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SUMMARY
T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of
different SARS-CoV-2 antigens and precisely measure virus-specific CD4+ and CD8+ T cells, we study
epitope-specific T cell responses of 99 convalescent coronavirus disease 2019 (COVID-19) cases. The
SARS-CoV-2 proteome is probed using 1,925 peptides spanning the entire genome, ensuring an unbiased
coverage of human leukocyte antigen (HLA) alleles for class II responses. For HLA class I, we study an addi-
tional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global
coverage. We identify several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of
immunodominance are observed, which differ for CD4+ T cells, CD8+ T cells, and antibodies. The class I
and class II epitopes are combined into epitope megapools to facilitate identification and quantification of
SARS-CoV-2-specific CD4+ and CD8+ T cells.
INTRODUCTION

The severity of the associated coronavirus disease 2019

(COVID-19) ranges from asymptomatic or mild self-limiting dis-

ease to severe pneumonia and acute respiratory distress

syndrome (World Health Organization [WHO]; https://www.

who.int/publications/i/item/clinical-management-of-covid-19).

We and others have started to delineate the role of SARS-CoV-2-

specific T cell immunity in COVID-19 clinical outcomes.1–8 A

growing body of evidence points to a key role for SARS-CoV-

2-specific T cell responses in COVID-19 disease resolution and

modulation of disease severity.2,6,9 Milder cases of acute

COVID-19 were associated with coordinated antibody, CD4+

and CD8+ T cell responses, whereas severe cases correlated

with a lack of coordination of cellular and antibody responses

and delayed kinetics of adaptive responses.2,6

To date, most studies have utilized pools of predicted or

overlapping peptides spanning the sequence of different

SARS-CoV-2 antigens,1,2,5–10 but the exact T cell epitopes and

immunodominant antigen regions have not been comprehen-

sively determined. Several studies have mapped different epi-

topes or the corresponding T cell receptors (TCRs), providing

important insights into the frequency and phenotype of
Cell Repo
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epitope-specific CD8+ and CD4+ T cells in COVID-19 using

ex vivo studies,4,10–12 but have been biased in their approach

due to sampling only a limited number of cells,7,11,13 using hu-

man leukocyte antigen (HLA) predictions focused on a limited

number of allelic variants not representative of the majority of

the human population,11,13 or detecting responses mediated

by only a few cytokines, potentially largely underestimating total

responses.4,13 Other important studies, although providing crit-

ical knowledge about T cell recognition per se, utilize in vitro

re-stimulation protocols.13,14

Defining a comprehensive set of epitope specificities is impor-

tant for several reasons. First, it allows us to determine whether,

within different SARS-CoV-2 antigens, certain regions are immu-

nodominant. This will be important for vaccine design so as to

ensure that vaccine constructs include not only regions targeted

by neutralizing antibodies, such as the receptor binding domain

(RBD) in the spike (S) region, but also include regions capable of

delivering sufficient T cell help and are suitable targets of CD4+

T cell activity. Second, a comprehensive set of epitopes helps

define the breadth of responses in terms of the average number

of different CD4+ and CD8+ T cell SARS-CoV-2 epitopes gener-

ally recognized by each individual. This is key because some re-

ports have described a T cell repertoire focused on few viral
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epitopes,11 which would be concerning for potential viral escape

from immune recognition via accumulated mutations that can

occur during replication or through viral reassortment. Third, a

comprehensive survey of epitopes restricted by a set of different

HLAs representative of the diversity present in the general pop-

ulation is important to ensure that results obtained are generally

applicable across different ethnicities and racial groups and also

to lay the foundations to examine the potential associations of

certain HLAs with COVID-19 severity. Finally, the definition of

the epitopes recognized in SARS-CoV-2 infection is relevant in

the context of the debate on the potential influence of SARS-

CoV-2 cross-reactivity with endemic ‘‘common cold’’ coronavi-

ruses (CCC).3,4 Several studies have defined the repertoire of

SARS-CoV-2 epitopes recognized in unexposed individ-

uals,3,14,15 but the correspondence between that repertoire

and the epitope repertoire elicited by SARS-CoV-2 infection

has not been evaluated.

In this study, we report a comprehensive map of epitopes

recognized by CD4+ and CD8+ T cell responses across the entire

SARS-CoV-2 viral proteome. Importantly, these epitopes have

been characterized in the context of a broad set of HLA alleles

using a direct ex vivo, cytokine-independent approach.

RESULTS

Characteristics of the study participants
To broadly define the pattern of immunodominance and epitope

recognition associated with SARS-CoV-2 infection, we studied

peripheral blood mononuclear cell (PBMC) samples from 99

adult convalescent COVID-19 donors. Their age ranged from

19 to 91 years (median 41), with a gender ratio of about 2M:3F

(male 41%; female 59%). Ethnic breakdown was reflective of

the demographics of the local enrolled population. Samples

were obtained 3 to 184 days post-symptom onset (median

67 days). Peak COVID-19 disease severity was representative

of the distribution observed in the general population to date

(mild 91%; moderate 2%; severe and critical 7%; Table S1).

SARS-CoV-2 infection was determined by PCR-based testing

during the acute phase of infection, if available (79% of the

cases), and/or verified by plasma SARS-CoV-2 S protein RBD

immunoglobulin G (IgG) ELISA16 using plasma from convales-

cent phase blood draws. All donors were seropositive at the

time of blood donation, with the exception of two mildly symp-

tomatic donors with positive PCR results from the acute phase

of illness but seronegative results at time of blood donation (at

55 and 148 days post-symptom onset [PSO], respectively).

All donors were HLA typed at both class I and class II loci (Ta-

ble S2). The HLA class I and II alleles frequently observed in the

enrolled cohort were largely reflective of what is found in the

worldwide population, as reported by the Allele Frequency Net

Database17 and as retrieved from the Immune Epitope Data-

base’s (IEDB) (http://www.iedb.org) population coverage tool

(Figure S1).18,19 Of the 20 different HLA class I alleles with

phenotypic frequencies >5% in our cohort, 15 (75%) are also

present in the most common and representative class I alleles

in the worldwide population (Figures S1A and S1B).20 Likewise,

of the 34 different HLA class II alleles with phenotypic fre-

quencies >5% in our cohort, 26 (76%) are also present in the
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worldwide population with frequencies >5%. These alleles

correspond to 16 of the 27 (59%) alleles included in a reference

panel of the most common and representative class II alleles in

the general population (Figures S1D–S1F).21 In conclusion, our

cohort is largely representative of the HLA allelic variants

commonly expressed worldwide.

Pattern of antigen immunodominance in CD4+ and CD8+

T cell responses to SARS-CoV-2 antigens
To study adaptive immune responses in COVID-19 convalescent

donors, we previously utilized TCR-dependent activation

induced marker (AIM) assays to quantify SARS-CoV-2-specific

CD4+ and CD8+ T cells utilizing the combination of markers

OX40+CD137+ and CD69+CD137+ for CD4+ and CD8+ T cells,

respectively.1,6,15 To define the global pattern of immunodomi-

nance in the study cohort, we tested PBMCs from each donor

with sets of overlapping peptides spanning the various SARS-

CoV-2 proteins, as previously described (Figures 1A and 1B).1

These data also defined the specific viral antigens recognized

by each donor and therefore highlight the specific antigens/

donor pairs suitable for further epitope identification studies,

as shown in Figures 1C and 1E.

For each SARS-CoV-2 protein antigen (Table S3), we recorded

the % of donors in which a positive response was detected and

the total response counts (positive cells/million detected in the

AIM assay). This information was used to tabulate the percent-

age of the total response ascribed to each protein and calculate

the cumulative coverage provided by themost immunodominant

proteins.

For CD4+ T cell responses, 9 viral proteins (non-structural pro-

tein [nsp] 3, nsp4, nsp12, nsp13, S, open reading frame 3a

[ORF3a], membrane [M], ORF8, and nucleocapsid [N]) ac-

counted for 83% of the total response. In the context of CD8+

T cell responses, 8 viral proteins (nsp3, nsp4, nsp6, nsp12, S,

ORF3a, M, and N) accounted for 81% of the total response.

These results confirmed the pattern previously observed with a

more limited (n = 20) number of COVID-19 patients1 and highlight

a broad pattern of immunodominance, where 8 to 9 antigens are

required to cover 80% of the response.

We further evaluated the number of antigens recognized in

each of the individual donors analyzed. To this end, we focused

on antigens associated with a sizeable response, arbitrarily

defined herein as those antigens individually accounting for at

least 10% of the total response. We found that, per donor, an

average of 3.2 and 2.7 proteins were recognized by 10% or

more of the total CD4+ and CD8+ SARS-CoV-2-specific T cells,

respectively (Figures 1D and 1F).

Functional consequences of SARS-CoV-2-specific CD4+

T cell responses directed against different antigens
We next investigated whether the recognition of different SARS-

CoV-2 antigens by CD4+ T cells correlated with functional anti-

body and/or CD8+ T cell responses. Consistent with the wide

range of blood collection time points (day PSO) and peak dis-

ease severity in the COVID-19 donor cohort, we observed a

wide range of RBD IgG responses (Figure 2A). Combined

CD4+ T cell responses did not significantly correlate with the

antibody response to RBD (R = 0.1285; p = 0.2051; Figure 2B).

http://www.iedb.org


Figure 1. SARS-CoV-2-specific T cell reactivity per protein

PBMCs from convalescent COVID-19 donors (n = 99) were analyzed for reactivity against SARS-CoV-2 (A–F). Heatmaps of T cell reactivity across the entire

SARS-CoV-2 proteome and as a function of the donor tested are shown for CD4+ (A) and CD8+ (B) T cells. The x axis shows individual donors’ responses to the

indicated SARS-CoV-2 protein. Immunodominance at the ORF/antigen level and breath of T cell responses are shown for CD4+ (C) and CD8+ (E) T cells. Data are

shown as geometric mean ± geometric SD. The numbers of donors recognizing one or more antigens with a response >10%, normalized per donor to account for

the differences in magnitude based on days PSO, are shown for CD4+ (D) and CD8+ (F) T cells. Empty blue and red circles represent CD4+ and CD8+ T cell

reactivity per protein, respectively. Filled blue and red circles highlight the immunodominant antigens recognized by CD4+ and CD8+ T cells, respectively.
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Breaking the correlation down for individual antigens showed

that two correlations had p < 0.05, namely spike (R = 0.2223;

p = 0.0270) and M protein (R = 0.2117; p = 0.0354), but these

would not be significant when performing a multiple hypothesis

comparison taking all other antigens into account (Figures 2C–

2E). In contrast, the correlation between CD4+ and CD8+ T cell
responses was highly significant in aggregate (R = 0.6756; p =

1.70 3 10�14; Figure 2F) and was significant for each of the in-

dividual antigen comparisons (Figures 2G–2I). The same was

observed when the correlations of the matched protein-specific

CD4+ and CD8+ T cell responses were considered (Figures

S2A–S2C).
Cell Reports Medicine 2, 100204, February 16, 2021 3



Figure 2. SARS-CoV-2-specific CD4+ T cell reactivities and their correlations with antibody production and CD8+ T cell reactivity

(A) RBD IgG serology is shown for all the convalescent COVID-19 donors (n = 99) of this cohort.

(B–E) Serology data of (A) are correlated with CD4+ T cell reactivities specific against all combined proteins (B), structural proteins S, M, and N (C), non-structural

proteins nsp3, nsp4, nsp12, and nsp13 (D), and ORF8 and ORF3a (E).

(F–I) The total CD8+ T cell reactivity is correlated with the total CD4+ T cell reactivity (F) and the CD4+ T cell reactivity against structural proteins S, M, and N (G),

non-structural proteins nsp3, nsp4, nsp12, and nsp13 (H), and ORF8 and ORF3a (I).

Empty and filled circles represent correlation betweenCD4+ T cell reactivity and serology or CD8+ T cell reactivity, respectively. All analyseswere performed using

Spearman correlation, and the p values shown were not corrected for multiple hypothesis testing.
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These data overall suggest that the CD4+ T cell response

against all dominant antigens is potentially relevant in terms of

providing helper function for CD8+ T-cell-specific responses.

However, it cannot be excluded that what we observed is due

only to the CD4+ T cell help or to other extrinsic and intrinsic

properties of antigen presentation and responsiveness within

an individual. This might reflect that T cell responses correlate

with gene expression. S, N, and M may be immunodominant

because of the very high gene expression for each.22 In this

context, it is perhaps surprising that a strong CD4+ and CD8+

T cell response was elicited by nsp3, which is not known to be

expressed at high levels.22

SARS-CoV-2 peptides and epitope screening strategy
The analysis of the SARS-CoV-2 proteome summarized above

identified the major viral antigens accounting for 80% or more

of the total CD4+ and CD8+ T cell response. These antigens

were then introduced into the epitope screening pipeline (Fig-

ure S3A). Because class II epitope prediction is not as robust

as class I prediction,23 and because of the high degree of overlap

in binding capacity of different HLA class II alleles, to determine

CD4+ T cell reactivity in more detail, we followed a comprehen-

sive and unbiased approach based on the use of complete

sets of overlapping peptides spanning each antigen and compo-

sition of antigen-specific peptide pools. Positivity was defined as

net AIM+ counts (background subtracted by the average of trip-

licate negative controls) >100 and a stimulation index (SI) > 2, as

previously described.24 Positive peptide pools were deconvo-

luted to identify the specific 15-mer peptide(s) recognized. For

large proteins, such as S, an intermediate ‘‘mesopool’’ step

was used to optimize use of reagents.

In parallel, we synthesized panels of predicted HLA class I

binders for the 28 most common allelic variants (Table S4),

as described in the STAR methods section. The top two hun-

dred predicted peptides were synthesized for each allele, lead-

ing to 5,600 predicted HLA binders in total. To identify CD8+

T cell epitopes, we tested individual peptides derived from

the specific antigen(s) recognized by CD8+ T cells of individual

donors and that were predicted to bind the HLA class I alleles

expressed by the respective donor (Figures 1B and 1E). To

quantify the population coverage provided by the HLA class I

alleles selected for study, we tabulated the fraction of the

donor cohort studied where allele matches were identified for

0, 1, 2, 3, or 4 of the respective HLA A and B alleles expressed

by the donor. We found that 98% of the participants in our

cohort were covered by at least one allele, 91% by 2 or

more, and 74% were covered by 3 or more of the alleles in

our panel (Figure S1C). As shown in Table S3, focusing on

the 8 most dominant SARS-CoV-2 antigens for the purpose

of epitope identification allowed mapping of 80% or more of

the response, although screening only 35%–40% of the total

peptides.

To broadly identify T cell epitopes recognized in a cytokine-in-

dependent manner, we used the AIM assay mentioned

above.1,25 Examples of gating strategies, pool deconvolution,

and epitope identification for both CD4+ and CD8+ T cell re-

sponses are shown in Figure S3B. AIM+ cell counts were calcu-

lated per million CD4+ or CD8+ T cells, respectively.
Summary of CD4+ T cell epitope identification results
To identify specific CD4+ T cell epitopes, we deconvoluted

peptide pools corresponding to antigens previously identified

as positive for CD4+ T cell activity in each specific donor (Fig-

ure 1A). In instances where not all positive pools could be de-

convoluted due to limited cell availability, peptide pools were

selected for screening to ensure that each of the 9 major an-

tigens was tested in at least 10 donors. Overall, we were

able to test each peptide for these antigens in a median of

13 donors (range 10–17). Each donor was previously deter-

mined to be positive for CD4+ T cell responses to that specific

antigen.

Taken together, a total of 280 SARS-CoV-2 CD4+ T cell epi-

topes were identified, including 3 nsp16 (this protein was not

included in the top proteins studied) epitopes identified in par-

allel experiments in 2 donors (Table S5). We found that each

donor responded to an average of 3.2 viral antigens (Fig-

ure 1D), and 5.9 CD4+ T cell epitopes were recognized per an-

tigen for the top 80% most immunodominant antigens (data

not shown). For each epitope/responding donor combination,

potential HLA restrictions were also inferred based on the pre-

dicted HLA binding capacity of the epitope for the HLA alleles

present in the respective responding donor (listed in Table S2),

as previously described (Voic et al., 2020).15,26 Table S6 pro-

vides the spectrum of distributions of the magnitudes of

T cell responses to all peptides tested at the level of the indi-

vidual donors.

HLA binding capacity of dominant epitopes
A total of 109 of the 280 epitopes were recognized by 2 or more

donors, accounting for 71% of the total response. The 49 most

dominant epitopes, recognized in 3 or more donors, accounted

for 45% of the total response (Figure 3A).

Because dominant epitopes are associated with promiscu-

ous HLA class II binding,27,28 defined as the capacity to bind

multiple HLA allelic variants, we investigated the role of HLA

binding in determining immunodominant SARS-CoV-2 epi-

topes. Specifically, we measured the in vitro binding capacity

of the 49 most dominant epitopes (positive in 3 or more do-

nors, as mentioned above) for a panel of 15 of the most com-

mon DR alleles using individual peptides and purified HLA

class II molecules.29 The results are provided in Table S7. It

was noted that, in general, a good correlation was observed

between predicted and measured binding (R = 0.6604; p =

2.97 3 10�93; Figure S4A). Based on these results, we further

characterized those 49 most dominant epitopes using pre-

dicted binding for additional HLA class II alleles, including a

panel of the 12 most common HLA-DQ and DP allelic variants,

and all HLA class II variants (DR, DQ, and DP) expressed in the

cohort.

Overall, the 49 most dominant epitopes showed signifi-

cantly higher binding promiscuity (number of alleles bound

at the 1,000 nM or better threshold)30,31 for the panel of com-

mon HLA class II than a control group of 49 non-epitopes

derived from the same proteins (average number of HLA pre-

dicted to be bind ± SD epitopes = 10.8 ± 6.5; non-epitopes =

5.7 ± 6; p = 0.0001 by Mann-Whitney; Figures S4B and S4C).

The same conclusion was reached when the full set of HLA
Cell Reports Medicine 2, 100204, February 16, 2021 5



Figure 3. Heat maps of HLA predicted binding patterns in the 27 most frequent HLA class II alleles

(A) SARS-CoV-2 CD4+ T cell epitopes as a function of the number of responding donors (n = 44 convalescent COVID-19 donors) recognized and strength of

responses.

(B and C) Predicted binding patterns for the top 49 most immunodominant SARS-CoV-2 CD4+ T cell epitopes (B) are compared with a set of matched non-

epitopes (C). Predicted half maximal inhibitory concentration (IC50) was calculated using NetMHCIIpan and converted to log10 scale. Lower values indicate

stronger predicted binding affinity and are highlighted at the red end of the spectrum. Predicted values with an IC50 < 1 000 nM (log10 scale < 3) are considered

positive binders.
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alleles present in the cohort was considered using the same

criteria (average ± SD epitopes = 24.3 ± 15.2; non-epitopes =

13.2 ± 14.1; p = 0.0003 by Mann-Whitney; Figures S4D and

S4E).

Heatmaps of the 49 epitopes and non-epitopes considering

the panel of common HLA DR, DP, and DQ are shown in Figures

3B and 3C. These results confirm that broad HLA binding capac-

ity is a key feature of dominant epitopes. It further indicates that,

because of their broad binding capacity, these epitopes are likely
6 Cell Reports Medicine 2, 100204, February 16, 2021
to be recognized in different geographical settings and different

ethnicities.

Similarity of SARS-CoV-2 CD4+ T cell epitopes to CCC
sequences
Several studies have reported significant pre-existing immune

memory to SARS-CoV-2 peptides in unexposed donors.1,3,4,15

This reactivity was shown to be associated, at least in some in-

stances, with memory T cells specific for human CCCs cross-



Figure 4. Distribution of SARS-CoV-2 CD8+ T cell responses by antigen and class I allele

(A) The number of donors testedwith their HLA-matched class I peptides for each of the 8 dominant proteins for CD8+ (n = 40 convalescent COVID-19 donors with

a range of 4 to 35 donors tested per protein).

(B and C) The distribution of allele-specific CD8+ responses for the 18 class I alleles that were tested in 3 or more donors is shown as function of protein

composition (B) or the HLA class I alleles tested (C). Blue bars represent the total magnitude of AIM+ CD8+ T cells divided by the number of positive donors. Gray

bars represent the frequency of positive tests.

(D) The total number of epitopes identified for each class I allele is shown in panel.
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reactively recognizing SARS-CoV-2 sequences.3,15 In particular,

it was shown that the SARS-CoV-2 epitopes recognized in unex-

posed donors had significantly higher homology to CCC than

SARS-CoV-2 sequences not recognized in unexposed donors.

Here, using the exact same methodology,15 we performed the

converse analysis, namely an analysis of the homology between

the CD4+ T cell epitopes experimentally identified in COVID-19

donors (Figure S5) and sequences of peptides derived from

the four widely circulating human CCCs (NL63, OC43, HKU1,

and 229E). No significant differences were observed based on

percent sequence identity between epitopes recognized from

the COVID-19 cohorts and non-epitope controls in structural

proteins S, M, and N and accessory proteins encoded by

ORF3a and ORF8 or non-structural proteins (Figure S5A).

Indeed, in our previous studies,1,15 we noted that the pattern of

antigen recognition in exposed and unexposed donors was

significantly different. Here, having defined the actual epitopes

recognized in COVID-19, we compared them to the epitopes

previously identified in unexposed donors. The present study

re-identified 50% of the epitopes in our COVID-19 cohort but

in addition identified 227 CD4+ T cell epitopes specific for

SARS-CoV-2 infection (Figure S5C). Thus, more than 80%

(227/280) of the epitopes identified herein were not previously

seen in the unexposed cohort. These results are consistent

with the notion that, although a cross-reactive repertoire is pre-

sent in unexposed donors, SARS-CoV-2 infection elicits a vast

repertoire of additional T cell specificities.
Summary of CD8+ T cell epitope identification results
Following the approach described above, a total of 523 SARS-

CoV-2 CD8+ T cell epitopes were identified (Table S8). These

epitopes are associated with 26 different HLA restrictions, based

on predicted HLA binding capacity matched to the HLA alleles of

the responding donor. A complete list of the synthesized class I

peptides and the corresponding magnitude of T cell responses

for individual donors can be found in Table S6. For eight HLAs,

only 1 to 2 donors expressing thematching HLA could be tested.

Predicted binders for the remaining 18 HLAs were tested in a

median of 5 donors (range 3–9). The 8 most immunodominant

proteins were screened in an average of 19 donors (range 4–

35; Figure 4A). Of the 523 CD8+ T cell epitopes identified, 61

were recognized in 2 or 3 different donor-allele combinations,

meaning that there were 454 unique peptides recognized. Of

these, 101 (22%)were recognized by 2 ormore donors, account-

ing for 49% of the total response. We found that each donor

recognized an average of 2.7 antigens (Figure 1F) and responded

to an average of 1.6 CD8+ T cell epitopes per antigen per HLA

allele (data not shown). Considering 4 HLA A and B alleles in

each donor, we expect at least 17 epitopes per donor for class

I (2.7 3 1.6 3 4 = 17.3).

Figure 4 shows the frequency of positive epitopes (identified

epitopes/peptides screened), and the average magnitude of

epitope responses (total magnitude of response normalized by

the number of positive donors), as a function of protein (Fig-

ure 4B) or HLA class I allele (Figure 4C) analyzed. Each HLA
Cell Reports Medicine 2, 100204, February 16, 2021 7
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was associated with an average of 25 epitopes (range 7–40; me-

dian 24; Figure 4D). Interestingly, as also previously detected in

other systems,32,33 there was a wide variation as a function of

HLA allele. Some alleles, such as A*03:01 and A*32:01, were

associated with responses that were both infrequent and

weak; in other cases (e.g., A*01:01), responses were infrequent

but when observed were of high magnitude. Finally, and

conversely, other alleles were associated with relatively frequent

but low-magnitude responses (e.g., A*68:01). This effect was

previously linked to differences in the size of peptide repertoires

associated with different HLA motifs.20

In terms of antigen specificity of CD8+ T cell responses, rela-

tively similar epitope-specific response frequencies were

observed for the various antigens, with the exception of nsp12,

which was associated with responses of low frequency and

magnitude (Figure 4B). These results should be interpreted with

the caveat in mind that the donors screened were pre-selected

on the basis of association with positive responses to that partic-

ular antigen; thus, these data do not directly address protein im-

munodominance, which is instead addressed in Table S3. These

data instead point to the relative frequency and magnitude of re-

sponses at the level of individual epitopes associatedwith a given

antigen, which were found to be overall similar.

To address the potential relationship between CD8+ T cell

epitope recognition and CCC homology, as performed above

in the case of CD4+ T cell epitopes, we analyzed the homology

of the CD8+ T cell epitopes to CCCs (NL63, OC43, HKU1, and

229E), as compared to the homolog to the sameCCC viruses de-

tected in the case of peptides that tested negative in all donors

tested, regardless of the HLA restriction (Figure S5). Similar to

what was observed in the context of CD4+ T cell responses,

the CD8+ T cell epitopes recognized in convalescent COVID-

19 donors were not associated with higher sequence identity

to CCC as compared to non-epitopes when structural, acces-

sory, or non-structural proteins (Figure S5B) were considered.

Distribution of CD4+ and CD8+ T cell epitopes within
dominant SARS-CoV-2 antigens
We next analyzed the distribution of CD4+ and CD8+ T cell epi-

topes within the dominant SARS-CoV-2 S, N, and M antigens

(Figure 5). For each antigen, we show the frequency (red line)

and magnitude (black line) of CD4+ T cell responses along the

antigen sequence, considering regions with response frequency

above 20% as immunodominant. Based on the results pre-

sented above, we also plotted HLA class II binding promiscuity

(defined as the number of HLA allelic variants expressed in the

donor cohort predicted to be bound by a given peptide) and

the degree of homology of each 15-mer peptide for aligned

CCC antigen sequences. The bottom panel represents the distri-

bution of CD8+ T cell epitopes (black) and non-epitopes (red)

along the antigen sequence.

Responses to S peptides with a frequency of 20% or higher

were focused on discrete regions of the protein involving the

N-terminal domain (NTD), the C-terminal (CT) 686–816 region,

and the neighboring fusion protein (FP) region; only a few re-

sponses were focused on the RBD. These immunodominant re-

gions are boxed in red in Figure 5A. We expected HLA-binding

capacity to be associated with T cell immunodominant regions
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and indeed found a significant positive correlation with the fre-

quency of responses (R = 0.2231; p = 0.0003 by Spearman cor-

relation; Figure S5D). No significant correlation (R = �0.03144;

p = 0.6187 by Spearman correlation; Figure S5E) was found

with sequence homology to CCC (calculated as maximum

sequence homology to the four main CCC species). As indicated

in the 3D rendering of the S crystal structure (PDB: 6XR8), these

immunodominant regions were mostly located in the surface-

exposed portions of the S monomer and were not particularly

influenced by the glycosylation pattern (shown in Figure 5A as

stars in the linear structure description and based on experi-

mental identification by Cai and co-authors34). The glycosylation

patterns are also shown in the 3D rendering of the corresponding

crystal structure, based on curation done by the authors of the

same manuscript, and shown as gray dots (Figure 6A). We

further explored the correlation between CD4+ T cell immunodo-

minance and location of proteolytic cleavage sites, utilizing the

major histocompatibility complex class II (MHCII)-NP algo-

rithm.35 The results did not reveal any significant correlation be-

tween the predicted cleavage sites and immunodominant re-

gions (Spearman correlation has R = �0.08426 and p =

0.1816; Figure S5F). This is consistent with previous results

that indicated that predicted cleavage sites do not significantly

improve epitope predictions.35 Finally, CD8+ T cell reactivity

did not reveal any particular immunodominant region in S, with

epitopes and non-epitopes roughly equally distributed along

the sequence (Figure 5A).

In the sameway, we compared responses observed within the

N andM proteins as a function of structural protein composition,

HLA promiscuity, and CCC homology (Figures 5B, 5C, 6B, and

6C). For the N protein (Figure 5B), the majority of the response

was focused on the NTD and CTD regions, with lower contribu-

tions from the linker region (all outlined in red boxes); segments in

themiddle and toward the ends of the protein were devoid of any

reactivity. The correlation between immunodominance and HLA

binding promiscuity was even stronger than observed for S (R =

0.4725; p = 7.41 3 10�6; Figure S5G). Similar to what was

observed for the S protein, no significant correlation between

the frequency of positive responses was observed with CCC

similarity (R = 0.1660; p = 0.1362; Figure S5H) or predicted cleav-

age sites (R = �0.009245; p = 0.9343; Figure S5I). The immuno-

dominance of N-specific CD8+ T cell responses mirrors the one

observed for the CD4+ T cell counterpart, highlighting that, in

general, the N-terminal and C-terminal domains are the major

immunodominant regions of N recognized by both T cell types.

CD4+ T cell immunogenic regions were distributed across the

entire span of the M protein (Figure 5C), including the transmem-

brane region (Figure 6C). No significant correlation was observed

when investigating HLA binding promiscuity (R = 0.2374; p =

0.1253; Figure S5J), CCC similarity (R = 0.07648; p = 0.6259; Fig-

ureS5K), orpredictedcleavagesites (R=0.08421;p=0.5913;Fig-

ure S5L). The lack of correlation between M epitopes and HLA

binding is consistent with the interpretation that M is a prominent

antigen because it is highly expressed, not because it contains

high-quality epitopes. No particular immunodominance patterns

were observed for the M protein with respect to CD8+ epitopes.

Finally, when we investigated the location of immunodomi-

nant T cell regions relative to the main sites identified for



Figure 5. Immunodominant regions for CD4+ T cells S, N, and M proteins.

(A) S, (B) N, and (C) M proteins as a function of the frequency of positive response (red) and total magnitude (black) in the topmost panel. The dotted red line

indicates the cutoff of 20% frequency of positivity used to define the immunodominant regions boxed in red and also shown in red in Figure 6. The x axis labels in

this topmost panel indicate themiddle position of the peptide. Binding promiscuity was calculated based on NetMHCIIpan predicted IC50 for the alleles present in

the cohort of donors tested and is shown in gray on the upper middle panel. The lower middle panel shows the % homology of SARS-CoV-2 to the four most

frequent CCC (229E in pink, NL63 in green, HKU1 in orange, and OC43 in black) and the max value (blue). The linear structure of each protein is drawn below the

graph of homology. The magnitude of CD8+ responses to class I predicted epitopes is shown in the bottom panel, where black dots represent epitopes and red

dots represent non-epitopes, each centered on themiddle position of the peptide. PBMCs from convalescent COVID-19 donors (n = 44) were tested for reactivity

to the peptides indicated in the topmost and bottommost panels (A)–(C).
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antibody reactivity,36 the CD4+ T cell immunodominant regions

identified in S and N showed minimal overlap with immunodo-

minant linear regions targeted by antibody responses (Figure 6).

The CD4+ T cell epitope recognition patterns of ORF3a, ORF8,

nsp3, nsp4, nsp12, and nsp13 are shown in Figure S6. The

ORF8 protein was similar to M in that epitopes throughout

both of these small proteins were recognized. ORF3a had clear

regions of response clustered in the middle and at the C termi-

nus. Nsp3, which was the 4th most immunodominant antigen,
was associated with a rather striking immunodominant region

centered around residue 1,643. Other non-structural proteins

were less immunodominant overall but had discreet regions tar-

geted by CD4+ T cell responses (i.e., residue 5,253 for nsp12).

Reactivity of megapools based on the experimentally
identified epitopes
The experiments described above identified a total of 280 CD4+

and 454 CD8+ T cell epitopes. These epitopes were arranged
Cell Reports Medicine 2, 100204, February 16, 2021 9



Figure 6. Immunodominant regions for CD4+

T cells and B cells in relation to the 3D

rendering of S, N, and M proteins

3D rendering of S (A), N (B), and M (C) proteins. The

drawings show in gray the 3D structures, in red the

CD4+ T cell immunodominant regions for each

protein with frequency of positive responses >20%

(also shown in red in Figure 5), and in yellow the B

cell immunodominant regions for each protein

based on the work of Shrock et al.36 Glycosylation

sites for S are shown as gray dots and are based on

information embedded in the original crystal struc-

ture shown to map the immunodominant regions

(PDB: 6XR8).

(A) The S protein is shown as monomer on the left

and trimer in the middle and on the right (side and

top views).

(B) N protein 3D rendering was based on a model

generated using Phyre2. Additional details about

the N model are available in the STAR methods

section.

(C) The M protein is shown as amonomer according

to a model previously described by Heo et al.37

All the 3D renderings have been performed using

the free version of YASARA.
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into two epitope megapools (MPs), CD4-E and CD8-E, respec-

tively (where the E denotes ‘‘experimentally defined’’). These

MPs were tested in a new cohort of 31 COVID-19 convalescent

donors (none of these donors were utilized in the epitope identi-

fication experiments) and 25 unexposed controls (Table S1). MP

reactivity was assessed for all donors using AIM and interferon g

(IFNg) FluoroSpot assays.

To put the results in context, we also tested peptides con-

tained in the CD4-R and CD4-S and CD8-A and CD8-BMPs pre-

viously utilized to measure SARS-CoV-2 CD4+ and CD8+ T cell

responses, respectively.1,2,6,15 These MPs are based on either

overlapping peptides spanning the entire S sequence (CD4-S)

or predicted peptides (all other proteins). Although these pools

contain a larger total number of peptides (474 for CD4-R +

CD4-S and 628 for the CD8-A + CD8-B) than the corresponding

experimentally defined sets, we expected that the experimen-

tally defined peptide sets would be able to recapitulate the reac-

tivity observed with the previously utilized MPs. As a further

context, we also tested the T cell epitope compositions (ECs)

class I and EC class II pools of experimentally defined CD8+

and CD4+ epitopes described by Nelde et al.,14 encompassing

29 and 20 epitopes each, which prior to this study represented

the most comprehensive set of experimentally defined epitopes.

As might be expected, the results showed that the AIM assay

was more sensitive than the FluoroSpot assay (Figure 7). On the

other hand, as a tradeoff for the lower signal, the FluoroSpot

assay showed higher specificity in the responses detected,

with fewer unexposed individuals showing any reactivity

compared to the AIM assay. For CD4+ T cell responses as de-

tected in the AIM assay (Figure 7A), the CD4-E MP recapitulated

the reactivity observed with the MPs of larger numbers of pre-

dicted peptides (CD4-R+S) and showed significantly higher

reactivity (p = 4.30 3 10�6 by Mann-Whitney) as compared to

the EC class II pool. A similar picture was observed when the
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FluoroSpot assay was utilized (Figure 7B), with a significantly

higher reactivity of the CD4-E MP compared to the CD4-R+S

(p = 0.0208 by Mann-Whitney) and to the EC class II pool (p =

1.39 3 10�7 by Mann-Whitney). In both AIM and FluoroSpot as-

says, the CD4-EMP showed the highest capacity to discriminate

between COVID-19 convalescent and unexposed donors (p =

3.19 3 10�10 and p = 1.56 3 10�9, respectively, by Mann-

Whitney).

A similar picture was noted in the case of CD8+ T cell reactivity

(Figures 7C and 7D), where the CD8-E MP recapitulated the

reactivity observed with the MPs of larger numbers of predicted

peptides (CD8-A+B), with a strong trend (p = 0.0551 by Mann-

Whitney) toward more reactivity than the EC class II pool. In

the case of the FluoroSpot assay, we noted equivalent reactivity

for the CD8-E and CD8-A+B MPs and significantly higher reac-

tivity (p = 0.0219 byMann-Whitney) than the EC class II pool (Fig-

ure 7D). In both assays, the CD8-E MP showed highest capacity

to discriminate between COVID-19 convalescent and unex-

posed subjects (p = 1.47 3 10�8 and p = 1.48 3 10�8, respec-

tively, by Mann-Whitney). To test how well the different T cell

responses measured separate individuals that have been

exposed to SARS-Cov-2 versus those that do not, we performed

receiver operating characteristic curve (ROC) analyses (Figures

7E–7H), which allow us to directly compare the classification

success based on true- and false-positive rates. The CD4-E

and CD8-E response data were associated with the best

performance.

Considering that a potential practical limitation in the charac-

terization of SARS-CoV-2 responses is the number of cells avail-

able for study, in selected COVID-19 donors, we titrated the

number of PBMCs/well to determine whether a response could

be measured with lower cell numbers. As expected, as the cell

input was decreased, the magnitude of responses decreased

correspondingly. Although marginal responses were seen with



Figure 7. T cell responses to SARS-CoV-2 megapools as measured in AIM (empty circles) and FluoroSpot (filled in circles) assays

(A–D) Twenty-five unexposed and 31 convalescent COVID-19 donors were tested in the AIM assays (A and C), and all donors were also tested in the FluoroSpot

assays (B and D).

(A and B) CD4+ T cell responses to CD4-R+S (previously described), CD4-E (280 class II epitopes identified in this study), and EC class II14 megapools were

measured via AIM (A) and FluoroSpot (B). Bars represent geometric mean ± geometric SD, and p values were calculated by Mann-Whitney.

(C and D) CD8+ T cell responses to CD8-A+B (previously described), CD8-E (454 class I epitopes identified in this study), and EC class I14 megapools were

measured via AIM (C) and FluoroSpot (D). Bars represent geometric mean ± geometric SD, and p values were calculated by Mann-Whitney.

(E–H) ROC analysis for CD4+ and CD8+ T cell response data in FluoroSpot (F–H) and AIM (E–G) assays.

(I–L) Additionally, we further tested 17 of these COVID-19 convalescent donors in FluoroSpot with a titration of 200, 50, 25, and 12.53 103 cells per well with the

indicated CD4-MPs (I and J) and CD8-MPs (K and L). (I and K) Bars represent geometric mean ± geometric SD, and p values were calculated by Mann-Whitney.
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25,000 cells/well and below, a sizeable responsewas still detect-

able with 50,000 cells/well, with 8 out of 17 donors responding

for the CD4-E MP (as compared to 16 out of 17 in the case of

200,000 cell level). Similarly, in the case of the CD8-E MP, 8

out of 17 donors responded with 50,000 cells/well (as compared

to 11 out of 17 in the case of 200,000 cell level). The frequency

and magnitude of responses of CD4-E were higher compared

to the EC class II (p = 3.593 10�5 and p = 0.0044 by Mann-Whit-

ney; Figures 7I and 7J). The CD8-E MP was also associated with

a higher magnitude of response than the EC class I pool (Figures

7K and 7L). In conclusion, these results underline the biological

relevance of the more comprehensive CD4-E and CD8-E MPs.

DISCUSSION

This study presents a comprehensive analysis of the patterns of

epitope recognition associated with SARS-CoV-2 infection in a

cohort of approximately 100 different convalescent donors

spanning a range of peak COVID-19 disease severity represen-
tative of the observed distribution in the San Diego area.

SARS-CoV-2 was probed using 1,925 different overlapping pep-

tides spanning the entire viral proteome, ensuring an unbiased

coverage of the different HLA class II alleles expressed in the

donor cohort. For HLA class I, we used an alternative approach,

selecting 5,600 predicted binders for 28 prominent HLA class I

alleles, representing 61% of the HLA A and B allelic variants in

the worldwide population, and affording an overall 98.8% HLA

class I coverage at the phenotypic level.

The biological relevance of the epitope characterization

studies summarized here is underlined by the use of the

ex vivo AIM assay that does not require in vitro stimulation, which

potentially skews the results by eliciting responses from naive

cells. The AIM assay is also more agnostic for different types

of CD4+ T cells, as it measures all activated cells, regardless of

T cell subset or any particular pattern of cytokine secretion.

We are not aware of any study that describes the repertoire of

CD4+ andCD8+ T cell epitopes recognized in SARS-CoV-2 infec-

tion with a comparable level of granularity or breadth. Although
Cell Reports Medicine 2, 100204, February 16, 2021 11
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several previous reports have described SARS-CoV-2 epitopes,

and accordingly represent very useful advances, these studies

either utilized in vitro expansion,14 were limited in the number of

proteins analyzed,4 characterized responses in fewer than 10

HLA types,10,11,14 or focused on TCR repertoire after in vitro

expansion of small numbers of cells.12 Comparing our results

with those obtained in those previous studies, we note that, of

the 20HLAclass II peptides identified byNelde andco-authors,14

14 were contained within proteins wemapped here in detail, and

we independently re-identified 12 (86%) of them (identical or

largely overlapping sequences). Of 137 class I peptides reported

thus far,10,11,14 98 were contained within the viral proteins we

mapped in detail, and we independently re-identified 68 (69%)

of them (identical or largely overlapping sequences).

Importantly, because SARS-CoV-2 antigen-specific T cell re-

sponses were evaluated in a systematic and unbiased fashion,

quantitative estimates of the size of the repertoire of T cell

epitope specificities recognized in each donor can be derived.

Determining the breadth of responses is of relevance, because

previous studies11,12 have suggested narrow SARS-CoV-2-spe-

cific T cell repertoires in COVID-19 patients; notably, a limited

repertoire could favor viral mutation, a particular concern with

this RNA virus. Based on our results, we expect that each donor

would be able to recognize about 19 CD4+ T cell epitopes, on

average. Likewise, for CD8+ T cells, we expect at least 17 epi-

topes per donor to be recognized. Overall, T cell responses in

SARS-CoV-2 are estimated to recognize even more epitopes

per donor than seen in the context of other RNA viruses, such

as dengue,38,39 where 11.6 and 7 CD4+ and CD8+ T cell epi-

topes, respectively, were recognized on average. This analysis

should allay concerns over the potential for SARS-CoV-2 to

escape T cell recognition by mutation of a few key viral epitopes.

We defined the patterns of immunodominance across the

various antigens encoded in the SARS-CoV-2 genome recog-

nized in COVID-19 donors. Consistent with earlier reports from

our group1 and others,10 we see clear patterns of immunodomi-

nance, with a limited number of antigens accounting for about

80% of the total response. In general, the same antigens are

dominant for both CD4+ and CD8+ responses, with some differ-

ences in relative ranking, such as in the case of nsp3, which is

relatively more dominant for CD8+ than CD4+ T cell responses.

Immunodominance at the protein level correlated with protein

abundance/gene, as previously noted for CD4+ T cell re-

sponses,22 although we note that the accessory proteins and

nsps also account for a significant fraction of the response

despite their predicted lower abundance in infected cells.

Because of their role in instructing both antibody and CD8+

T cell responses,wecorrelatedCD4+Tcell activity on aper donor

and per antigen level with antibody and CD8+ T cell adaptive re-

sponses. This enabled establishing which antigens have func-

tional relevance in terms of eliciting CD4+ T cell responses corre-

lated with antibody and CD8+ T cell responses. At the level of

antibody responses, S andMwere correlated with RBD antibody

titers, highlighting their capacity to support antibody responses,

presumably by a deterministic linkage (viral antigen bridge) and

cognate interactions.40 Surprisingly, N-specific CD4+ T cell re-

sponses did not correlate with S RBD antibody titers, suggesting

unexpected complexity of the N-specific CD4+ T cell response.
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By contrast with these selective effects, CD4+ T cell activity

against any of the antigens correlated with the total CD8+ T cell

activity, suggesting that the role of CD4+ T cell responses driven

by the different proteins is determinant in its helper function for

either RBD-specific antibody production or CD8+ T cell re-

sponses. This was particularly true in both contexts when looking

specifically at the S and M proteins, which are also the strongest

and most frequently recognized antigens for both CD4+ and

CD8+ T cells.

After examining relative immunodominance at the level of the

different SARS-CoV-2 antigens, we probed for variables that

may influence which specific peptides are recognized within a

given antigen/ORF. Previously, we have shown that SARS-

CoV-2 sequences recognized in unexposed individuals were

associated with a higher degree of similarity to sequences en-

coded in the genome of various CCCs. Here, repeating the

same analysis with the SARS-CoV-2 epitopes recognized in

COVID-19 donors, we found no significant correlation. We

further show that although a large fraction of the epitopes previ-

ously identified in unexposed donors are re-identified in COVID-

19 donors, about 80% of the epitopes are not previously seen in

unexposed, suggesting that the SARS-CoV-2-specific T cell

repertoire of COVID-19 cases is overlapping but substantially

different from the SARS-CoV-2-cross-reactive memory T cell

repertoire of unexposed donors. This is consistent with our pre-

vious observation of a different pattern of reactivity15 and consis-

tent with reports from other groups.4,14

HLA binding capacity was a major determinant of immunoge-

nicity for CD4+ T cells (the influence of HLA binding was not eval-

uated for CD8+ T cell, because the tested epitope candidates

were picked based of their predicted HLA binding capacity).

As found in several previous large-scale, pathogen-derived

epitope identification studies, immunodominant epitopes were

also found to be promiscuous HLA class II binders.27,41 Binding

to multiple HLA allelic variants is an important mechanism to

amplify the potential immunogenicity of peptide epitopes and

specific regions within an antigen. It is possible that the domi-

nance of particular regions might further correlate with process-

ing. However, at this juncture, HLA class II processing algorithms

do not effectively predict epitope recognition.35,42,43

Further analysis projected the CD4+ T cell dominant regions on

known or predicted SARS-CoV-2 protein structures. This estab-

lished that the dominant epitope regions are different for B and

T cells. This is of relevance for vaccine development, as inclusion

of antigen sub-regions selected on the basis of dominance for

antibody reactivity might result in an immunogen devoid of suffi-

cient CD4+ T cell activity. In this context, it is important to note

that the RBD region had very few CD4+ T cell epitopes recog-

nized in COVID-19 donors, but inclusion of regions neighboring

the RBDN and C termini would be expected to provide sufficient

CD4+ T cell help.

In contrast to the clear demarcation of dominant regions for

antibody and CD4+ T cell responses, CD8+ T cell epitopes

were uniformly dispersed throughout the various antigens,

consistent with previous in-depth analyses revealing little posi-

tional effect in CD8+ T cell epitope distribution.44 In the case of

CD8+ T cell responses, our data highlight HLA-allele-specific dif-

ferences in the frequency and magnitude of responses. This
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effect was noted before in the case of dengue virus32 and related

to potential HLA-linked protective versus susceptibility effects.

The current study is not powered to test these potential effects,

leaving it to future studies to examine this possibility. Regard-

less, our study provides a roadmap for inclusion of specific

regions or discrete epitopes to allow for CD8+ T cell epitope rep-

resentation across a variety of different HLAs.

Finally, the functional relevance of our study was highlighted

by the generation of improved epitope MPs for measuring

T cell responses to SARS-CoV-2; these experimentally defined

pools are associated with increased activity and lower

complexity when compared to our previous MPs based on over-

lapping and predicted peptides. We plan to make these epitope

pools available to the scientific community at large and expect

that they will facilitate further investigation of the role of T cell im-

munity in SARS-CoV-2 infection and COVID-19.

In conclusion, we identify several hundred different HLA class I

and class II restricted SARS-CoV-2-derived epitopes. We antic-

ipate that these results will be of significant value in terms of

basic investigation of SARS-CoV-2 immune responses and in

the development of both multimeric staining reagents and T-

cell-based diagnostics. In addition, the results shed light on

the mechanisms of immunodominance of SARS-CoV-2, which

have implications for understanding host-virus interactions, as

well as for vaccine design.

Limitations of study
To maximize cell usage, our analysis was focused on the most

dominantly recognized proteins. Screening for less commonly

recognized proteins would require a larger cohort to enable iden-

tification of a sufficient number of donors responding to each

protein. However, such expanded studies would be expected

to yield additional epitopes.

The limited number of donors studied also did not allow inves-

tigation of responses directed against relatively rare HLA alleles,

and HLA restrictions were not experimentally verified. The pre-

dictions utilized for HLA class I included the top 200 candidates

for each allele. Utilizing more generous prediction thresholds is

likely to allow for identification of additional epitopes. The limited

number of donors also did not allow for the evaluation of poten-

tial differences in terms of ethnic background, disease severity,

age, and gender. Future investigations will include validation of

the epitope pools as potential diagnostic tools, establish a

robust, user-friendly T cell assay, and investigate differences in

T cell reactivity as a function of ethnicity, disease severity, age,

and gender.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

M5E2 (V500) [anti-CD14] Becton Dickinson 561391 (RRID:AB_10611856)

HIB19 (V500) [anti-CD19] Becton Dickinson 561121 (RRID:AB_10562391)

RPA-T4 (BV605) [anti-CD4] Becton Dickinson 562989 (RRID:AB_2737935)

RPA-T8 (BV650) [anti-CD8] BioLegend 301042 (RRID:AB_2563505)

FN50 (PE) [anti-CD69] Becton Dickinson 555531 (RRID:AB_2737680)

Ber-ACT35 (PE-Cy7) [anti-OX40] Biolegend 350012 (RRID:AB_10901161)

4B4-1 (APC) [anti-CD137] BioLegend 309810 (RRID:AB_830672)

OKT3 (AF700) [anti-CD3] Biolegend 317340 (RRID:AB_2563408)

Biological samples

Convalescent donor blood samples UC San Diego Health https://health.ucsd.edu/

Convalescent donor blood samples Sanguine Biosciences https://www.sanguinebio.com

Convalescent donor blood samples StemExpress https://www.stemexpress.com

Convalescent donor blood samples BioIVT https://bioivt.com/

Chemicals, peptides, and recombinant proteins

Synthetic peptides Synthetic Biomolecules (aka A&A) http://www.syntheticbiomolecules.com

SARS-CoV-2 Receptor Binding Domain

(RBD) protein

Stadlbauer et al.16 N/A

Deposited data

SARS-CoV-2 spike glycoprotein 3D-

structure

Cai et al.34 PDB: 6XR8

Wuhan-Hu-1 RNA isolate NCBI nuccore database GenBank:MN908947

ORF10 protein NCBI protein database NCBI: YP_009725255.1

Nucleocapsid phosphoprotein NCBI protein database NCBI: YP_009724397.2

ORF8 protein NCBI protein database NCBI: YP_009724396.1

ORF7a protein NCBI protein database NCBI: YP_009724395.1

ORF6 protein NCBI protein database NCBI: YP_009724394.1

membrane glycoprotein NCBI protein database NCBI: YP_009724393.1

envelope protein NCBI protein database NCBI: YP_009724392.1

ORF3a protein NCBI protein database NCBI: YP_009724391.1

surface glycoprotein NCBI protein database NCBI: YP_009724390.1

orf1ab polyprotein NCBI protein database NCBI: YP_009724389.1

Software and algorithms

IEDB Vita et al.45 https://www.iedb.org

IEDB-AR (analysis resource) Dhanda et al.18 http://tools.iedb.org/main/

NetMHCpan EL 4.0 Jurtz et al.46 http://tools.iedb.org/mhci/

Tepitool Paul et al.;47 Paul et al.48 http://tools.iedb.org/tepitool/

MHCII NP algorithm Paul et al.35 http://tools.iedb.org/mhciinp/

FlowJo 10 FlowJo, LLC https://www.flowjo.com

GraphPad Prism 8.4 GraphPad https://www.graphpad.com:443/

YASARA YASARA http://www.yasara.org/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Dr. Alessandro Sette (alex@lji.

org).
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Materials availability
Epitope pools used in this studywill bemade available to the scientific community upon request, and following execution of amaterial

transfer agreement, by contacting Dr. Alessandro Sette (alex@lji.org).

Data and code availability
The published article includes all data generated or analyzed during this study, and summarized in the accompanying tables, figures

and supplemental materials.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Convalescent COVID-19 Donors utilized for epitope identification

Blood donations from the 99 convalescent donors included in this study’s cohort were collected through either the UC San Diego

Health Clinic under IRB approved protocols (200236X), or under IRB approval (VD-214) at the La Jolla Institute. Donations obtained

through the CROs Sanguine, BioIVT and Stem Express were collected under the same IRB approval (VD-214) at the La Jolla Institute.

Details of this cohort can be found in Table S1. All donors were over the age of 18 years and no exclusions were made due to disease

severity, race, ethnicity, or gender. All donors were able to provide informed consent, or had a legal guardian or representative able to

do so. Study exclusion criteria included lack of willingness or ability to provide informed consent, or lack of an appropriate legal

guardian to provide informed consent.

Disease severity was defined asmild, moderate, severe or critical as previously described (Grifoni 2020).1 In brief, this classification

of disease severity is based on a modified version of the WHO interim guidance, ‘‘Clinical management of severe acute respiratory

infection when COVID-19 is suspected’’ (WHOReference Number: WHO/2019-nCoV/clinical/2020.4). At the time of enrollment in the

study, 80% of donors had been confirmed positive by swab test viral PCR during the acute phase of infection. Plasma samples from

all donors were later tested by IgG ELISA for SARS-CoV-2 S protein RBD to verify previous infection (Table S1; Figure 2A).

Healthy Unexposed donors utilized for CD4-E and CD8-E megapool validation

Samples from healthy adult donors were obtained from the San Diego Blood Bank (SDBB). According to the criteria set up by the

SDBB if a subject was eligible to donate blood, they were considered eligible for our study. All the donors were tested for SARS-

CoV-2 RBD IgG serology and were found negative and therefore considered unexposed. An overview of the characteristics of these

donors is provided in Table S1.

Convalescent COVID-19 donors utilized for CD4-E and CD8-E megapool validation

The 31 convalescent donors tested in themegapool AIM and FluoroSpot assays (Figure 7) were collected from the same clinics using

the same protocols as described above for the donors utilized for epitope identification. Similarly, no donors enrolled were under the

age of 18 and none were excluded due to disease severity, race, ethnicity, or gender. All donors, or legal guardians, gave informed

consent. Specific characteristics of these donors can be found in Table S3, including the summary of ELISA testing for SARS-CoV-

2 S protein RBD.

METHOD DETAILS

Peptide Pools
Preparation of 15-mers and subsequent megapools and mesopools

To identify SARS-CoV-2-specific T cell epitopes, 15-mer peptides overlapping by 10 amino acids and spanning entire SARS-CoV-2

proteins were synthesized. All peptides were synthesized as crude material (A&A, San Diego, CA) and individually resuspended in

dimethyl sulfoxide (DMSO) at a concentration of 10 mg/mL. Aliquots of these peptides were pooled by antigen of provenance into

megapools (MP) (as described in Table S3 and sequentially lyophilized as previously reported49. Another portion of the 15-mer pep-

tides were pooled into smaller mesopools of ten peptides each. All pools were resuspended at 1 mg/mL in DMSO.

Class I peptide preparation

Class I predicted peptides were designed using the protein sequences derived from the SARS-CoV-2 reference strain (GenBank:

MN908947). Predictions were performed as previously reported using NetMHC pan EL 4.0 algorithm46 for 28 HLA A and B alleles

that were selected based on frequency in our cohort and also representative of the worldwide population (Figures S1A and S1B).

The top 200 predicted peptides were selected for each allele. In total 5,600 class I peptides were synthesized and resuspended

in DMSO at 10 mg/mL.

PBMC isolation and HLA typing

Whole blood was collected from all donors in either Acid Citrate Dextrose (ACD) tubes or heparin coated blood bags. Whole blood

was then centrifuged at room temperature for 15 minutes at 1850 rpm to separate the cellular fraction and plasma. The plasma was

then carefully removed from the cell pellet and stored at�20C. Peripheral bloodmononuclear cells (PBMC) were isolated by density-

gradient sedimentation using Ficoll-Paque (Lymphoprep, Nycomed Pharma) as previously described32. Isolated PBMC were cryo-

preserved in cell recovery media containing 10% DMSO (GIBCO), supplemented with 90% heat-inactivated fetal bovine serum,

depending on the processing laboratory, (FBS; Hyclone Laboratories, Logan UT) and stored in liquid nitrogen until used in the assays.
Cell Reports Medicine 2, 100204, February 16, 2021 e2
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Each sample wasHLA typed byMurdochUniversity inWestern Australia, an ASHI-Accredited laboratory.26 Typingwas performed for

the class I HLA A and B loci and class II DRBI, DQB1, and DPB1 loci.

SARS-CoV-2 RBD ELISA

The SARS-CoV-2 RBD ELISA has been described in detail elsewhere.1 All convalescent COVID-19 donors had their serology deter-

mined by ELISA. Briefly, 96-well half-area plates (ThermoFisher 3690) were coated with 1 ug/mL SARS-CoV-2 Spike (S) Receptor

Binding Domain (RBD) and incubated at 4�C overnight. On the following day plates were blocked at room temperature for 2 hours

with 3%milk in phosphate buffered saline (PBS) containing 0.05%Tween-20. Then, heat-inactivated plasmawas added to the plates

for another 90-minute incubation at room temperature followed by incubation with conjugated secondary antibody, detection, and

subsequent data analysis by reading the plates on Spectramax Plate Reader at 450 nm using SoftMax Pro. Limit of detection (LOD)

was defined as 1:3. Limit of sensitivity (LOS) for SARS-CoV-2 infected individuals was established based on uninfected subjects,

using plasma from normal healthy donors not exposed to SARS-CoV-2.

Flow Cytometry
Activation induced cell marker (AIM) assay

The AIM assay was performed as previously described25,50. Cryopreserved PBMCs were thawed by diluting the cells in 10 mL com-

plete RPMI 1640 with 5% human AB serum (Gemini Bioproducts) in the presence of benzonase [20 ml/10ml]. Cells were cultured for

20 to 24 hours in the presence of SARS-CoV-2 specific MPs [1 mg/ml], mesopools [1 mg/ml], 15-mers [10 mg/ml], or class I predicted

peptides [10 mg/ml] in 96-wells U bottom plates with 1x106 PBMC per well. As a negative control, an equimolar amount of DMSOwas

used to stimulate the cells as a negative control in triplicate wells, and phytohemagglutinin (PHA, Roche, 1 mg/ml) was included as the

positive control. The cells were stained with CD3 AF700 (4:100; Life Technologies Cat# 56-0038-42), CD4 BV605 (4:100; BD Biosci-

ences Cat# 562658), CD8 BV650 (2:100; Biolegend Cat# 301042), and Live/Dead Aqua (1:1000; eBioscience Cat# 65-0866-14). Acti-

vation was measured by the following markers: CD137 APC (4:100; Biolegend Cat# 309810), OX40 PE-Cy7 (2:100; Biolegend

Cat#350012), and CD69 PE (10:100; BD Biosciences Cat# 555531). All samples were acquired on either a ZE5 cell analyzer (Bio-

rad laboratories) or an Aurora flow cytometry system (Cytek), and analyzed with FlowJo software (Tree Star).

HLA binding assays

The binding of selected SARS-CoV-2 15-mer epitopes to HLA class II MHC molecules was measured as previously described (Sid-

ney 2013, Voic 2020).29 In brief, the binding is quantified by each peptide’s capacity to inhibit the binding of a radiolabeled peptide

probe to purified MHC in classical competition assays. The probe was incubated with purified MHC, a mixture of protease inhibitors,

and different concentrations of unlabeled inhibitor peptide at room temperature or 37�C for 2 days. MHC molecules were subse-

quently captured onHLA-DR-specificmonoclonal antibody (L243) coated Lumitrac 600 plates (Greiner Bio-one, Frickenhausen, Ger-

many) and radioactivity was measured using the TopCount microscintillation counter (Packard Instrument Co., Meriden, CT). Each

peptide was tested at 6 concentrations to cover a 100,000-fold dose range, and an unlabeled version of the radiolabeled probe was

included in each experiment as a positive control for inhibition. To analyze the results, we calculated the concentration of peptide at

which the binding was inhibited by 50% (IC50 nM). For these values to approximate true Kd values, the following conditions weremet:

1) the concentration of radiolabelled probe is less than the concentration of MHC, and 2) themeasured IC50 is greater than or equal to

the concentration of MHC.

FluoroSpot

PBMCs derived from 25 unexposed donors were stimulated in triplicate at a single density of 200x103 cells/well (one donor was

tested at 50x103 due to limitation in cell numbers). PBMCs from a cohort of 31 convalescent COVID-19 donors were stimulated in

triplicates of 200x103 cells/well, with the exception of 5 donors tested at 50-100x103 cells/well due to cell limitations (Figures 7B,

7D, 7F, and 7H). Seventeen of these convalescent donors were further titrated at 200, 50, 25, and 12.5x103 cells/well (Figures 7I–

7L). The cells were stimulated with the different MPs analyzed (1mg/mL), PHA (10mg/mL), and DMSO (0.1%) in 96-well plates previ-

ously coated with anti-cytokine antibodies for IFNg, (mAbs 1-D1K; Mabtech, Stockholm, Sweden) at a concentration of 10mg/mL.

After 20 hours of incubation at 37�C, 5% CO2, cells were discarded and FluoroSpot plates were washed and further incubated for

2 hours with cytokine antibodies (mAbs 7-B6-1-BAM; Mabtech, Stockholm, Sweden). Subsequently, plates were washed again

with PBS/0.05% Tween20 and incubated for 1 hour with fluorophore-conjugated antibodies (Anti-BAM-490). Computer-assisted im-

age analysis was performed by counting fluorescent spots using an AID iSPOT FluoroSpot reader (AIS-diagnostika, Germany). Each

megapool was considered positive compared to the background based on the following criteria: 20 or more spot forming cells (SFC)

per 106 PBMC after background subtraction for each cytokine analyzed, a stimulation index (S.I.) greater than 2, and statistically

different from the background (p < 0.05) in either a Poisson or t test.

QUANTIFICATION AND STATISTICAL ANALYSIS

FlowJo 10 and GraphPad Prism 8.4 were used to perform data and statistical analyses, unless otherwise stated. Statistical details of

the experiments are provided in the respective figure legends. Data plotted in linear scale are expressed as mean + standard devi-

ation (SD). Data plotted in logarithmic scales are expressed asmedian + 95%confidence interval (CI) or geometric mean + geometric

SD. Statistical analyses were performed using Spearman correlation and Mann-Whitney or Kolmogorov-Smirnov tests for unpaired

comparisons. Details pertaining to significance are also noted in the respective figure legends.
e3 Cell Reports Medicine 2, 100204, February 16, 2021



Article
ll

OPEN ACCESS
AIM assay analysis
In analyzing data from the AIM assays, the counts of AIM+ CD4+ and CD8+ T cells were normalized based on the counts of CD4+ and

CD8+ T cells in each well to be equivalent to 1x106 total CD8+ or CD4+ T cells. The background was removed from the data by sub-

tracting the single or the average of the counts of AIM+ cells plated as single or triplicate wells stimulatedwith DMSO.We included the

triplicate wells stimulated with DMSO in the mesopools and epitope identification steps to take into account the variability of the

weaker signals observed in those two respect to the original MP reactivity24. The Stimulation Index (SI) was calculated by dividing

the count of AIM+ cells after SARS-CoV-2 stimulation with the ones in the negative control. A positive response had an SI greater

than 2 and a minimum of 100 AIM+ cells after background subtraction. The gates for AIM+ cells were drawn relative to the negative

and positive controls for each donor. A representative example of the gating strategy is depicted in Figure S3B.

HLA class I nested epitopes
For some alleles and proteins, multiple nested class I predicted peptides were tested in the AIM assay. In cases where a specific

donor responded to multiple nested epitopes corresponding to the same allele and protein, the epitope with the highest magnitude

of responsewas classified as the optimal epitope. If multiple nested epitopes had the same response (within a range of 50 AIM+ cells),

the epitope with the shortest length was selected. Nested epitopes corresponding to different donors or different alleles were

conserved as separate epitopes.

CCC homology analysis
SARS-CoV-2-derived 15-mer peptides were analyzed for their identity with the common cold coronaviruses (CCC) 229E, NL63,

HKU1, and OC43, as previously described15. In brief, every SARS-CoV-2 15-mer peptide tested for immunogenicity was compared

against every position in the corresponding protein sequences of common coronaviruses obtained from GenBank. The region that

best matched the respective SARS-CoV-2 peptide was used to calculate percent sequence identity for each of the four CCC viruses

individually, as well as the maximum across all four (Figure S5A). The same methodology was also used to calculate sequence iden-

tity for SARS-CoV-2 class I peptides (Figure S5B). Using the same set of common coronavirus reference sequences, an alternative

analysis was performed by mapping each SARS-CoV-2 peptide with the S, M and N protein sequences corresponding to the four

common coronavirus using Immunobrowser tool51. The values resulted from this specific analysis are plotted in Figure 5.

T cell epitope restriction predictions
Putative HLA class II restrictions for individual 15-mer CD4+ T cell epitopes were inferred using the IEDB’s TepiTool resource (Paul

2016). All CD4+ T cell prediction analyses were performed applying the NetMHCIIpan algorithm52. Prediction analyses were per-

formed to either infer HLA restriction based on the HLA typing of the cohort (Tables S2 and S5) or to assess potential binding pro-

miscuity of experimentally defined epitopes, considering the 27 most frequent class II alleles in the worldwide population21. In both

types of prediction analyses, a 20th percentile threshold was applied (Table S3), as previously described15.

Assigning regions within the linear structure
Simple diagramswere created to describe the linear structures of S, N, andMproteins (Figure 4). The different regions of the S protein

were defined based on the works of Cai et al., 2020.34 The structure of the N protein was divided into 3 main regions, the N- and

C-terminal domains, and the linker region in between53. For the M protein, the regions of the structure were extracted from UniProt

(UniProtKB - P59596 (VME1_SARS).

3D-rendering and model design
Three different approaches have been used tomap T andB cell immunodominant regions on the 3D-structures for SARS-CoV-2 S,M

and N proteins. The S protein model was based on the crystal structure described in Cai et al., 202034 (PDB: 6XR8) and using the

glycosylation sites annotated in the submitted PDB. The M protein model has been previously described by Heo et al., 2020. The

model for the Nprotein was run on four different homology prediction servers (SWISS-MODEL, RaptorX, iTasser and Phyre2). In order

to have a complete N sequence, Phyre2 server was subsequently selected using the intensivemode54. The resultingmodel showed a

variable level of confidence with higher percentages (> 90%) in the C-Terminal domain (CTD) and N-terminal domain (NTD) regions

and low confidence percentages (> 10%) in the linker domain. The N model was superimposable with both the crystal structures for

the CTD (PDB: 6WZO) and NTD (PDB: 6M3M). The current N model has the only purpose of visualization for mapping immunodo-

minant regions. All the mapping analyses have been performed using the free version of YASARA55.
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