulation with 1000 iterations,
which is an acceptable value. Similarly, a 95% CI was calculated for each
of the risk stratifications using a sample size of 50 pedigrees and the
calculated standard deviation.

MC Simulations

MC simulations were performed using 3 independent input variables:
affected status for breast cancer, affected status for ovarian cancer, and
age of cancer onset. For affected status of each cancer type, binomial
distributions were created based on the sensitivities (affected rela-
tives) and specificity (unaffected relatives) from Tehranifar et al. [21].
Similar to pedigree generation, MC simulations for affected status was
only applied to females over the age of 30 years. For onset age of
cancer, a normal distribution was used with mean (µ) of age at onset in
the original pedigree and a standard deviation corresponding to ~53%
of generated ages being within ±5 years (eg, µ= 70 y of age and
σ= 6.92). False positives for affected status were assigned an age at
onset of their current age in the pedigree. In addition, we used the
upper and lower bounds of 95% CI for sensitivities and specificities to
generate “best-case” and “worse-case” scenarios, respectively.

The model for uncertainty quantification described above was used for
each risk prediction model, using 50 pedigrees initially classified into
low-risk, medium-risk, and high-risk categories as set by the ACS. In
addition to the “average case” of uncertainty scenario (utilizing the
mean sensitivity and specificity values from Tehranifar et al. [21]), best-
case and worst-case uncertainty scenarios were also created, defined
by the upper and lower bounds of the 95% CIs of sensitivity and
specificity from that previously published analysis. For each risk pre-
diction tool, a simulated family was tested by generating 1000 pedigree
replicas using MC simulations, totaling 50,000 samples per initial
ACS risk classification category (150,000 for each). This was then
performed for each of the 3 (average, best, and worst) degrees of
uncertainty scenarios, totaling 450,000 simulations for each of the
4 tools.

Results
Pedigree Simulation for Each Model

The average number of females in the 150 simulated pedigrees used in
this study (all risk categories) was between 25 and 26 depending on the
risk prediction model. This includes all first-degree, second-degree,
and third-degree relatives with a high of 39 female members and a low
of 7. The average number of affected individuals for each degree
of relatedness, risk prediction model, and initial risk category is
summarized in Table 2. As the initial goal was to simulate pedigrees
which spanned the risk range of 10%–35% for each model (see Fig. 2),
not all generated pedigrees were identical for each of the various risk
prediction models (ie, some pedigrees were unique for a particular
model’s assessment). Risk estimates were sometimes observed to vary
widely across models for a given pedigree, whereas the effect of
uncertainty of age in an affected relative often had only a minimal effect
on a model’s overall risk (see Fig. 1).

Classification of Pedigree Replicas with
Uncertainty

The resulting risk classification changes due to adding uncertainty to the
simulated pedigrees by the initial risk strata are presented in Fig. 3 for the
Claus, BRCAPRO, IBIS, and BOADICEAmodels, respectively. A colored
bar represents no change in classification of the original pedigree with
uncertainty added, whereas a gray bar represents a change in the classi-
fication due to the added uncertainty. The height of the bars indicates the
percentage of the replicas from the original classification sorted into the

category indicated in the x-axis under the average uncertainty scenario. In
the absence of uncertainty there should be only 1 bar per x-axis category
(green for low risk, yellow for moderate risk, and red for high risk) at
100%, that is, all of the pedigree simulations would classify into the same
category as the original one. The bars in the figure represent the results
for the best case and worst case of uncertainty scenario as defined in the
Methods section. The values corresponding to these graphs are
presented in online Supplementary Table S2.

Discussion

It is apparent from Fig. 3 that for all risk models considered here,
the majority of the pedigree replicas with added uncertainty
were classified into the original risk category. The percentage of
pedigrees changing risk category was modest, with a 14% average of
changed category. Extreme values of 25% reclassification for the high-
risk class was observed with the BOADICEA model and a minimum
misclassification of only 1% for the high-risk classification was seen
with the Claus model. However, the changes did not appear to have
any well-defined trend with respect to risk category of risk model, the
lack of any extreme outlier changes may indicate that, for practical
applications, the selection of the cut-off criteria in the uncertainty
distributions of the input parameters is not critical. On the other hand,
the results from Fig. 3 clearly indicate that misclassification of pedi-
grees with uncertainty was not uncommon and that uncertainty in the
input parameters does have clinical implications. For instance, in our
contrived population of high-risk patients, ~16% would not be

Table 2. Average number of affected individuals in the simulated pedigrees by
model and degree of relatedness/cancer type

Claus IBIS BRCAPRO BOADICEA

Low risk
BR-FDR 0.28 0 0.4 0
BR-SDR 0.9 0.26 0.76 0.48
BR-TDR 0.88 1.02 0.78
OV-FDR 0.16 0.2 0.36 0.08
OV-SDR 0.48 0.98 0.54
OV-TDR 0.76 0.88 0.4
Total affected 1.34 2.58 4.4 2.28

Moderate risk
BR-FDR 0.58 0.08 0.56 0.56
BR-SDR 1.02 0.88 0.98 0.88
BR-TDR 1.12 0.98 1.12
OV-FDR 0.14 0.16 0.6 0.18
OV-SDR 0.48 1.14 0.62
OV-TDR 0.5 1.08 0.64
Total affected 1.74 3.22 5.34 4.00

High risk
BR-FDR 0.68 0.62 0.66 0.76
BR-SDR 1.64 1.02 1.14 1.46
BR-TDR 0.88 1.12 1.06
OV-FDR 0.46 0.3 0.82 0.34
OV-SDR 0.7 1.54 0.9
OV-TDR 0.74 1.02 0.74
Total affected 2.78 4.26 6.3 5.26

IBIS, International Breast Intervention Study; BOADICEA, Breast and Ovarian
Analysis of Disease Incidence and Carrier Estimation Algorithm; BR-FDR,
first-degree relative with breast cancer; BR-SDR, second-degree relative with
breast cancer; BR-TDR, third-degree relative with breast cancer; OV-FDR,
first-degree relative with ovarian cancer; OV-SDR, second-degree relative with
ovarian cancer; OV-TDR, third-degree relative with ovarian cancer.

The rows labeled “total affected” indicate average number of total affected with
either cancer and across all degrees of relatedness.
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recommended for advanced breast cancer screening in a clinic using
the BOADICEA model with average-case uncertainty. Moreover, our
contrived data show that pedigrees with risk classifications closer to
risk category cut-offs are more likely to be misclassified due to
uncertainty (online Supplementary Fig. S1).

Consistently all the risk models misclassified pedigree replicas of mode-
rate risk at much higher rates than the low-risk and high-risk categories,
with the latter showing less misclassifications in most cases, with

BRCAPRO being the exception (Table 3). For the average misclassifica-
tions it appears that the Claus and BOADICEA risk models are less
sensitive to uncertainty on the input parameter, but the level of
misclassification for all the risk models considered here are non-
negligible and their clinical consequences should be carefully considered.

Fig. 3 shows that uncertainty in self-reported family history has a
non-negligible effect on risk classification regardless of the risk model
used. Although this effect differs from model to model and a straight

Fig. 3. Effect of uncertainty on initial versus final risk classification for each model. Bars show percentage of pedigree classification from the initial risk strata to the final
risk strata (L, low; M, moderate; H, high) determined after adding uncertainty to the initial pedigree according to the average case of uncertainty scenario. Colored bars
represent no change in classification, gray indicates a change in classification. Upper-bound and lower-bound bars show best-case and worst-case of uncertainty
scenarios. IBIS, International Breast Intervention Study; BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm.
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across comparison is difficult to make as models take into account
different variables for risk calculation and use differing methodologies,
none of the models considered here appear to be unquestionably
more robust to uncertainty of input parameters.

As mentioned in the Methods section, the IBIS model does not account
for unaffected cousins and nieces. Considering that the specificity of
breast cancer for third-degree relatives is 83% for the average-case
scenario [21], it is possible that many false negatives will be included in a
large pedigree, with multiple cousins. Overall, this tends to push lifetime
risk estimates for the IBIS model into high-risk categories as can be
observed in Fig. 3 as ~50% of low-risk pedigree replicas fall into the
moderate-risk and high-risk categories. Conversely, IBIS has the highest
average of high-risk pedigrees correctly classified at such high risk.

Although many studies have evaluated family history data for accuracy
on self-reporting, the true sensitivity and specificity distributions are
unknown. Studies tend to be limited by sampling bias—where the
population under study has higher risk than the general population,
a lack of gold standard—where self-reported family history is not
compared against a gold standard such as a pathology report but
instead collected through interviews, questionnaires, or death
records, and lack of generalizable results due to the studies being held
in 1 location. Nevertheless, the literature on self-reported accuracy
shows an agreement of moderate-to-high accuracy for most cancers
[17]. We have performed an MC simulation using values associated
with the accuracy of self-reported family history to quantify the effect
of uncertainty of breast cancer risk prediction. Our use of multiple risk
prediction models, as recommended by the ACS, showed that
uncertainty in family history can have a large effect on risk prediction.
The effect of this uncertainty varies by model, but we show that it
could ultimately affect prevention strategies for breast cancer, both in
overuse of MRI screening to low-risk populations and in missed
screening opportunities for high-risk patients.

We also show a highly generalizable method based on MC simulations
to estimate the effect of self-reported family history on lifetime risk
prediction tools for breast cancer. As medicine moves to a more
personalized system, it is important to not only look to future research
and discoveries, but also to better utilize and implement existing
strategies to maximize their impact. Although we show that risk
classification is subject to uncertain conditions, it is important not to
dismiss the usefulness of these models. Instead, further research into
methods of collection and storage of FHx are needed. We show that
by decreasing uncertainty in FHx, existing tools become more effec-
tive, potentially saving cost, and, more importantly, lives.
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