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Abstract

FST outlier tests are a potentially powerful way to detect genetic loci under spatially

divergent selection. Unfortunately, the extent to which these tests are robust to non-

equilibrium demographic histories has been understudied. We developed a landscape

genetics simulator to test the effects of isolation by distance (IBD) and range expan-

sion on FST outlier methods. We evaluated the two most commonly used methods for

the identification of FST outliers (FDIST2 and BayeScan, which assume samples are

evolutionarily independent) and two recent methods (FLK and Bayenv2, which esti-

mate and account for evolutionary nonindependence). Parameterization with a set of

neutral loci (‘neutral parameterization’) always improved the performance of FLK and

Bayenv2, while neutral parameterization caused FDIST2 to actually perform worse in

the cases of IBD or range expansion. BayeScan was improved when the prior odds on

neutrality was increased, regardless of the true odds in the data. On their best perfor-

mance, however, the widely used methods had high false-positive rates for IBD and

range expansion and were outperformed by methods that accounted for evolutionary

nonindependence. In addition, default settings in FDIST2 and BayeScan resulted in

many false positives suggesting balancing selection. However, all methods did very

well if a large set of neutral loci is available to create empirical P-values. We conclude

that in species that exhibit IBD or have undergone range expansion, many of the pub-

lished FST outliers based on FDIST2 and BayeScan are probably false positives, but

FLK and Bayenv2 show great promise for accurately identifying loci under spatially

divergent selection.
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Introduction

A major goal of evolutionary biology is to understand

the molecular basis for adaptive differences between

populations. FST outlier tests—tests that identify larger

values of FST than expected by drift alone—have become

a popular way of using genomic data to identify genes

that have evolved under spatially-divergent selection.

FST is a standardized measure of the variance of allele

frequencies among populations (Wright 1949). The

foundation of the FST outlier test is to identify loci with

FSTs that are unusually high (divergent selection) or

unusually low (balancing selection). However, nonselec-

tive evolutionary forces can affect the distribution of

FST values from loci across a genome. Dispersal tends

to reduce the differences among populations, while

genetic drift increases differences on average. Most

genes in the same genome experience these neutral pro-

cesses relatively equally, and therefore, most neutral

genes have approximately the same expected FST. How-

ever, in subdivided populations, by chance the mea-

sured FST can differ substantially from this expectation,

causing even neutral genes to vary, sometimes substan-

tially, in their FSTs. FST outlier tests attempt to account

for this neutral variation in FST and determine which
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loci have FST large enough or small enough to show

significant evidence of selection. The challenge with

outlier tests is to identify how much variation in FST
among loci would be expected (i.e. the null distribution

of FST) in the absence of selection.

In the original presentation of FST outlier tests

by Lewontin & Krakauer (1973), the distribution of

(ndemes�1)FST/�FST was approximated by a v2 distribu-

tion. Difficulties with the method were immediately

recognized because the variation in FST depends on

sample sizes and the degree of independence of the evo-

lutionary histories of sampled populations (Lewontin &

Krakauer 1975; Nei & Maruyama 1975; Robertson 1975).

A number of FST outlier tests have been since been

developed and used extensively for candidate gene dis-

covery (Beaumont & Nichols 1996; Vitalis et al. 2001;

Beaumont & Balding 2004; Foll & Gaggiotti 2008; Excof-

fier et al. 2009b; Bonhomme et al. 2010; G€unther & Coop

2013). These tests fall into two general categories: meth-

ods that make strict assumptions about the demo-

graphic history of the samples and methods that

estimate and account for evolutionary nonindependence

among samples. In the first category are methods that

(i) simulate a specific demographic history as a null dis-

tribution to test for significance (the island model of

Beaumont & Nichols 1996 or the hierarchical model of

Excoffier et al. 2009b) or (ii) assume that samples have

diverged independently from a common ancestor

(Bayesian methods assuming a multinomial Dirichlet

distribution: Beaumont & Balding 2004; Foll & Gaggiotti

2008). In the second category are methods that estimate

coancestry (Bonhomme et al. 2010) or covariance

(G€unther & Coop 2013) among populations and account

for population structure in the test statistic.

The potential problem with methods that simulate a

specific population history is that the results may be very

sensitive to the specific history, and the true population

history is rarely known with confidence. Assuming an

island model (as in the FDIST2 methods of Beaumont &

Nichols 1996), however, will often lead to a high number

of false positives in real populations, because it results in

a much narrower range of FSTs than more complicated

models of demographic histories [e.g. hierarchical model

in humans (Excoffier et al. 2009b; Hofer et al. 2012), two-

refugia model in pines (Eckert et al. 2010) and fractal

networks in rivers (Fourcade et al. 2013)].

As an alternative to simulating a specific population

history, a Bayesian method was developed (BAYESFST

of Beaumont & Balding 2004; BayeScan of Foll & Gag-

giotti 2008). The Bayesian method assumes that the

gene frequencies under any neutrally structured popu-

lation model can be approximated by a multinomial Di-

richlet distribution (Beaumont 2005). The Dirichlet

distribution describes the gene frequencies under a

wide range of demographic models (Beaumont 2005;

Charlesworth & Charlesworth 2010; pp. 341–350). Even

though the Dirichlet distribution holds when sampled

populations receive unequal number of migrants from

the ancestral pool, these models assume that demes

have evolved independently from an ancestral gene

pool (Beaumont 2005; Excoffier et al. 2009b). Therefore,

the Dirichlet distribution would not be appropriate if

different samples are drawn from the same population,

if some sampled populations share more recent ancestry

than others, if there is unequal or recent migration

among sampled populations or if there is a hierarchical

population structure (Excoffier et al. 2009b).

Recently, two methods have been developed that

relax the assumption that samples follow a particular

demographic history. Bonhomme et al. (2010) developed

an extension of the Lewontin–Krakauer test for struc-

tured populations, implemented in the program FLK.

Their method uses a phylogenetic tree to estimate coan-

cestry among samples and accounts for this coancestry

in the calculation of the test statistic (TF-LK), which fol-

lows a v2 distribution. Similarly, G€unther and Coop cal-

culate an FST analog called XTX, which has been

standardized by the covariance among populations.

These methods explicitly adjust for evolutionary nonin-

dependence among samples.

There have been a few independent simulation stud-

ies that have tested and compared current methods

(P�erez-Figueroa et al. 2010; Narum & Hess 2011; Vilas

et al. 2012; De Mita et al. 2013). Despite the fact that

each study tested different scenarios (Table 1), simula-

tions were typically conducted on small landscapes and

few demographic histories were simulated. In addition,

the choice of different criteria to assess significance

among methods makes it difficult to compare error

rates among methods on common ground (for example,

the P-value cut-off used in FDIST2 was not statistically

equivalent to the Bayes-factor cut-off used in BayeScan).

So, although some previous simulation studies have

found one method may outperform the other, this may

be due to the different criteria that were used to assess

significance. In the present study, we compare methods

on common grounds by transforming probabilities (P-

values or Bayes factors) to q-values (Storey & Tibshirani

2003) and use the same q-value cut-off to control for the

false discovery rate (FDR) at the same level.

In this study, we compare the false-positive rates and

power of four leading methods to detect loci that have

differentiated by spatially heterogeneous selection:

FDIST2, BayeScan, FLK and BAYENV2. We focus on

methods that do not require environmental data or do

not assume that the researcher knows a priori which

environmental axes are important. We chose these

methods because they are either in wide use (FDIST2

© 2014 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.
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and BayeScan) or are recent and show real promise

(FLK and BAYENV2).

We extend previous analyses comparing these meth-

ods in several ways. First, we explore both equilibrium

and nonequilibrium scenarios with isolation by distance

(IBD), as well as the island model for a baseline. In par-

ticular, we draw attention to the biologically common

but statistically problematic case of recent range expan-

sion. We model the expansion of a species from one or

two refugia, mimicking the post-glacial expansion of

temperate species or the expansion of a species into a

new geographical area after a vicariance event. Such

cases, while common in nature, are poorly understood

in terms of the genetic patterns they can create (Hewitt

2000), and the performance of FST outlier tests in such

cases has never been explored. In such cases, sampled

populations have not yet reached equilibrium, and

many loci may have experienced allele surfing during

demographic expansion (Klopfstein et al. 2006; Excoffier

et al. 2009a). Moreover, these scenarios exhibit IBD and

are not easily grouped into discrete populations. In this

case, the island model is obviously not exact, and it

may be difficult to determine the correct hierarchical

structure (e.g. Narum & Hess 2011).

We consider these methods under three different sce-

narios, depending on the type of data that is available.

First, we consider what we refer to as the ‘default set-

tings’ case, where there is no a priori information about

which loci in the data set are likely to be under selec-

tion or not. This is perhaps the main case considered by

existing methods, and to analyse such data, we use the

default settings of each program.

In the second scenario, researchers may have a set of

loci that were chosen a priori to be less likely to be

directly affected by selection, by creating a set of

genetic markers that are not in coding sequences or in

any likely regulatory region. These putatively neutral

loci can be used to parameterize the neutral null model

in the following programs: FDIST2 requires the mean

FST of neutral loci; FLK needs the F-matrix of coances-

try; and BAYENV2 estimates the among-population

covariance matrix Ω. Each of the methods is in principle

improved if these parameters are estimated from truly

neutral data without the influence of the selected loci.

We call this scenario ‘neutral parameterization’. In addi-

tion, BayeScan requires the user to input the prior odds

that a locus is neutral, and we investigate the effects of

varying this parameter from the default.

Finally, in the third scenario, if the set of neutral loci

is large enough, the statistical significance of a puta-

tively selected outlier locus could be assessed by its

quantile in the empirical distribution of differentiation

measures obtained from the neutral set. We therefore

also explore this ‘empirical P-value’ approach.T
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We find that IBD and range expansion can cause some

methods to have large false-positive rates and FDRs, but

the two newer methods are much improved in this

regard. In most cases, the methods can be improved with

neutral parameterization, and FDRs for all methods are

very low with the empirical P-value approach. Detecting

true FST outliers is possible with modern methods, but

for species with IBD, many of the loci previously

detected in the literature are likely false positives.

Methods

Landscape simulations

We developed a haploid landscape genetics simulator

in the R (R Core Team 2013) and C programming lan-

guages. The simulator used recurrence equations to

model the evolution of a single biallelic locus on a

quasi-continuous square landscape composed of

129 600 (360 9 360) demes. Our landscape simulator is

designed to efficiently simulate a species with large

effective population sizes and widespread geographical

ranges, differing from previously developed simulators

in this regard [e.g. Nemo (Guillaume & Rougemont

2006) or Simupop (Peng & Kimmel 2005)]. Because we

modelled large populations, we assumed that linkage

decayed rapidly in the genome and that several thou-

sand independent SNPs could be ascertained. Each hap-

loid locus was simulated independently, with a starting

allele frequency randomly chosen from a uniform distri-

bution between 0 and 1. Source code for the landscape

simulator is located in the Dryad repository (doi: 10.

5061/dryad.v8d05), and datasets are available from the

authors upon request. Details of the simulator are pro-

vided in the Supporting information, Appendix S1.

We modelled four demographic histories, as

described below. For each of the four scenarios, we

chose parameters and the time of sampling that would

result in approximately the same overall FST equal to

~0.05. This was an important step, because it causes the

FST distribution of all loci to reflect differences in demo-

graphic history rather than differences in overall genetic

differentiation (see Table 1 for a summary of studies

that controlled for mean FST). Thus, we controlled for

an easily measured parameter (mean FST) and varied

aspects of demographic history that are more difficult

to estimate.

Demographic histories and dispersal models

We simulated four population histories. Note that we

chose different parameters for each demographic his-

tory such that they would all give the same mean FST
(Table 2). This is because mean FST is easily estimated,

but other details of the demographic history of a popu-

lation typically remain more obscure. The first three

demographic histories we implemented all exhibited

isolation by distance, but differed in their time from

equilibrium (one at approximate equilibrium vs. two

nonequilibrium scenarios), and the fourth was the

island model. For the first three scenarios, dispersal

was determined by a discretized version of a Gaussian

dispersal kernel with standard deviation r = 1 km,

(Fig. S1, Supporting information). The four scenarios

are as follows, with details given in Table 2 and the

Appendix S1 (Supporting information):

1 Equilibrium isolation by distance (IBD-eq). The land-

scape was started at carrying capacity and was run

until equilibrium, with migration implemented via

the dispersal kernel.

2 Nonequilibrium isolation by distance due to expansion

from one refugium (1R) or two refugia (2R). Refugia

were located in the southern portion of the landscape

(Fig. S2, Supporting information). Simulations were

run long enough for populations to fill the landscape

and reach carrying capacity (demographic equilib-

rium), but not long enough for them to reach genetic

equilibrium. (Note that these demographic expansion

models at genetic equilibrium would simply be alter-

native examples of the IBD model.)

3 Island model at equilibrium (IM). The landscape was

started at carrying capacity and was run until equilib-

rium, with a migration rate of 0.01 among demes.

Although unrealistic, the island model should meet

the assumptions of the outlier methods that we tested

(see Methods: Outlier tests).

Selected loci

Selection acted on juvenile survival under a variety of

different environmental spatial patterns. Our simula-

tions assumed that demographic dynamics were inde-

pendent of the strength of selection (i.e. soft selection).

We attempted to simulate a set of selection coefficients

that would be representative of that observed in a real

genome. This is difficult since the true distribution of

selection coefficients is unknown; we inferred that (i)

more loci have weak effects than strong effects, (ii)

some environmental axes will have more loci adapting

to them than others and (iii) environments differ in

their degree of spatial heterogeneity. Thus, for each rep-

licate data set, selected loci evolved under 17 different

environmental patterns (see ‘Methods: Replication of

data sets’). Details of the generation of the environ-

ments are presented in the Appendix S1 (Supporting

information).

© 2014 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.
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We assumed that the strength of selection in deme i

(si) was determined by the standardized environment in

that deme: si = k xi where k describes the strength of

selection on the landscape and x is the standardized

environment in deme i. With this function, selection

was positive in environmental values greater than the

mean environment, neutral at the mean environment

and negative at values less than the mean. The parame-

ter k equals 2s/(4rENV), where s is the landscape-level

selection coefficient and rENV is the standard deviation

of the environment. This function essentially resulted in

patches on the landscape with the highest (lowest) envi-

ronmental values having a selection coefficient of

approximately s (�s). We modelled four selection

strengths s 2 {0.001, 0.005, 0.01, 0.1} at proportions of

{40%, 30%, 20%, 10%}, respectively.
In each simulation, we quantified local adaptation as

the correlation between allele frequencies and the envi-

ronment across the entire landscape (Pearson’s q). The
simulations included many loci of weak effect, and

weakly selected loci do not always contribute to local

adaptation (because, for example, migration or drift

may in some case be strong enough to prevent selective

differentiation: Yeaman & Otto 2011). For all of the

results in this study, therefore, we assess the power of

tests to detect only the loci that have contributed most

to local adaptation (loci with q > 0.4).

Replication of data sets

For each demographic history, we simulated three repli-

cate data sets. Each data set had a set of independent,

randomly generated environments (i.e. Fig. S3, Support-

ing information) to which selected loci adapted. We dis-

tributed the 1000 selected loci for each data set across

environments unequally (Appendix S1, Supporting

information).

Each replicate set of loci consisted of an independent

set of 10 000 neutral loci and 1000 selected loci for each

set of environments. From the loci simulated for each

replicated data set, we created three nested data sets by

sampling without replacement: 10 000 neutral (10 000-

N, 0% under selection), 9900 neutral and 100 selected

(9900-N:100-S, 1% under selection), and 9000 neutral

and 1000 selected (9000-N:1000-S, 10% under selection).

Simulated sampling of genetic data

Sampling of allele frequencies occurred after migration,

with samples from 75 populations randomly distributed

on the landscape (Fig. S4, Supporting information).

Twenty individuals were sampled from each popula-

tion, for a total data set of 1500 individuals. This sam-

pling design gave a good approximation of the FST of

the entire landscape (Fig. S5, Supporting information).

Evaluation of false-positive rate, true-positive rate and
FDR

The false-positive rate is the number of significant neu-

tral loci (false positives) divided by the total number of

neutral loci tested. The true-positive rate (power) is the

number of loci correctly determined by the method to

be under selection divided by the number of selected

loci tested. The FDR is the number of false-positive neu-

tral loci divided by the total number of positive results

(Fig. S6, Supporting information).

For each case, results were transformed to q-values to

correct for multiple comparisons. We used a q-value

cut-off of 0.01 to define a positive result (Storey &

Tibshirani 2003). The q-value of a locus can be

described as the expected proportion of false positives

among all loci with P-values equal to or less than the

observed locus (Storey & Tibshirani 2003). Therefore,

Table 2 A summary of parameter values used in the IM, IBD-eq, 1R and 2R simulations. All landscapes were of equal spatial extent

(270 9 270 km). Columns show the number of demes (No. demes), the deme size, the carrying capacity per deme (K/deme), the car-

rying capacity per square km (K/km2), the intrinsic growth rate of a deme (r), the number of generations the simulation was run for

(No. gens), how dispersal was modelled, whether or not the simulation was at equilibrium when it was stopped (‘Genetic eq.?’) and

the generation at which demographic equilibrium was reached (i.e. when all demes on the landscape had reached carrying capacity)

Demography

Landscape

size

(demes) Deme size K/deme K/km2 r No. gens Dispersal

Genetic

eq.?

Demographic

eq. at gen

Island model (IM) 72 9 72 3.75 km 9 3.75 km 936 67 NA 5000 m = 0.01 Yes 1

Isolation by

distance

(IBD-eq)

360 9 360 0.75 km 9 0.75 km 9 16 NA 10 000 r = 1 km Yes 1

Expansion from one

refugium (1R)

360 9 360 0.75 km 9 0.75 km 40 71 0.4 1000 r = 1 km No 653

Expansion from two

refugia (2R)

360 9 360 0.75 km 9 0.75 km 70 124 0.4 1000 r = 1 km No 512

© 2014 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.
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loci that have q-values equal to 0.01 should have an

expected FDR of 1%. At this significance level for a data

set with 100 FST outliers, we would only expect one

locus to be a false-positive neutral locus and the other

99 to be under selection. At this significance level for a

data set with no truly selected loci in the data, we

expect only one false-positive neutral locus out of every

100 neutral-only data sets. We also refer to the q-value

cut-off as the ‘stated FDR’. While we do not advocate

the use of a strict cut-off for deciding whether or not a

locus is worthy of further scrutiny, we use a cut-off

here to simplify the comparison between demographies

and methods.

Outlier tests

We only tested methods that could be used for our sim-

ulated data (i.e. we excluded the method of Excoffier

et al. (2009b) because our data lacked obvious hierarchi-

cal structure and that of Fariello et al. (2013) because

this method is for haplotype data). We tested BayeScan

(Foll & Gaggiotti 2008), FDIST2 (Beaumont & Nichols

1996), FLK (Bonhomme et al. 2010) and the FST analog

XTX from BAYENV2 (G€unther & Coop 2013). For Baye-

Scan, FDIST2 and FLK, we evaluated the programs

under three scenarios of available data: ‘default set-

tings’, ‘neutral parameterization’ and ‘empirical P-val-

ues’ (described in more detail below). As BAYENV2 does

not implement a significance test for XTX, it could only

be compared to the other programs in specific scenarios

(ranking loci under the default settings, and ‘empirical

P-values’). For most analyses, we focus on comparing

error rates in the right tail, but we also show that these

methods create many false-positive loci under balancing

selection in the left tail of the FST distribution. For each

case, probabilities (or Bayes Factors) were transformed

to q-values to test for significance (Storey & Tibshirani

2003; Muller et al. 2006).

BayeScan of Foll & Gaggiotti (2008) was implemented

with version 2.1 of the software (provided at http://

cmpg.unibe.ch/software/BayeScan/). Unlike the other

methods, BayeScan cannot be parameterized with a neu-

tral set of loci. We explored the capacities of BayeScan

further by manipulating ‘the prior odds of neutrality’

parameter, which is the prior probability of a locus being

under selection in the data set. The default value for

prior odds in the program is 10 (for every 10 neutral loci

in the data set, odds are that 1 locus is under selection).

We implemented the FDIST2 method in R following

Beaumont & Nichols (1996) using some of the machin-

ery of the landscape simulator, so that we could control

mean FST and explore some of the simulated FST distri-

butions [which are not output by LOSITAN (Antao

et al. 2008)]. Details of the implementation are in the

Appendix S1 (Supporting information). The P-values

from our implementation were highly correlated with

results from LOSITAN (Fig. S7, Supporting informa-

tion). The source code for the R implementation of

FDIST2 is located in the Dryad repository (doi: 10.5061/

dryad.v8d05).

We implemented FLK with the R code provided at

https://qgsp.jouy.inra.fr (accessed on 15 December

2013) and the main workflow shown in Figure 11 of

Bonhomme et al. (2010). For each locus, we used the

ancestral allele frequency from the simulations as the

outgroup. FLK is implemented in two steps: in the first

step, the F-matrix is estimated from the allelic data. In

the second step, the F-matrix is then used to compute

the TF-LK statistic and get P-values for each loci.

We calculated XTX for each data set with the BAYENV2

software (G€unther & Coop 2013). BAYENV2 is also imple-

mented in two steps: in the first step, the variance–

covariance matrix is calculated from allelic data. We

used the variance–covariance matrix from the final run

of the MCMC after 105 iterations. In the second step,

the variance–covariance matrix is used to control for

evolutionary history in the calculation of XTX for each

SNP (again using 105 iterations of the MCMC). Note

that there is no current implementation for calculating

P-values from XTX: significance must be based on rank-

ings or empirical P-values.

Default settings. First, we tested the common case for

which no prior information separates neutral loci from

possible selective loci. We assume that the user has a

list of loci and is attempting to determine which of

these are possibly under selection. We used the default

settings of the programs, which means that the pro-

grams parameterize their null distributions from all of

the data. In the default case, which yielded the highest

false-positive rates, we also evaluated how calling sig-

nificance based on ranking the top 1% of loci would

affect error rates (‘Ranks’).

Neutral parameterization. Second, we assumed that the

user has a set of putatively neutral loci, perhaps identi-

fied as markers which occur at locations outside coding

or probable regulatory regions and that have a lower a

priori probability of being under strong section. In this

scenario, the user obtains important information about

the population from the putatively neutral set of loci.

For FDIST2, this gives a less biased estimate of the

mean FST of neutral loci (used to parameterize simula-

tions of the island model), and for FLK and BAYENV2,

these neutral loci can be used to estimate the F (coan-

cestry) matrix or Ω covariance matrix, respectively.

BayeScan cannot be parameterized with a neutral set;

so, for this program, we examined the effects of varying

© 2014 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

EFFECT OF DEMOGRAPHY ON F ST OUTLIER TESTS 2183



the prior odds of neutrality. We varied these odds,

comparing 10 (the default), 100, 1000 and 10 000.

Empirical P-values. Finally, we also considered the case

where data from a very large number of neutral loci

were available, such that the distribution of measures of

differentiation (FST from FDIST2, a from BayeScan,

TF-LK from FLK or XTX from BAYENV2) could be esti-

mated from the very large set of neutral genes (>1000).
We refer to this as the empirical P-value approach,

because the P-value of a test for the null hypothesis of

neutrality could be obtained for a locus by comparison

with the null distribution provided by this set. Note that

in this scenario, we first used neutral parameterization

for each method and then calculated empirical P-values.

Results

Distributions of FST for neutral and selected loci

Despite having similar mean FST, the four demographic

histories exhibited different distributions of FST across

neutral loci (Fig. 1, right column). For neutral loci, the

island model had the lowest variance in FST, followed

by the IBD-eq, 1R and 2R models (Fig. 1, right column).

Figure 1 also shows example landscapes for false-posi-

tive neutral loci (left column). In the refugia models,

clines in allele frequencies on the landscape often arose

by neutral processes.

The distribution of selected loci was affected by

demographic history, the strength of selection and the

landscape of environmental variation on which selec-

tion occurred. Demographic history affected the distri-

bution of selected loci partially because the efficacy of

selection was not equal across demographies (Figs S8 to

S12, Supporting information). Note that this also

affected the power to detect selected loci in each

demography.

Detecting selective differentiation: default settings

We first focus on detecting highly differentiated loci with

the default settings of the methods. Demographic history

affected false-positive rates in BayeScan, FDIST2 and

FLK. (BAYENV2 could not be compared because it does not

include a significance test for XTX.) For all programs,

false-positive rates were lowest for the IM, higher in IBD-

eq, higher yet in 1R and highest for 2R (Fig. 2A–C). In all

scenarios, BayeScan gave the highest false-positive rates,

and FLK had the lowest false-positive rates, with FDIST

intermediate between the two programs. For all pro-

grams, false-positive rates were unacceptably high in the

refugia scenarios: as high as 5–15% for BayeScan and

FDIST2 and as high as 1–3% for FLK.

True-positive rate (power) was generally similar for

BayeScan and FDIST2 in all scenarios and slightly lower

for FLK (Fig. 2D, E). Although FLK had slightly lower

power, fewer false positives from this method led to a

much lower FDR in most scenarios (Fig. 2F–H). FDIST2

A

B

C

D

Fig. 1 Left column: Example landscapes for an outlier neutral

locus at the end of the simulation for: (A) island model, (B)

isolation by distance, (C) expansion from one refugium and

(D) expansion from two refugia with secondary contact. Axes

on the landscape represent latitude and longitude position in

km. Right column: FST distributions for all neutral loci, for 75

random samples on the landscape. Each demography had

approximately the same mean FST, as indicated by the vertical

line. Note that the y-axis is on a square-root scale, so that the

tails of the distribution can be more easily compared. Small

arrows indicate the FST of the sample landscape shown in the

left column.
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had a similar or lower FDR than FLK in the IM and

IBD-eq demographies, due to the higher power of

FDIST2 in these demographies. Note that the FDRs

decrease with the percentage of selected loci in the data

set, because there are more true positives in the data set

to be detected.

To compare these programs to the program BAYENV2,

we used rank order of the XTX or FST for each locus, as

suggested by G€unther & Coop (2013). By this approach,

a locus was flagged as significant if its differentiation

statistic was in the highest 1% of all loci. Figure S13

(Supporting information) shows that all programs give

similar performance based on ranks—but that using

ranks is undesirable because error rates and power are

dependent on the number of selected loci in the data

set.

Detecting selective differentiation: neutral
parameterization

Here, we consider error rates in highly differentiated

loci (the right tail of the FST distribution), for the case

when a set of presumed neutral loci are used to provide

parameters such as the mean FST or the pattern of coan-

cestry (FDIST2, FLK or BAYENV2) or when the prior odds

on neutrality was manipulated (BayeScan).

BayeScan. BayeScan’s default value for the prior odds

for numbers of neutral:selected loci is 10. Using more

realistic values of the prior odds for neutrality (100–

10 000) resulted in decreased false-positive rates with-

out a large change in power. Figure 3 shows that the

performance of BayeScan improved with increasing

prior odds, regardless of the true odds in the data set.

The prior odds of neutrality also affected the posterior

distribution of FSTs calculated by BayeScan, although

this also depended on the extent to which demographic

history violated the assumptions of BayeScan (Fig. S14,

Supporting information). Prior odds had very little

effect on the posterior distribution of FST for loci under

strong selection, because information provided by the

data was so strong that the prior had no more influence

(Fig. S14, Supporting information). However, when the

data violated the assumptions of BayeScan (as in the

refugia cases), even neutral loci could remain as outliers

and were unaffected by the prior odds (Fig. S14, Sup-

porting information). For the comparison among meth-

ods under neutral parameterization (below), we used a

prior odds of 10 000 for BayeScan, because this had the

lowest error rates—regardless of true odds in the data.

FDIST2. For IBD-eq and the refugia models using

FDIST2, neutral parameterization resulted in an increase
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Fig. 2 False-positive rates, power and false discovery rates (FDR) for the default settings in BayeScan (prior odds = 10), FDIST2 and

FLK. Rates are based on q-values and a stated FDR of 0.01. Note the y-axis scale for false-positive rate is the same in Fig. 3, but larger

than in Figs 5 and 6. (A,F) 10 000 neutral loci; (B,D,G) 9900 neutral loci and 100 selected loci; (C,E,H) 9000 neutral loci and 1000

selected loci. IM, island model; IBD, isolation by distance; 1R, expansion from one refuge; 2R, expansion from two refugia. Error bars

are standard errors. False-positive rates for FDIST2 and FLK were zero in the island model, which led to a 0% FDR.
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of false positives in the right tail of the FST distribution

(Fig. S15, Supporting information). This counter-intui-

tive result occurred because the island model had a nar-

rower distribution of FSTs than the true demographic

history (Compare Fig. 1A to 1B–D). Figure 1A repre-

sents the island model simulated by FDIST2 under neu-

tral parameterization, while the island model simulated

under the default settings had the same distribution,

but the mean ‘neutral’ FST was biased upwards by acci-

dental inclusion of selected loci. When compared to

neutral parameterization, the default settings had the

effect of decreasing false positives in the right tail (Fig.

S15, Supporting information) and increasing false posi-

tives in the left tail (Results: Error rates in the left tail:

false-positive rates for balancing selection).

FLK and BAYENV2. For FLK, we found that neutral

parameterization had a small but positive effect on per-

formance in the data sets with 1% selection and a larger

and more significant effect on performance in the data

sets with 10% selection (Fig. S16, Supporting informa-

tion). This same comparison could not be made for BAY-

ENV2, because the method does not employ a

significance test for XTX. FLK and BAYENV2 both depend

on neutral genes to calculate the pattern of correlation

or coancestry among populations, and this in principle

can be more accurate if only truly neutral loci are used

to calculate the coancestry or covariance matrices for

these methods.

We evaluated the effect of unwanted inclusion of

selected loci by measuring the correlation between

coancestry or covariance matrices estimated with all the

data to those estimated with neutral data only. A higher

correlation means that the selected loci in the data set

did not bias the estimation of the coancestry/covariance

matrix. BAYENV2 tended to be less sensitive to bias

caused by inclusion of selected loci than FLK for more

complex demographic histories, while FLK only outper-

formed BAYENV2 for the island model (Fig. 4). The effect

of selection on the coancestry matrix from FLK and the

covariance matrix from BAYENV2 are shown in Fig. S17

(Supporting information).

Comparison among methods. As explained above, neutral

parameterization decreased error rates for BayeScan

and FLK, but increased error rates for FDIST2 (Fig. 5;

note the y-axis on the top row of Fig. 5 is half that of

Fig. 2). This resulted in FDIST2 showing similar perfor-

mance to BayeScan in terms of false-positive rates,
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Fig. 4 The correlation between the coancestry (covariance)

matrix using both neutral and selected loci, and a coancestry

(covariance) matrix using only neutral loci in FLK (BAYENV2).

For more complicated demographic histories (IBD, 1R and 2R),

BAYENV2 had a higher correlations between neutral and non-

neutral covariance matrices than did the coancestry matrices

estimated from FLK. Error bars are standard errors.
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Fig. 3 Effect of prior odds on false-posi-

tive rates, power and false discovery

rates (FDR) from BayeScan. Error rates

were based on q-values (with a stated

FDR of 0.01), while manipulating prior

odds (PO) are based on empirical P-val-

ues (see Methods). False-positive rates

based on empirical P-values were <0.002.
Note the y-axis scale for false-positive

rate is the same in Fig. 2, but larger than

in Figs 5 and 6. (A–C) 9900 neutral loci

and 100 selected loci; (D–F) 9000 neutral

loci and 1000 selected loci. IM, island

model; IBD, isolation by distance; 1R,

expansion from one refuge; 2R, expan-

sion from two refugia. Error bars are

standard errors.
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power and FDRs (Fig. 5). Again, FLK had much lower

false-positive rates and FDRs, with only slightly

lower power. However, false-positive rates were still

undesirably high in the refugia models, even for FLK

(Fig. 5A, B).

Detecting selective differentiation: empirical P-values

Empirical P-values are calculated by comparing the dif-

ferentiation values for candidate loci to a distribution of

those values for putatively neutral loci. Note that we

are considering a perfect application of the empirical P-

value approach, because the loci in our neutral set are

known without error to be neutral. The true power of

this approach will be lessened in real situations where

some of the putatively neutral set are in fact experienc-

ing the effects of selection.

The empirical P-value approach results in the lowest

false-positive rates of all the approaches we have

tested: less than or equal to 2 in 1000 (Fig. 6). All pro-

grams had similar false-positive rates (Fig. 6A, B).

BayeScan, FDIST2 and BAYENV2 had similar power, and

FLK had slightly lower power. Figure S17 (Supporting

information) illustrates that the covariance matrix esti-

mated by BAYENV2 is detecting much finer-scale popula-

tion structure than the coancestry matrix estimated by

FLK, which may be the source of the difference in

power.
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Fig. 5 False-positive rates, power and

false discovery rates (FDR) for neutral

parameterization in BayeScan (prior

odds = 10 000), FDIST2 and FLK. Rates

are based on q-values and a stated FDR

of 0.01. Note that the y-axis for false-

positive rate is half of that in Figs 2 and

3. (A,C,E) 9900 neutral loci and 100

selected loci; (B,D,F) 9000 neutral loci

and 1000 selected loci. IM, island model;

IBD, isolation by distance; 1R, expansion

from one refuge; 2R, expansion from two

refugia. Error bars are standard errors.
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Fig. 6 (A) False-positive rates, power and

false discovery rates (FDR) for the empir-

ical P-values calculated from BayeScan

(a), FDIST2 (FST), FLK (TF-LK) and BAY-

ENV2 (XTX). Empirical P-values were

transformed to q-values, and rates are

based on a stated FDR of 0.01. Note that

the y-axis for false-positive rate is an

order of magnitude less, and the axis on

FDR is one quarter less than similar fig-

ures (Figs 2, 3 and 5). (A–C) 9900 neutral

loci and 100 selected loci; (D–F) 9000

neutral loci and 1000 selected loci. IM,

island model; IBD, isolation by distance;

1R, expansion from one refuge; 2R,

expansion from two refugia. Error bars

are standard errors.
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Error rates in the left tail: false-positive rates for
balancing selection

As we only simulated loci under divergent selection, any

positive test in the left tail of the distribution of FST or

XTX is a false positive. These are loci that are typically

inferred to be under balancing selection. We evaluated

false-positive rates in the left tail using default settings,

neutral parameterization and empirical P-values (Fig. 7;

BAYENV2 is only shown for the third scenario).

With default settings, false-positive rates in the left

tail were undesirably high for all methods in IBD-eq, 1R

and 2R scenarios (Fig. 7A, B). For data sets with 1%

selection (9900-N:100-S), BayeScan typically had the

highest false-positive rates in the left tail for all demog-

raphies (Fig. 7A). For data sets with 10% selection

(9000-N:1000-S), false positives in FDIST were off the

charts—as high as 0.72 in IBD-eq (Fig. 7B). This

occurred because the estimate of the mean neutral FST
was biased upwards, creating many false positives in

the left tail (Results: Detecting selective differentiation:

neutral parameterization: FDIST2). For data sets with

10% selection, false positives generally increased for

BayeScan and FLK with more complex demographic

histories (Fig. 7B).

Neutral parameterization almost eliminated false pos-

itives in the left tail for BayeScan and FLK and greatly

reduced them for FDIST2 (Fig. 7C, D). Empirical P-val-

ues resulted in very low false-positive rates in the left

tail for all programs (<0.001; Fig. 7E, F).

Discussion

In this study, we investigated how the most common

approaches for FST outlier tests would perform under

equilibrium and nonequilibrium demographic scenarios.

We found that all methods were sensitive to demo-

graphic history, to neutral parameterization and to the

percentage of selected loci in the data set. Under IBD-eq

and range expansion, the older, widely used methods

(FDIST2 and BayeScan) showed very high false-positive

rates for loci apparently under both divergent and bal-

ancing selection, and these were the most sensitive to

neutral parameterization. In species with these demo-

graphic histories, many of the published FST outliers

inferred from FDIST2 and BayeScan are probably false

positives. Newer methods (FLK and BAYENV2) show

great promise.

Effect of demographic history

The increase in error rates corresponded to the increase in

the variance of the FST distribution (compared to the

assumed island model) in the demographies we tested.

Why was the variance in FST so much larger in the refugia

scenarios? As a result of nearby samples sharing a recent

evolutionary history, there were effectively fewer inde-

pendent populations in the data, which causes the vari-

ance of the distribution of FST to be higher than predicted.

The increase in variance of the FST distribution due to

population structure and correlated evolutionary history

has been recognized previously (Excoffier et al. 2009b;

Eckert et al. 2010; Hofer et al. 2012; Fourcade et al.

2013), but the magnitude of the effect is more pro-

nounced with the realistic cases newly considered here.

FDIST2 and BayeScan found many false positives for

both divergent and balancing selection, because the

assumption of evolutionary independence among sam-

ples was violated in the IBD-eq, 1R and 2R scenarios. In

the nonequilibrium scenarios, FLK had much lower

error rates than FDIST2 or BayeScan without a signifi-

cant loss in power, probably because the method esti-

mates and adjusts for coancestry among samples. False-

positive rates for FLK were still unacceptably high

(~1%) for the nonequilibrium scenarios, even with neu-

tral parameterization. (For every 10 000 neutral tests, a

false-positive rate of 1% equates to 100 false positives,
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Fig. 7 False-positive rates in the left tail of

the FST distribution. As we did not simu-

late any loci under global balancing selec-

tion, any positive test in the left tail was a

false positive. (A,B) Default settings; (C,D)

neutral parameterization, (E,F) empirical
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y-axes are on the same scale. IM, island

model; IBD, isolation by distance; 1R,

expansion from one refuge; 2R, expansion

from two refugia. Error bars are standard

errors. NA, not applicable.

© 2014 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

2188 K. E . LOTTERHOS and M. C. WHITLOCK



which may be more than the number of truly selected

loci and confuse later analyses.)

Shifting ranges and nonequilibrium populations are

expected to be common in nature. Therefore, land-

scape genomic studies for FST outliers should also

include some analysis or demonstration of whether

the population is close to equilibrium. For example,

with range expansions, genetic diversity may decline

with distance from the refuge (Austerlitz et al. 1997),

and we observed a decline in He with latitude in the

1R and 2R data sets (not shown). Additionally, a new

statistic for detecting range expansions from genetic

data (Peter & Slatkin 2013) may be useful in determin-

ing the location of the origin of the expansion. If a

system shows evidence of being out of equilibrium,

all the FST outlier tests we evaluated (when signifi-

cance was not based on empirical P-values) were

likely to have false positives in >1% of tests, and these

programs should be applied with caution to genome-

scale data.

We found that the observed FDR (the number of false

positives divided by the total number of positive tests)

was over 90% in some cases, despite a stated FDR of

1%. The FDR is high because there are too many false

positives in these analyses, as discussed above. A very

large fraction of loci detected by FDIST2 or BayeScan,

and an uncomfortable number of loci detected by FLK,

may in fact be false positives in species that have

undergone recent range expansion.

Defaults and the effect of neutral parameterization

Under default values, BayeScan had the highest false

positives under directional and balancing selection of all

programs tested. Note that this result is the opposite of

that from all previous simulation studies, which con-

cluded BayeScan had low rates of false positives (P�erez-

Figueroa et al. 2010; Narum & Hess 2011; Vilas et al.

2012; De Mita et al. 2013). As noted in the introduction,

none of these studies compared methods on common

statistical grounds, and these studies either simulated

conditions that would meet the assumptions of Baye-

Scan (as in P�erez-Figueroa et al. 2010 and Vilas et al.

2012) or simulated more realistic conditions but with

small data sets (100 loci in Narum & Hess 2011; 750 loci

in De Mita et al. 2013). Increasing the prior odds in

BayeScan vastly reduced the false-positive rate without

affecting power, but in the refugia models, false-positive

rates were much higher than FLK.

Using neutral loci to parameterize the null models in

FDIST2, FLK and BAYENV2 had significant effects on

error rates from all programs. Neutral parameterization

will be particularly important to supplement RNA-Seq

data or a candidate gene data set, because we expect

these data to be enriched for loci that have experienced

selection in their evolutionary history.

For FDIST2, neutral parameterization exacerbated

error rates in nonequilibrium scenarios: this occurred

because the island model erroneously predicted nar-

rower variance than the true distribution of neutral FST.

With spatial autocorrelation of allele frequencies, the

null island-model-distribution of FST can underestimate

the probability that a neutral allele may be an outlier.

Procedures that essentially ‘cull’ outlier FSTs to better

estimate neutral mean FST (such as the ‘Use “neutral”

mean FST’ option implemented in LOSITAN: Antao et al.

2008) suffer similarly if the underlying simulated model

does not perfectly match the empirical data set (Fig. S18,

Supporting information shows that the effect of the ‘Use

“neutral” mean FST’ option in LOSITAN is qualitatively

similar to neutral parameterization for the 2R model).

This problem can be improved using a more realistic

null model (such as the hierarchical model: Excoffier

et al. 2009b; Hofer et al. 2012; or a two-refugia model:

Eckert et al. 2010); however, it is unlikely that the empir-

ical FST distribution can be simulated perfectly, espe-

cially for samples exhibiting isolation by distance on a

landscape.

For FLK, neutral parameterization became increas-

ingly important for controlling error rates as the per-

centage of selected loci in the data set increased. FLK

also requires an outgroup that can be sequenced at the

same loci, which might hinder its application in some

systems where no obvious outgroup is available. The

covariance matrix from BAYENV2 seems to be relatively

less sensitive to the percentage of selected loci than

FLK, but BAYENV2 does not implement a significance test

for XTX, and so, it can only be compared to FLK in spe-

cific cases (discussed below).

Ranks and empirical P-values

Given the false positives in the refugia scenarios, one

might be tempted to ignore the test results and simply

follow up on these loci that are most extreme in terms

of FST or other differentiation statistic. This is a good

approach in some cases, but it is also subject to a poten-

tially high rate of false positives. However, we caution

against this approach, because false-positive rates and

FDRs based on rank orders are too dependent on the

number of true positives in the data set.

The best implementation of the FST outlier test for all

programs was to calculate empirical P-values. Note that

the empirical P-value approach requires 1000s of puta-

tively neutral loci—determined a priori—to create a null

distribution on which all loci in the data set may be

tested. For example, a set of putatively neutral SNPs

could be obtained by restriction enzyme digests, which
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are less specific in targeting coding regions (Davey et al.

2011; Elshire et al. 2011). In this study, we implemented

the empirical P-value approach with perfect knowledge

of which loci were neutral. In practice, this approach

would probably have slightly lower power due to the

inclusion of some selected loci. In our results, BAYENV2

had slightly higher power than the other programs

under the more realistic demographies.

Power of FST outlier tests may depend on genetic
architecture

We only simulated single loci under selection, and

power may be lower for loci affecting polygenic traits

under selection. Polygenic adaptation may involve

small allele frequency changes at many loci, and power

to detect these may be low with outlier tests (Le Corre &

Kremer 2003; Mackay et al. 2009; Pritchard & Di Rienzo

2010; Le Corre & Kremer 2012). On the other hand, if

genetic architectures evolve with fewer, larger and more

tightly linked divergent alleles (Yeaman & Whitlock

2011), these large-effect loci would be FST outliers

because their allele frequencies are divergent among

environments.

Conclusions and summary of recommendations

Given that it can be easy to associate a false-positive

outlier with a putative metabolic or developmental

function (Pavlidis et al. 2012), it can be costly for fol-

low-up studies to examine a list of loci that contain

many false positives. FST outlier tests have low error

rates when samples can be considered to have diverged

independently from an ancestral population or have

diverged with equal dispersal connections among all

populations. This assumption will usually be met when

there are only two sampled populations in the data set

(corresponding to an island model with two demes).

For most types of landscape genomic data, however,

significance of outliers should be viewed with caution,

because genetic correlations among samples may result

in a violation of the assumptions of model-based FST
outlier tests. Cases of nonindependence in gene fre-

quencies may be most extreme in populations that have

expanded from a refugium but have not yet reached

equilibrium. Thus, FST outlier analyses should be

accompanied by tests for equilibrium.

When possible, having a set of loci from genomic

regions likely to be neutral can be a powerful tool. A

neutral data set can significantly improve the accuracy

of the null models used by these methods, especially

when there are a large number of genes experiencing

selection. We recommend the use of FLK when no neu-

tral loci or a small set of neutral loci are available,

although it still has an undesirably high false-positive

rate (greater than ~1%) in nonequilibrium scenarios.

With a large neutral data set, if possible, empirical

P-values can be extremely accurate, and BAYENV2 had

the highest power under IBD and nonequilibrium

histories. When implementing the empirical P-value

approach, it is imperative to decide a priori which loci

will be used to create the null distribution.

We advocate that test statistics (FST, TF-LK, X
TX) and

significance statistics (P-values, Bayes factors and/or

q-values) for all loci in an empirical or simulation

study—not just the significant ones—be archived in a

data repository or published as Supporting informa-

tion. This will facilitate comparisons across studies and

reanalysis of data sets when better methods become

available.
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Appendix S1 Methods.

Fig. S1 The probability of dispersal as a function of distance

from the focal deme in the centre was based on a discretized

Gaussian distribution with a standard deviation of a = 1 km

and deme size = 0.75 9 0.75 km.

Fig. S2 The starting location of populations on the landscape

for the one-refugium (1R) and two-refugia (2R) demographies.

Fig. S3 Selective environments for the first replicate of data

sets (a new set was generated for each replicate of data sets).

Fig. S4 Sampling scheme on the landscape used for all data

sets.

Fig. S5 FST for an infinite sample from all demes on the land-

scape vs. FST for the sample of 20 individuals from each of 75

locations.

Fig. S6 Definition of false-positive rate, true-positive rate and

false discovery rate.

Fig. S7 P-values from the FDIST2 implementation in R vs. P-

values from LOSITAN.

Fig. S8 FST distributions with selected loci.

Fig. S9 The correlation between allele frequencies and the envi-

ronment across the landscape vs. FST for the island model.

Fig. S10 The correlation between allele frequencies and the

environment across the landscape vs. FST for isolation by dis-

tance.

Fig. S11 The correlation between allele frequencies and the

environment across the landscape vs. FST for the one-refuge

model.

Fig. S12 The correlation between allele frequencies and the

environment across the landscape vs. FST for the two-refugia

model.

Fig. S13 Error rates based on ranking the top 1% of loci in each

data set (i.e. top 100 loci).

Fig. S14 Effect of prior odds parameter on the distribution of

FST from BayeScan for the island model (IM) and expansion

from two refugia (2R).

Fig. S15 False-positive rates, power and false discovery rates

based on different parameter-izations in FDIST2: default set-

tings (using the entire data set to estimate mean FST); neutral

parameterization (using only neutral loci to estimate mean

FST); and empirical P-values (using a large neutral set to calcu-

late empirical P-values of all loci in the data set based on FST).

Fig. S16 False-positive rates, power and false discovery rates

based on different parameterizations in FLK: default settings

(using the entire data set to estimate the coancestry matrix Fij);

neutral parameterization (using only neutral loci to estimate

the coancestry matrix Fij); and empirical P-values (using a large

neutral set to calculate empirical P-values of all loci in the data

set based on the statistic TF–LK).

Fig. S17 Examples of coancestry and covariance matrices esti-

mated by FLK and Bayenv2, respectively, for the 10 000-N and

9000-N:1000-S data sets.

Fig. S18 Effect of using the ‘Use “neutral” mean FST’ option in

LOSITAN on power (TPR: true-positive rate) and false-positive

rates (FPR) in both tails of the FST distribution.
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