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ABSTRACT

From industry to food to health, bacteria play an im-
portant role in all facets of life. Some of the most
important bacteria have been purposely engineered
to produce commercial quantities of antibiotics and
therapeutics, and non-classical secretion systems
are at the forefront of these technologies. Unlike the
classical Sec or Tat pathways, non-classically se-
creted proteins share few common characteristics
and use much more diverse secretion pathways for
protein transport. Systematically categorizing and
investigating the non-classically secreted proteins
will enable a deeper understanding of their asso-
ciated secretion mechanisms and provide a land-
scape of the Gram-positive secretion pathway dis-
tribution. We therefore developed PncsHub (https:
//pncshub.erc.monash.edu/), the first universal plat-
form for comprehensively annotating and analyzing
Gram-positive bacterial non-classically secreted pro-
teins. PncsHub catalogs 4,914 non-classically se-
creted proteins, which are delicately categorized into
8 subtypes (including the ‘unknown’ subtype) and
annotated with data compiled from up to 26 re-
sources and visualisation tools. It incorporates state-
of-the-art predictors to identify new and homolo-
gous non-classically secreted proteins and includes
three analytical modules to visualise the relation-
ships between known and putative non-classically

secreted proteins. As such, PncsHub aims to pro-
vide integrated services for investigating, predict-
ing and identifying non-classically secreted proteins
to promote hypothesis-driven laboratory-based ex-
periments.

INTRODUCTION

Bacteria are commonly differentiated by the Gram stain re-
action according to the structural properties of their cell en-
velope (1). A negative reaction means the bacterium has a
relatively small amount of peptidoglycan, and roughly cor-
responds to those bacteria surrounded by two membranes.
A positive reaction instead means the bacterium has a much
thicker peptidoglycan layer and generally means the bac-
terium is bounded by a single membrane. Gram-positive
bacteria are among some of the most industrially and clin-
ically important bacteria, from lactic acid bacteria that are
essential for the production of fermented dairy products
(e.g. cheese, sour cream, yoghurt) to clinically important
multi-drug resistant strains of Enterococcus faecium and
Staphylococcus aureus (2,3). The success of these bacteria
is in part due to their large repertoire of non-classical secre-
tory pathways that range in function from cell-to-cell com-
munication, nutrient acquisition, motility, and even patho-
genesis.

By far the most important protein secretion apparatus is
the general secretion (Sec) machinery, not just because the
majority of secreted proteins use this pathway directly, but
because other secretion apparatuses are typically inserted
into the inner membrane in a Sec-dependent manner (4).
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Proteins targeted to the Sec machinery must be translocated
in an unfolded state due to the narrow confines of the Sec
translocation pore (4). For proteins that must first pre-fold
in the bacterial cytoplasm, due to the requirement for cyto-
plasmic cofactors for example, the twin-arginine transloca-
tion (Tat) machinery is alternatively used (5). Collectively,
the Sec and Tat machines are considered classical secre-
tion systems. They are conserved throughout bacteria and
archaea, as well as all eukaryotes (Sec only) or plant thy-
lakoids (Tat only) and their substrates are easily recognised
by their highly conserved N-terminal signal sequences (4,5)
and readily predicted using any number of webservers, in-
cluding TMHMM, Phobius and SignalP (6–8).

While all bacteria encode the classical translocation ma-
chineries, Gram-positive bacteria have evolved at least
seven non-classical secretion pathways: ATP-Binding Cas-
sette (ABC) transporters, the Fimbrilin-Protein Exporter
(FPE), Flagella Export Apparatus (FEA), Holins, Mem-
brane Vesicles (MVs), SecA2, and the Type VII Secretion
System (T7SS) (9–15) (for a description of each system,
please see the dedicated section within PncsHub: https:
//pncshub.erc.monash.edu/help.jsp#secretionsystems). Ad-
ditionally, there are several lines of evidence to suggest that
there are many ‘other’ secretion pathways yet to be dis-
covered (16). To date, there are (or have been) five web-
servers that predict non-classically secreted proteins from
Gram-positive bacteria: Secretome P (17,18), SecretP (19),
NClassG+ (20), NonClasGP-Pred (21) and PeNGaRoo
(22). Of these, both SecretP and NClassG+ appear to have
been decommissioned based on their webservers no longer
responding. While SecretomeP has the claim to fame of
being the very first predictor for non-classical proteins, it
has purportedly fallen out of use considering both its age
and unacceptably high false positive rate (22–24). Of the
two most recent webservers, PeNGaRoo and NonClasGP-
Pred, both have opted for a binary output (yes/no) and are
therefore not capable of determining which non-classical
secretion system the protein is likely secreted by. Here, we
describe the Gram-positive non-classically secreted (Pncs)
protein Hub: PncsHub (we pronounce it ‘Pinks Hub’) (Fig-
ure 1), a companion database to BastionHub (25), which
catalogues Gram-negative non-classically secreted proteins
instead. PncsHub combines high quality prediction algo-
rithms, catalogues experimentally verified proteins, and pro-
vides a series of data analysis and visualisation tools that
can all be used to facilitate both discovery and annota-
tion, and ultimately allow users to determine which secre-
tion pathway a putative substrate likely uses.

MATERIALS AND METHODS

Data curation and annotation

To date, there are no repositories that document Gram-
positive non-classically secreted proteins, so we systemat-
ically reviewed existing literature and have accumulated
4914 experimentally verified, non-classically secreted pro-
teins from literature (Figure 2, Supplementary Data S1). Of
these, 269 proteins were shown to be secreted but the se-
cretion mechanism was yet to be determined. These pro-
teins were typically identified by immunoblotting and/or

proteomics-based investigations of the culture filtrate, with-
out regard for any specific secretion mechanism per se (see,
e.g. 26–28). Although classified as ‘Unknown’, in some
cases the secretion mechanism is all but certain: consider,
for example, the six large Clostridial toxins or bacteri-
ocins encoded adjacent to a Holin gene (29), three have
been shown to be secreted through that Holin (11,29–30),
whereas the other three secreted proteins have an unknown
secretion mechanism. Also, consider the 66 Mycobacterial
proteins that are both annotated with an ‘unknown’ secre-
tion mechanism and have conserved domains typified by the
Esx, Esp, PE or PPE family proteins. These proteins are gen-
erally considered to be secreted by a T7SS, even though this
has never been demonstrated experimentally (15). In both
cases, although we have annotated them as having an ‘un-
known’ secretion mechanism, we have annotated them with
an inferred subtype: ‘Possible Holin’ or ‘Possible T7SS’,
respectively (Supplementary Data S1). Additionally, we
were able to annotate a further 3 ‘Possible Holin’ proteins
(PNCS00376, PNCS01173 and PNCS01199), which are ex-
ported proteins that are encoded within lysogenic phage
loci that are generally accepted to be exported through the
Holin encoded nearby (Supplementary Data S1) (26,31).

The vast majority of proteins were identified in MVs
(4219 proteins in total) and this obvious bias toward pro-
teins secreted by MVs is easily explained when consider-
ing both the identification mechanism and the MVs them-
selves. Overall, MVs are naturally better capable of se-
creting a large portion of proteins because they sample a
segment of the bacterial cell itself, including lipids, DNA,
RNA and proteins (32). Additionally, MVs can be puri-
fied from bacterial cells and analysed by proteomics-based
methods relatively easily, in fact our database has compiled
data from MVs isolated from 29 different Gram-positive
bacteria, including bacteria not normally considered ge-
netically tractable. In contrast, secretion through any other
pathway typically includes deletion of the pathway of inter-
est, separation of culture filtrate (or cell wall or membranes)
from the rest of the cell, and a series of controls to demon-
strate secretion wasn’t due to cell lysis.

With the 4914 experimentally verified proteins, we com-
prehensively annotated the features of each protein. In most
cases, UniProt (33) and/or NCBI (34) were used to anno-
tate basic information: gene name, brief description (e.g.
protein name), species, function, sequence, and sequence
length, as well as UniProt ID (from UniProt only), and
the NCBI and PubMed IDs (from NCBI only). Addition-
ally, we manually annotated some proteins with data from
the listed references themselves. UniProt was also used to
annotate molecule processing details (e.g. location of sig-
nal peptides), amino acid modifications (e.g. details about
disulphide linkages, unnatural amino acid modifications,
etc), post-translational modifications (i.e. a summary of
amino acid and molecule processing information), muta-
genesis information (i.e. amino acid sites altered exper-
imentally and their corresponding phenotypes), and the
metabolic pathway summary. Additionally, further details
about enzymatic and metabolic pathways were obtained
from BioCyc (35), BRENDA (36), UniPathway (37), Reac-
tome (38) and SABIO-RK (39). The Pfam database (40) was
used to annotate Conserved Domain information. ECharts
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Figure 1. The interconnected modules of PncsHub. PncsHub houses 3 modules for protein investigation, prediction, and analysis. All modules can redirect
users to the ‘Detailed Information’ pages comprising complete annotations of experimentally validated non-classically secreted proteins. Additionally,
the Prediction and Relationship Analysis modules are connected to allow users to analyze their prediction results to infer likely secretion pathways and
generate visually appealing images.

(https://echarts.apache.org/) was used to visualise the na-
tively disordered regions within each substrate, as predicted
by the IUPred2A webserver (41,42). The PSIPRED 4.0
server (43) was used to predict and visualise the secondary
structure of substrates with less than 1500 residues. Experi-
mentally determined tertiary structure information was ob-
tained from the Protein Data Bank (PDB) (44) and can
be visualised using the integrated LiteMol interface (45) if
the user clicks the ‘Structure Review’ link. The PHI-base
database (46) was used to collect pathogen–host interaction
data and protein–protein interactions were obtained from
STRING (47), DIP (48), IntAct (49) and/or MINT (50)
databases.

Pre-calculated relationship analyses were also included
within the detailed information, comprising: Similar-
ity Analysis, Multiple Sequence Alignment, Phylogenetic
Analysis and Homology Network Analysis. In each case,
the query protein was compared to the other experimentally
validated non-classically secreted substrates proteins within
PncsHub. For both the Similarity Analysis and Multiple

Sequence Alignments, blast 2.8.1+ (51) was used to iden-
tify homologous proteins from amongst the experimentally
validated non-classically secreted substrate proteins. More
specifically, BlasterJS (52) was used to visualize blast align-
ment results for the Similarity Analysis, whereas the Multi-
ple Sequence Alignment was generated using the ClustalW
method (53), which was invoked and visualized using the
R Library msa (54). The two remaining visualisation tools
incorporated all experimentally validated non-classically
secreted substrate proteins. For the Phylogenetic Analy-
sis, the open-source tool phylogram d3 (https://github.com/
ConstantinoSchillebeeckx/phylogram d3) was used to vi-
sualize the phylogenetic tree (without branch length in-
formation). The tree was inferred using FastTree (version
2.1.10) (55) from a multiple sequence alignment generated
using MAFFT (v7.310) (56). For the Homology Network
Analysis, ECharts was used to visualize the homology net-
works generated using all-against-all BLAST (version blast-
2.2.26) (57). Furthermore, if the user hovers over the leaf
(in the Phylogenetic tree) or node (in the Homology Net-
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Figure 2. Breakdown of non-classically secreted proteins by sub-type. (A) PncsHub Statistics page from within the Investigation Module. (B) Overview
of non-classically secreted proteins with a known or unknown pathway (left, middle). The known pathways are further divided into membrane vesicles
(MVs) and other sub-types (left, upper), of which there are 27 proteins that can be secreted by both MV and one other pathway. The unknown pathway
is further annotated with inferred pathways (left, lower). Finally, the other known sub-types are separated into the remaining six sub-types (right): ABC
Transporter, flagella export apparatus (FEA), fimbrillin-protein exporter (FPE), Holin, SecA2 (the alternate Sec pathway), and type VII secretion system
(T7SS) pathways, and in addition to the 27 overlapping proteins that are also secreted by MV, there is one protein that can be secreted by both T7SS and
SecA2.

work Analysis), the basic information for that protein is
displayed (as implemented above). If the user clicks the
linked nodes within the Homology Network Analysis, a
pair-wise sequence alignment between the linked nodes
is displayed, which was generated using the EMBOSS
Stretcher web service (58).

Website architecture and module implementation

PncsHub is based largely on what was previously imple-
mented for AcrHub and BastionHub (25,59) in terms of
website design and implementation, unless otherwise indi-
cated. It was implemented as three separate modules: an In-
vestigation Module, a Prediction Module, and a Relation-
ship Analysis Module (Figure 1). In all three modules, users
can select from three datasets they want to use for investi-
gation, prediction, and analysis purposes: (i) all data, (ii)
all data excluding MV and (iii) MV only data. The anno-
tations incorporated within the Investigation Module are
described above. The Prediction Module incorporates three
predictors: a lightweight HMM based prediction model de-
veloped using HMMER (60), the original PeNGaRoo pre-
diction model (22) (annotated as original PeNGaRoo) and
an updated PeNGaRoo prediction model implemented us-
ing our current list of experimentally verified non-classically
secreted proteins (annotated as retrained PeNGaRoo). In
the input page for the Prediction Module, users can select
more than one prediction model to be displayed as the final

output. In this case, the output page will show each result
in tandem on the same page, so users can compare results
for each model. Additionally, because the PeNGaRoo pre-
dictor was developed using a two-layer LightGBM ensem-
ble model that integrates seven single-feature based mod-
els into an overall prediction framework (22), we included
each single model prediction score into the retrained PeN-
GaRoo output. The Relationship Analysis Module (Simi-
larity Analysis, Phylogenetic Analysis, and Homology Net-
work Analysis) was implemented as described above, except
that the query sequence is now user-defined within that spe-
cific module.

RESULTS

The overall architecture of PncsHub can be split into three
interconnected modules: an Investigation Module, a Pre-
diction Module and a Relationship Analysis Module (Fig-
ure 1).

Investigation module

The Investigation Module comprises a list of fully anno-
tated and experimentally validated non-classically secreted
substrates. Users can navigate through the full list using the
‘Browse’ tab, apply filters to the list using the ‘Search’ tab,
get an overview of the data from the ‘Statistics’ tab, or ob-
tain a copy of the data using the ‘Download’ tab. The full
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list of experimentally validated proteins is initially displayed
with each protein’s basic information (gene name, descrip-
tion, non-classical pathway, host species), with four click-
able IDs: PncsHub ID (which navigates to the ‘Detailed In-
formation’ page), UniProt ID (which navigates to its entry
in UniProt (33)), NCBI ID (which navigates to its entry in
NCBI (34)), and PubMed ID (which navigates to the rele-
vant publication associated with the entry).

While we have included the major repositories (UniProt,
NCBI and PubMed), the ‘Detailed Information’ hosted
by PncsHub compiles data from up to 14 more resources
and databases, including Pfam, BioCyc, and STRING
(see ‘Data Curation and Annotation’ for more details).
Using enolase (encoded by Bacillus subtilis) as an example
(PNCS00362), Figure 3 showcases the ‘Detailed Infor-
mation’ page, with each of its annotations highlighted.
Enolase is usually found in the cytoplasm of bacterial
cells and is responsible for converting 2-phosphoglycerate
to phosphoenolpyruvate in the penultimate step of the
glycolysis pathway. The obvious benefit of our ‘De-
tailed Information’ pages is that they compile data
from a large number of resources in one place and also
include pre-calculated relationship analysis data that
details each protein’s homology information. Indeed, our
‘Detailed Information’ page for enolase (PNCS00362)
includes 18 enolase homologues that are secreted from
Gram-positive bacteria: 3 with an unknown secretion
mechanism (PNCS00297, CPNS00298 and PNCS00299),
14 secreted within MVs from 10 different bacterial genera
(PNCS00208, PNCS00648, PNCS01233, PNCS01665,
PNCS01828, PNCS02188, PNCS02345, PNCS02434,
PNCS03218, PNCS03365, PNCS04117, PNCS04183,
PNCS04280 and PNCS04527), and 1 secreted using the
SecA2 pathway (PNCS00170) (Supplementary Data S1).

In addition to enolase, we noticed that different bacte-
ria have a preferred secretion mechanism depending on the
type of substrate. For example, superoxide dismutase ho-
mologues may be secreted via the SecA2 pathway (61,62),
the T7SS pathway (63) or through MVs (64,65). Addition-
ally, we found that there were 28 proteins (including su-
peroxide dismutase) that could be secreted through more
than one pathway in the same bacterium (Figure 2, Supple-
mentary Data S1). Bacillus subtilis may assemble the flag-
ellar components FlgG (PNCS01983), Hag (PNCS00370),
and FlgK (PNCS00368) through its FEA apparatus (66–
68), or jettison these three components through its MVs
(69,70). In Mycobacterium tuberculosis, it may secrete any
of eight T7SS-dependent effectors through its MVs instead,
including the best-studied T7SS effectors: EsxA and EsxB
(15,71,72).

Prediction module

The Prediction Module incorporates three prediction mod-
els: a lightweight HMM based predictor and two versions
of the PeNGaRoo predictor (22). In each case, PncsHub
first determines whether the query sequences are amongst
its ‘filter list’ of experimentally validated protein substrates.
If they are not experimentally validated (or the user selects
the ‘For benchmarking test’ option), the query sequences
are fed through to the HMM and/or PeNGaRoo predic-

tion tool. In each case, the predictor returns a binary out-
put (‘yes’/‘no’) as to whether the protein is predicted to be
non-classically secreted.

The HMM based prediction is rapid and highly efficient
for homologous proteins, but its main drawback is that it is
not very sensitive for non-homologous proteins and there-
fore cannot be used to predict novel substrates. Instead,
PeNGaRoo can be used to identify novel substrates. This
method makes use of an ensemble learning strategy that
extracts different aspects of information from the training
dataset (see (22) for more information about this predictor),
and is therefore more capable of identifying novel substrates
that otherwise appear unrelated to the experimentally vali-
dated substrates through sequence identity alone (22). This
prediction framework has otherwise been shown to identify
highly evolved proteins in bacteria and bacteriophages (73–
75). Although the PeNGaRoo predictor is invariably slower
than the HMM predictor, it is by far a more powerful tech-
nique (see the ‘PncsHub Modules in Action’ section below).

Relationship analysis module

The Relationship Analysis Module can be used to visu-
alize the similarities (or differences) between query pro-
tein(s) and the list of experimentally verified non-classically
secreted substrates. We have incorporated three data vi-
sualization tools: Similarity Analysis, Phylogenetic Analy-
sis and Homology Network Analysis. These tools can be
used as standalone from the relationship analysis tab, but
they are much more powerful when used in conjunction
with the Prediction Module. This is because the Prediction
Module only describe whether the protein is likely to be a
non-classically secreted protein, but not which pathway it
likely uses. Instead, if users transfer the positive samples to
one of the relationship analysis tools, they can potentially
infer the likely secretory pathways, as well as potential func-
tions of the protein based on this information (see the ‘Pnc-
sHub Modules in Action’ section below).

PncsHub modules in action

To test the veracity of our methodology, we identified three
proteins that are non-classically secreted: EsxB, LF, and
SrpC. EsxB is secreted through the ESAT-6 system 1 (ESX-
1) T7SS of M. tuberculosis and has many homologues across
Mycobacteria and other T7SS-containing bacteria (76). LF,
one of three anthrax toxin components secreted by B. an-
thracis, is known as lethal factor; it is thought to be se-
creted through the classical Sec machinery (77) although to
our knowledge this hasn’t been specifically demonstrated,
but it has otherwise been found to reside within MVs with
the two other anthrax toxin components (78). SrpC is one
of three serine rich proteins that, due to its extensive post-
translational glycosylation, is secreted through the acces-
sory SecA2 system by Streptococcus salivarius (79). While
we have annotated these proteins in our database (EsxB is
PNCS00367, LF is PNCS00598, and SrpC is PNCS04914),
none of them were included in the training datasets of the
HMM and PeNGaRoo predictors. Additionally, PncsHub
stores a built-in and up-to-date ‘filter list’ of experimentally
validated non-classically secreted proteins to filter out the
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Figure 3. Detailed Information page for enolase (PNCS00362). Each experimentally validated non-classically secreted substrate has been annotated with
information from up to 26 webservers, databases and toolkits used to annotate or visualize the data (see the ‘Data curation and annotation’ section for
more details about each tool). In some cases, data was extracted by manually inspecting the literature (annotated as PncsHub). Here, we are showcasing
the detailed information page for enolase from B. subtilis (PNCS00362), which was successfully annotated in all but two categories.

query proteins prior to executing its computational predic-
tion (22), and as such, both LF and SrpC were excluded
from this list so they would not be filtered out as exper-
imentally verified proteins. As a negative control, we also
identified a cytoplasmic protein that is not secreted: KdgA
(UniProt ID: P50846) from B. subtilis (80).

By selecting these four ‘Example’ sequences in our Pre-
diction Module and submitting them to both the HMM
based predictor and the retrained PeNGaRoo predictor
(Figure 4A), EsxB was filtered out and selected as an ex-

perimentally verified protein, whereas KdgA was correctly
predicted as not being a secreted protein by both predic-
tion models (Figure 4B). As test proteins, we noted that
only SrpC was correctly predicted to be a non-classically
secreted substrate by both models (Figure 4B), whereas LF
was only correctly predicted using the retrained PeNGaRoo
predictor (Figure 4B). Although neither predictor divulges
which secretion pathway LF or SrpC likely uses, our Rela-
tionship Analysis Module can allow users to determine the
most likely pathway.



D854 Nucleic Acids Research, 2022, Vol. 50, Database issue

Figure 4. Graphical illustration of the functional modules in PncsHub. (A, B) Example sequences were submitted as query proteins to both the HMM and
retrained PeNGaRoo prediction tools: EsxB (PNCS00367), LF (PNCS00598), SrpC (PNCS04914), and the negative control KdgA (UniProt ID: P50846).
EsxB, LF, and SrpC are experimentally validated non-classically secreted substrates (not included into any of our training datasets), but only EsxB is
included in the ‘filter list’. (C) LF and SrpC were subsequently transferred to our Relationship Analysis Module to determine likely secretion pathways
using (D) Similarity Analysis, (E) Phylogenetic Analysis, and (F) Homology Network Analysis.

We therefore transferred both LF and SrpC to our Rela-
tionship Analysis Module (Figure 4C), and observed that,
as expected, LF showed limited identity to proteins se-
creted through MVs (Figure 4D), in particular the related
edema factor (EF) component of the anthrax toxin. Fur-
thermore, we observed that SrpC is most likely secreted
through the SecA2 apparatus, based on its strong iden-
tity to other serine rich proteins that are also secreted in
a SecA2-dependent manner (Figure 4D–F). Considering
these proof-of-principle results for LF and SrpC, we next
sought to apply our Relationship Analysis Module to our
list of non-classically secreted proteins that are annotated
with an ‘unknown’ secretion mechanism. Overall, we have
identified 269 ‘unknown’ proteins in our database, some of
which we were able to manually annotate with ‘Possible’
subtypes based on genome context and previous publica-
tions (see ‘Data curation and analysis’ section above). Over-
all, we were able to infer at least one possible subtype for

225 unknown proteins (16 could be annotated with three
possible subtypes, 74 could be annotated with two possi-
ble subtypes, and 135 could be annotated with 1 possible
subtype) (Figure 2, Supplementary Data S1). For the re-
maining 44 proteins that could not be further annotated,
we had previously annotated one of these in the ‘Data cu-
ration and analysis’ section (XepA; PNCS00376) as being
secreted through a ‘Possible Holin’ (31), and a further five
were previously annotated as secreted through a ‘Possible
T7SS’ (Supplementary Data S1). Overall, 38 proteins have
a bona-fide unknown secretion mechanism suggesting that
there are other, as yet undiscovered methods by which bac-
teria can secrete these proteins.

DISCUSSION

The spread of virulence factors by horizontal gene trans-
fer separates the most pathogenic bacteria from the rest.
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And it is the presence of robust and flexible secretion ma-
chinery that becomes essential for recipient cells to utilize
these ‘alien’ protein sequences (81,82). Recently, there have
been several interesting reports of bacteria secreting recom-
binant proteins (derived from another bacterium) through
their own non-classical secretion systems. From Ruminococ-
cus sp. 5 1 39BFAA (Gram-positive) but secreted by Bacil-
lus subtilis (Gram-positive) (83,84), from Geobacillus ther-
moglucosidasius (Gram-positive) but secreted by E. coli
(Gram-negative) (85), and from Ochrobactrum sp. M231
(Gram-negative) but secreted by B. subtilis (86), each new
host is capable of secreting these ‘alien’ proteins using their
non-classical secretion systems.

PncsHub was developed in order to integrate non-
classically secreted substrates from Gram-positive bacte-
ria into a universal database to spur new hypotheses and
experiments. PncsHub will be maintained for at least 5
years and will be periodically updated to keep apace with
emerging substrates and new experimental details as they
become available. Together with the BastionHub database
(25), we explore the vast majority of non-classical secretion
systems in both Gram-positive and Gram-negative bacte-
ria. Currently, there are seven recognised non-classical pro-
tein secretion systems in Gram-positive bacteria, and at
least 10 in Gram-negative bacteria (87), but there must
be many more considering the range of proteins identi-
fied in the secretomes of bacteria (16), and the 38 proteins
that remain annotated as ‘Unknown’ after performing com-
prehensive pathway annotations (Figure 2, Supplementary
Data S1). Outside the confines of traditional Gram-positive
and Gram-negative bacteria are the Tenericutes that, while
bounded by a single membrane, Gram stain negative be-
cause they do not contain peptidoglycan. Intriguingly, two
reports investigating the secretomes of three Mycoplasma
species suggest that the majority of proteins secreted by
these Tenericutes are through non-classical secretion sys-
tems (88,89). In addition to the classical secretion systems
that are essential for viability, the non-classical secretion
systems play pivotal roles in pathogenesis, cell-to-cell com-
munication, DNA uptake, and motility. Both the knowns
and unknowns of bacterial secretion systems are an exciting
and rapidly expanding area of research, and it is our hope
that Gram-positive and Gram-negative classically and non-
classically secreted proteins will ultimately be integrated
into an all-in-one universal platform.

DATA AVAILABILITY

The PncsHub platform is freely available at https://pncshub.
erc.monash.edu/. All data within PncsHub can be down-
loaded via https://pncshub.erc.monash.edu/download.jsp.
Detailed user instructions for PncsHub can be accessed via
its Help page at https://pncshub.erc.monash.edu/help.jsp.

SUPPLEMENTARY DATA
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