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Abstract
Background: Cleanup of areas contaminated by explosives is a public health concern. Some explosives can be
carcinogenic in humans. Pentaerythritol Tetranitrate (PETN), a powerful explosive with very low water
solubility, can be easily transported to ground waters.
Objective: This study was conducted to determine the removal efficiencies of PETN from soil by
bioremediation, and obtain kinetic parameters of biological process.
Methods: This experimental study was conducted at the Environmental Health Engineering Lab (Isfahan
University of Medical Sciences, Isfahan, Iran) in 2015-2016. In the present work, bioremediation of the
explosive-polluted soils by PETN in anaerobic-aerobic landfarming method was performed. The influence of
seeding and biosurfactant addition on bioremediation was also evaluated. The data were analyzed using Microsoft
Excel software.
Results: The results show that, as the initial concentration of PETN increased, the lag phase was increased and
the specific growth rate was increased up to 0.1/day in concentration of 50 mg/kg, and then it was decreased to
0.04/day. Subsequent decreases in specific growth rate can cause substrate inhibition. Seeding causes decrease in
lag phase significantly. Biosurfactant addition had little to no impact on the length of lag phase, but biosurfactant
plus seeding can increase the growth rate to 0.2/day, however, inhibitory effect of the initial concentration was
started in very high concentration of PETN (150 mg/kg).
Conclusion: Biosurfactant addition and seeding together have an impressive effect on biodegradation of PETN,
furthermore seeding can enhance active microbial consortium and biosurfactant can improve the poor aqueous
solubility of PETN, therefore making the substrate more accessible.
Keywords: PETN, Soil, Bioremediation, Nitrate, Nitrite, Kinetic parameters

1. Introduction
Cleanup of areas contaminated by explosives is a public health concern; therefore, considerable efforts have been
invested into finding economical remediation technologies (1). Toxic and mutagenic effects of some explosives to
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various organisms ranging from microorganisms and humans have been described, even at low concentration (2).
For example, TNT as a possible human carcinogenic (class C) has been classified by the United States
Environmental Protection Agency (EPA) (3). Several methods, such as compositing, chemical oxidation, adsorption
and incineration have been developed for treatment of explosive contaminated sites (4, 5). Economical and
environmental limitations and high costs of such treatment cause recent researches to have more focus on
biotreatment processes which are efficient, cost effective and environmental friendly (6). Pentaerythritol Tetranitrate
(PETN), is a powerful explosive usually used in detonators, and is also used as a coronary vasodilator treatment (7).
It is highly hydrophobic and has very low water solubility, thus, sorbs weakly to organic materials in the soil and
sediment and therefore, can be readily transported to ground waters. PETN have not been detected as naturally
occurring compounds, and introduction to the environment by industrial production and usage constitutes considered
true xenobiotic challenges to microorganisms (8). Biological treatment processes have been intensively investigated
for remediating explosive contaminated soil (9). The biological processes used for explosive remediation differ in
the aerobic or anaerobic amount, type of external carbon sources added, and degree of water saturation (10).In order
to achieve a more complete incorporation of metabolized nitroaromatic in soil, combined anaerobic-aerobic
composting was proposed. Several reports deal with anaerobic or anaerobic-aerobic incubations of TNT-
contaminated soil (11). Injecting of microorganism into the polluted soil is a strategy to increase the biodegradation
rates. Several studies confirm that increasing the initial biomass level, may enhance the biodegradation rate and
improve the treatment process by reducing the time needed for adaptation (12). Another factor associated with the
bioavailability of pollutants is low water solubility that often corresponds to inhibition of the degradation rate (13).
Surface active compounds or surfactant can be used to increase the bioavailability of poorly accessible compounds,
thus helping to overcome the diffusion-related mass transfer limitations (14). Recently, microbial base surface active
compounds have gained much scientific attention, since these compounds have biodegradability and lower toxicity
compared to their synthetic counterparts (15). Rhamnolipids are among the most investigated and well-described
group of compounds and are potential agents for enhancing the efficiency of in situ bioremediation attempts in
polluted terrestrial environments (16). Because biological transformation causes a higher percent of explosive to
convert to nitro-intermediate, obviously, it is not incompetent to assess remediation efficiency of the polluted soil
through monitoring residual concentration of PETN; but, the chemical oxidation demand (COD) is more suitable to
reflect the removal efficiency of all nitro-compound pollutants as an integrated index. A 2013 study by Baoping Xin
showed that total organic carbon (TOC) can reflect the removal efficiency of TNT and the intermediate of
bioremediation (17). It is necessary to evaluate the relationship between the specific growth rate and the
concentration of substrate to describe the biodegradation conditions. Kinetic study is necessary for improvement of
the process control of contaminated soil bioremediation and wastewater treatment processes. Investigations on the
kinetic model for the degradation of compounds such as phenol and TNT have been published (18, 19). In the
present works, bioremediation of the explosive-polluted soils by PETN in anaerobic-aerobic landfarming method
was performed. The influence of seeding and biosurfactant addition on bioremediation was also evaluated. For
evaluating the remediation efficiency of PETN polluted soils, studies of three aspects were conducted, 1) removal
efficiencies of PETN concentration from soil under different conditions. 2) Removal efficiencies of the organic
compound from water leachate of soil based on COD analysis; 3) measurement of nitrate and nitrite medium as a
result of bacterial transformation of PETN. 4) Obtain kinetic parameters of bioremediation.

2. Material and Methods
This experimental study was conducted at the Environmental Health Engineering lab, Isfahan University of Medical
Sciences, Isfahan, Iran in 2015 – 2016.

2.1. PETN-contaminated soil
For polluted soil, PETN dissolved in acetone and transferred into soil and was evenly distributed to obtain a final
PETN concentration of 200 mg/kg in soil matrix.
Garden soil containing 5.5% organic matter was used for bioremediation experiment. The PETN concentration was
200 mg/kg soil. Rhamnolipids were purchased from the National Institute of Genetic Engineering and
Biotechnology of Iran.

2.2. Laboratory batch experiment
For aerobic and anaerobic soil bioremediation, six soil-pan experiments were conducted. Each pan was prepared by
placing 3000 g of contaminated soil in a square polyethylene with aluminum foil as surface coatings for aerobic and
4000 g for anaerobic. This mass of soil filled the pans approximately two-thirds full. For Improvement of soil
porosity, 40 g sown dost was mixed thoroughly into 1000 g of the soil. A total of 4 sets of  treatments were



Electronic physician

Page 5625

conducted; set-1, were control samples with no amendment added; set-2 contained 3000 g of contaminated soil plus
200 g of activated sludge; set-3 contained 3000 g of contaminated soil plus biosurfactant; set-4 contained 3000 g of
contaminated soil plus biosurfactant and 200 g activates sludge as a source of microbes. The bottoms of the pans
were perforated to allow drainage of fluids during and after flooding phases, via 1.5 mm diameter holes spaced 2 cm
apart in a square grid. Each pan was placed inside a slightly larger glass pan to provide nutrient solutions and
sampling of drainage water for COD and PETN concentrations. The anaerobic pan continuously flooded with
deionized water to maintain anaerobic conditions in the pan. During the aerobic phase, air was introduced into the
soil slurry system. Air was supplied twice daily for 20 minutes, through a diffuser. During sets 3 and 4, rhamnolipid
biosurfactants were added to stimulate biological activity and improve the solubility of PETN. The duration of the
anaerobic phase was 80 days. This was followed by an aerobic phase of 20 days in a different pan, by transferring
the leachate of the anaerobic pan. At the start of the aerobic phase, 500 mL of the mixed bacterial culture obtained
from activated sludge was added. PETN-contaminated soil spiked and was treated anaerobically by percolation for
80 days with tap water. After 80 days, the water was drained off and reactor was flushed with air, and the soil was
treated aerobically for 20 days.

2.3. Chemical analyses
PETN was supplied by a local explosives producer in Isfahan city. Other chemicals were of analytical grade, and
were obtained from Sigma-Aldrich and Merck. Nitrate and ammonia concentrations were analyzed by colorimetric
methods using Hach water analyses reagent kits (20). Analysis of PETN transformation was carried out using a
Waters HPLC system (Milford, USA) equipped with a UV detector. Water–methanol–acetonitrile mixture
(40:50:10, v/v/v) was used as the mobile phase at a flow rate of 0.8 ml/min. The injection volume was 20 µL and the
absorbance was measured at a wavelength of 210 nm. The detection limit was 0.1 mg/L. For the LC/MS analysis, a
Waters 2790 LC system was coupled to a Quattro Micro mass spectrometer (Waters, Milford, MA, USA). PETN
metabolite was measured by LC-MS. Biological kinetics calculated by a method used by Admassu and et al 1998,
and biological processes data, was analyzed and shown by Microsoft Excel software (21).

3. Results
Combination of anaerobic and aerobic treatment for explosive bioremediation used in this study is similar to
previous studies that used this combination for 2, 4, 6-Trinitrotoluene biotransformation (22). Analysis of the soil
mixture showed that the anaerobic treatment with rhamnolipid biosurfactant (80 days) caused an almost 74%
transformation of PETN and 30 days’ aeration of the reactor led to an elimination of most of the remaining PETN
(almost 98%). It should be mentioned that a 24% PETN removal was observed in the control experiments (without
biosurfactant). Kinetic study is necessary for improvement of the process control of contaminated soil
bioremediation. In this study, some of the biological kinetic parameter in reactor that has an important role in
efficiency and rate of bioremediation was investigated. Biological kinetic parameter in this study investigated for
aerobic reactor after the anaerobic. The specific growth rates (µ) at five initial concentrations of PETN (20, 50, 100,
150, 200 mg/kg) were determined in the exponential growth phase from the slope of linear semi logarithmic plots of
bacterial growth (cfu/ml) against time. Figure 1 shows a plot of bacterial growth (cfu/ml) against time for a sample
taken from the aerobic pan, with initial concentration 20 mg/kg PETN that is seeding with activated sludge. The
specific growth rate (µ) with other initial PETN concentrations was performing from 20 mg/kg to 200 mg/kg in a
different pan pattern. The influence of PETN concentration on the duration of the lag phase and on the specific
growth rates is shown in Figure 2 for pans seeding with activated sludge. The results show that, as the initial
concentration of PETN increased, the lag phase was increased and the specific growth rate was increased up to
0.1/day in concentration of 50 mg/kg, then it was decreased to 0.04/day. The influence of seeding and biosurfactant
on the duration of the lag phase and on the specific growth rates is shown in different initial concentrations of PETN
(Figures 3 and 4). It is notable that seeding causes decrease in lag phase significantly. Figure 4 shows the positive
effects of seeding and biosurfactant on the specific growth rates. Increases in initial PETN concentration decreased
the specific grow rate in natural soil. Although the concentration of PETN in culture media increased, but organism
populations cannot show effective response and causes initial concentration inhibitory effect. Seeding causes
increase in specific grow rate to 0.1/day. Maximum growth rate observed in 50 mg/kg PETN that is higher than
natural soil. SEM images of the Micellar aggregates in the soil sample with 60 mg/kg soil (CMC) rhamnolipid plus
sludge siding, shows in Figure 5. The results in Table1 show that nitrate and nitrite in the natural soil sample does
not change significantly. This result is in consonant with the PETN removal efficiency. On the other hand, nitrite in
the sample with biosurfactant and seeding has initial increase and late decreases, and nitrate decrease in first and
increases subsequently.
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Figure 1. Plot of bacterial growth (cfu/ml) against time for sample taken from aerobic pan with initial concentration
20 mg/kg soil PETN that has seeding with activated sludge.

Figure 2. The influence of PETN concentration on the duration of the lag phase and on the specific growth rates for
pan that has seeding with activated sludge.

Figure 3. The influence of PETN concentration on the duration of the lag phase in pan content natural soil, soil with
seeding and soil with seeding plus biosurfactant.
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Figure 4. The influence of PETN concentration on the specific growth rate for pan content natural soil, soil with
seeding and soil with seeding plus biosurfactant.

Figure 5. SEM images of the Micellar aggregates in soil sample with 60 mg/kg soil (CMC) rhamnolipid plus sludge
siding.

Table 1. Change in nitrate and nitrite concentration over the bioremediation in natural soil and soil with seeding plus
biosurfactant.

Time
(week)

No2 (g/kg soil) No3 (mg/kg soil)
Natural soil
Sample

Sample with seeding and
biosurfactant

Natural soil
Sample

Sample with seeding and
biosurfactant

1 2 6 85 85
4 8 10 82 51
8 14 74 68 30
12 14 41 65 92
15 15 2 66 112

4. Discussion
The results show that, as the initial concentration of PETN increased, the lag phase was increased and the specific
growth rate was increased up to 0.1/day in concentration of 50 mg/kg, then it was decreased to 0.04/day. Specific
growth rate 0.04/day is the maximum growth rate. Subsequent decreases in specific growth rate can be caused by
substrate inhibition. The results of previous studies in TNT show that substrate inhibition effect may occur at TNT
concentrations higher than 20 mg/L in aquatic environments (23). The results show that seeding causes decrease in
lag phase significantly. Several studies confirm that increasing the initial biomass level may enhance the
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biodegradation rate, and improve the treatment process by reducing the time needed for adaptation. Several studies
proved that the inoculation with selected microorganisms in order to achieve an enhanced bioremediation of
hydrocarbon contaminated soil, may be a valid and efficient strategy (24). Increasing the initial biomass
concentration can cause increase of activated organism populations for bioremediation, thus with increases in initial
PETN concentration, length of lag phase does not change significantly. Other studies used this strategy for
biodegradation of high concentration petroleum hydrocarbon oil (14,000 mg/kg) (25). Despite seeding, biosurfactant
addition had little to no impact on the length of lag phase. It can be due to organisms living in different habitats
needing adaptations to building enzymes and use the substrate. Biosurfactant effect such as increased solubility also
seems unbeneficial for this. Biosurfactant plus seeding, can increase the growth rate to 0.2/day, on the other hand,
inhibitory effect of the initial concentration was started in very high concentration of PETN (150 mg/kg).
Biosurfactant addition and seeding together, have an impressive effect on biodegradation of PETN. On the one hand,
seeding can enhance active microbial consortium, and biosurfactant can improve the poor aqueous solubility of
PETN, which therefore makes the substrate more accessible. Actually, seeding and biosurfactant act as
complementary. Combination of bioaugmentation and biosurfactant addition applied for diesel-oil, contaminated
soil bioremediation and caused significant improvement of bioremediation efficiency (26). Enhancement of
xenobiotic compound solubility is one of the main mechanisms that surfactants can improve the bioavailability of
hydrophobic organic pollutants. This so-called ‘solubilisation’ is caused by the presence of micelles (figure 5).
Formation of micelles is a specific characteristic of surfactants that consist of small aggregates of surfactant
molecules. In the center of the micelles, hydrophobic compounds will dissolve, whereas more hydrophilic molecules
may be present in the core and the shell of the micelles. The results of older studies show that in many cases,
transport of micellar hydrocarbon to the aqueous phase can be very rapid (27). Applications of rhamnolipid
biosurfactant for improvement of xenobiotic bioremediation examined in other  studies such as, Zhang and Miller
(1992) for octadecane (28), Beal and Betts (2000) for hexadecane (29), Noordman et al. (2002) for hexadecane (30),
Al-Awadhi et al. (1994) for oil-contaminated desert sands (31), Rahman et al. (2003) for n-alkanes in petroleum
sludge (32), and Park et al., (1990) for polycyclic or poly nuclear aromatic hydrocarbons (PAHs) (33). The result in
Table1 show that nitrite in sample with biosurfactant and seeding, has initial increase and late decreases and nitrate
decrease at first and increase subsequently. This nitrite increase can result from multistage nitro group release from
PETN structure. Then, some of the nitrate oxidized to nitrate and the nitrate concentration increased in last stages of
bioremediation significantly. These changes in nitrate and nitrite can be correlated with the sequential reductive
denitration processes that are bases for PETN biodegradation and some demineralization evidence. PETN underwent
sequential reductive denitration processes, releasing nitrite in each denitration step, which was subsequently reduced
to ammonia (34). On the other hand, release of NO2 group from nitroaromatic such as TNT, a positive evidence of
demineralization has previously been reported. Sequential reductive denitration processes are a basis for PETN and
TNT biodegradation, thus nitrite and nitrate release can be considered as PETN demineralization evidence. As
PETN degraded, the denitrated metabolites consisting of PETriN, PEDN and PEMN are generated. This metabolite
is the same as others mentioned in previous studies. The presence of PETriN, PEDN, PEMN and the potential
presence of pentaerythritol can be evidence that three or four nitro groups are sequentially removed from PETN via
biological reactions (35). As in PETN degradation, the removal of the three intermediates in the presence or
absences of rhamnolipid in anaerobic and aerobic were different. In anaerobic treatment, in the tab with
biosurfactant, PETriN, PEDN, PEMN are detected but in the tab without biosurfactant only PETriN was detected.
These results indicate that the tab with biosurfactant denitration process is more completed than the tab without
biosurfactant. Although, after the end of anaerobic phase with biosurfactant shows higher removal of PETN, the
denitration metabolites (PEDN, PEMN) were still found. Only during the aerobic phase did the denitration
metabolites disappear completely. These results can be due to humification, and bounding the denitration
metabolites to the soil. In this study, it was not possible to access the radiolabel explosive material. Research on
radiolabel explosives in bioremediation can help to determine the ultimate fate of intermediate and final compounds.

5. Conclusions
As a result of this study, it is concluded that, Biosurfactant plus seeding can increase constant growth rates. On the
other hand, inhibitory effect of the initial concentration was started in very high concentration of PETN.
Biosurfactant addition and seeding together have an impressive effect on biodegradation of PETN, and seeding can
enhance active microbial consortium.  Biosurfactant can improve the poor aqueous solubility of PETN, therefore
making the substrate more accessible. Actually, seeding and biosurfactant act as complementary. Change in nitrate
and nitrite concentration in soil samples can be correlated with the sequential reductive denitration processes that are
bases for PETN biodegradation and some demineralization evidence.
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