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A phased array with many coil elements has been widely used in parallel MRI for imaging acceleration. On the other hand, it
results in increased memory usage and large computational costs for reconstructing the missing data from such a large number of
channels. A number of techniques have been developed to linearly combine physical channels to produce fewer compressed virtual
channels for reconstruction. A new channel compression technique via kernel principal component analysis (KPCA) is proposed.
The proposed KPCAmethod uses a nonlinear combination of all physical channels to produce a set of compressed virtual channels.
Thismethodnot only reduces the computational time but also improves the reconstruction quality of all channelswhenused. Taking
the traditional GRAPPA algorithm as an example, it is shown that the proposed KPCAmethod can achieve better quality than both
PCA and all channels, and at the same time the calculation time is almost the same as the existing PCA method.

1. Introduction

Parallel imaging methods [1, 2] have been widely used to
accelerate MRI acquisitions. Due to the increased number of
coils in parallel Magnetic Resonance Imaging, the numbers
of coils (e.g., 128 channels) have been developed to improve
the image quality of reconstruction and the sampling speed
of acquisition [3–5]. On the other hand, the calculated cost
increases as the number of coils increases, especially for
coil-based reconstruction methods such as GRAPPA [2]. A
number of coil compression methods have been proposed
[6–19] to reduce computational time. They can be divided
into two categories, one based on the hardware approach
[5] and the other based on the software approach [6–19].
Those software-based coil compression methods provide a
more flexible way to reduce computation workload. For
example, principal component analysis (PCA) has been
applied on compressing large array coils [10, 19]. The coil
compression process produces a smaller set of virtual chan-
nels that can be represented as a linear combination of
physical channels. The method has been successfully applied
to most existing reconstruction methods such as SENSE [1],

GRAPPA [2], and SPIRiT [20]. All existing coil compression
methods have demonstrated that the number of channels
can be greatly reduced without significant loss of SNR or
image degradation, thereby increasing computational effi-
ciency. In addition to saving computing time, PCA-based
channel reduction methods have been shown to have noise
reduction effects [10, 19, 21]. However, this denoising effect
has been discussed in [21] without significant improve-
ment.

The purposed method is to study the noise reduction
capability of software-based coil compression methods while
achieving noise suppression and channel reduction simulta-
neously. And we present a PCA-based approach, which is a
nonlinear extension of the conventional PCAmethod [10, 19].
In contrast to the linear combination used in the conventional
PCA, the proposed channel reduction technique nonlinearly
combines physical channels to generate a new reduced set
of virtual channels. Actually, the conception of nonlinear
reconstruction using kernel methods has been studied in
nonlinear GRAPPA [22], and the advantages of nonlinear
combination over linear techniques have been demonstrated.
The proposed kernel PCA (KPCA) method can reduce the

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2018, Article ID 4254189, 9 pages
https://doi.org/10.1155/2018/4254189

http://orcid.org/0000-0002-9349-4008
http://orcid.org/0000-0003-4229-3668
https://doi.org/10.1155/2018/4254189


2 Computational and Mathematical Methods in Medicine

usage of nonlinear combination on additional dimensions
and more effectively enhance the quality of coil channels.
In experiments, we used the GRAPPA method [2] as the
reconstruction demos to achieve the final images from the
data reduced channels. When generating the same small
number of virtual channels, the proposed KPCA can reduce
GRAPPA calculation time the same as the previous PCA-
GRAPPA reconstruction [10] calculation time; however, the
signal-to-noise ratio (SNR) is higher than the conventional
GRAPPA [2] and PCA-GRAPPA [10].

2. Background

Generally, the GRAPPA reconstruction [2] can be repre-
sented as

𝑆𝑗 (𝑘𝑦 + 𝑟Δ𝑘𝑦, 𝑘𝑥) =
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(1)

where the unacquired 𝑘-space signal 𝑆𝑗 (the left side of (1))
is calculated by a linear combination of 𝑘-space signals (the
right side of (1)). Here,𝑤 represents the coefficient set,𝑅 is the
outer reduction factor (ORF), 𝑗 is the target coil, 𝑙 counts all
coils, 𝑏 and ℎ are calculated by taking neighbored 𝑘-space data
in 𝑘𝑦 and 𝑘𝑥 directions, respectively, and the variables 𝑘𝑥 and
𝑘𝑦 represent the coordinates encoded along the frequency
and phase, respectively. The GRAPPA formulation can be
simplified as a matrix equation:

b𝑀×1 = D𝑀×𝐾x𝐾×1, (2)

where D denotes the matrix consisting of the acquired data,
b represents the vector of the missing data, and x represents
the coefficients.

In general, the coefficients are dependent on the coil
sensitivity, which are a priori unknown. In GRAPPA, auto-
calibration data (ACS) are obtained and used as the vector b
to estimate the coefficient vector x. The least-squares method
is usually used to calculate the coefficients:

x̂ = arg min
x

‖b −Dx‖2 . (3)

When the matrixD changes with a higher reduction factors,
the noise in the estimation coefficients can be greatly ampli-
fied.

As a dimension reduction technique, PCA has been
successfully used to reduce the number of effective chan-
nels in GRAPPA reconstruction [8, 9]. The PCA finds an
orthogonal linear transformation that converts the data to
a new coordinate system so that the largest change in any
projection of data comes from the first coordinate, the second
largest change is on the second coordinate, and so on. When
applied to channel reduction, the ACS data is used to obtain
the transformation and then applied to all acquired data to
obtain a new dataset in the new coordinate system. Mathe-
matically, the linear transformation W can be calculated by

the eigen-decomposition of the covariance matrix of the ACS
data:

A𝐻A =W𝐻ΣW, (4)
where A = [a1, a2, . . . , a𝐿] consisted of vector a𝑙 generated
from the ACS data of the 𝑙th channel (a total of L channels)
after removing the average; W and Σ are, respectively,
eigenvectors and eigenvalues of thematrices.Thenew coordi-
nates based on eigenvectors are called principal components.
Assuming that the direction of largest variance represents
interesting information and the direction of the minimum
variance indicates noise that is not of interest. For simplicity,
only a few first eigenvectors corresponding to the largest
eigenvalues are retained to form a linear transformation T.
The transformation matrix is then applied to the acquired 𝑘-
space data to obtain an orthogonal projection of the eigenvec-
tors, resulting in a new set of reduced virtual channels. Then,
the undersampled data is reconstructed in the transform
domain by conventional GRAPPA. Note that [9] the number
of source channels (𝑁sch) and the number of target channels
(𝑁tch) may differ after PCA reduction. One may be bigger
than the other, with the same calculation time to get the best
result. The final image is produced by combining the virtual
channels with root sum-of-square (SOS). Obviously, the
assumptions in the PCA are not necessarily kept because of
the possibility of small variance in the direction of interesting
signals, in which case the useful information is lost after
reductions.

3. Proposed Method

3.1. Kernel PCA. The kernel method [23] is a widely used
machine learning method. The main idea of the kernel
method is that a set of points which cannot be linearly
segmented in a low-dimensional space is likely to become
linearly separable when transformed into a set of points in
a high-dimensional space. For a given linear algorithm, the
data is mapped from the input space 𝐴 to the feature space
H through a nonlinear mapping Φ(⋅): 𝐴 → 𝐻, and then
the algorithm is applied on the vector representation Φ(a)
of the data. When the PCA method is a nonlinear mapping
algorithm, the approach becomes a kernel PCA (KPCA)
method.

PCA is a process of attribute dependency.The correlation
here mainly refers to the linear correlation. So, for nonlinear
situation, it involves kernel PCA called KPCA [24]. Intu-
itively, the kernel PCA is the PCA dimensionality reduction
based on the kernel space after the original sample has passed
the kernel mapping. KPCA formula derivation and PCA are
very similar, but there are two innovations. In order to deal
with nonlinear data better, a nonlinear mapping function
Φ(A) is introduced tomap the data in the original space into a
high-dimensional feature space. For any vector in space, even
if it is a basis vector, all samples lie in the linear representation.
After kernel mapping, we make a linear PCA on the new
data in the feature space constructed by the product of vector
elements, thus taking into account higher-order statistics.
We applied kernel PCA on parallel imaging reconstruction
methods such as GRAPPA [2].
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3.2. Nonlinear Mapping Function. In order to achieve a
smooth relationship, a nonuniform polynomial kernel is
selected forΦmapping. It has the following form:

𝜅 (a, b) = (𝜆a𝑇b + 𝑟)
𝑑
, (5)

where 𝜆 and 𝑟 are scalars; 𝑑 represents the degree of the
polynomial. Due to explicit representation of nonlinear
mapping Φ(A) of 𝜅(a, b) = ⟨Φ(a), Φ(b)⟩, polynomial
kernel is also suitable for mapping MRI data. For instance,
Φ(A) maps the original L-channel data A to a2, when 𝑑 is
2,

B (A)

= [𝑟2, √2𝜆𝑟a1, . . . , √2𝜆𝑟a𝐿, 𝜆a
(2)
1 , . . . , 𝜆a

(2)
𝐿 , √2𝜆a1

× a2, . . . , √2𝜆a𝑖 × a𝑗, . . . , √2𝜆a𝐿−1 × a𝐿]
𝑇
,

(6)

where a1, a2, . . . , a𝐿 are vectors representing different chan-
nels; superscript (2) means piecewise square; × denotes
piecewise multiplication. It can be seen that the vector
includes the constant, linear, second-orders in the orig-
inal data, and Φ(A) has (𝐿 + 2)(𝐿 + 1)/2 terms in
total.

In order to avoid overfitting, some second-order terms
are removed. In particular, the second-order terms are rear-
ranged in the following order. The square terms are selected
within each coil at first, and then the product terms between
the nearest neighbors are chosen, and then the next-nearest
neighbors are selected in 𝑘-space and so on. The vector
Φ(a) is removed by using sorted terms based on the desired
dimension of the feature space. If all second-order terms are
truncated, the proposed method is the same as linear PCA-
based channel compression algorithm.

The target channels are corresponding to data on the left
side of (1) and source channels as those for the right side
of (1). The original space for the target channel is selected
to avoid the complexity of converting the data from the
feature space back to the original space. The source channels
are used for estimation only, so there is no need to convert
it back to the original space. The number of second-order
terms to be three times of that of the first-order terms is
chosen for building the source channels. Since MRI noise
is generated in a very complicated procedure, which can
be considered as non-Gaussian distribution [25]. Noise also
exists in sensitivities of acquired channel data. Noise and
true signal can be considered as error-in-variable model
[22]. The traditional linear space is mapped to nonlinear
feature space to capture noise characteristics existing in
coil sensitivities. Nonlinearity is added to modulate sen-
sitivities in the channel compression procedure. The ben-
efit of the proposed method is the simultaneous channel
compression and noise suppression in reconstruction proce-
dure.

To balance linearity and nonlinearity of the new coor-
dinate system, the parameters 𝑟 and 𝜆 are finely tuned.
If the nonlinearity dominates the coordinate, the recon-
structed image quality is distorted since the original channel

information is lost and overridden by nonlinearity infor-
mation. By contrast, if the nonlinearity is too tiny, recon-
struction is almost equivalent to original PCA-based chan-
nel reduction method, so that nonlinearity does not have
effect on suppressing noise. √2𝜆𝑟 = 1 and adjustable 𝜆
are set to obtain the better performance. The maximum
absolute value 𝑀2nd of the second-order terms is identified
for building the feature space. 𝜆𝑠 sets the value within the
range within (1/𝑀2nd, 10/𝑀2nd) based on the experience that
the reconstruction is insensitive to the values in the above
range.

3.3. Proposed Algorithm. The proposed method is presented
in the following steps.

Step 1. Extracted calibration data is the input data of KPCA
for target channels and source channels, respectively. The
calibration data in each channel is arranged into a vec-
tor; therefore, there are overall 𝑁 vectors V1,V2, . . . ,VN
corresponding to overall 𝑁 channels of original 𝑘-space
data.

Step 2. Nonlinear mapping Φ is applied on random variable
V here to construct the covariance matrix 𝐶𝑡 and 𝐶𝑠 of target
channels and source channels, respectively. The new vectors
U are constructed as follows:

U = [V1,V2, . . . ,VN, 𝜆V11, 𝜆V22, . . . , 𝜆VNN, 𝜆VN1, 𝜆V12,

𝜆V23, . . . , 𝜆V(N−1)N, 𝜆V(N−1)1, 𝜆VN2, 𝜆V13, 𝜆V24, . . . ,

𝜆V(N−2)N] ,

(7)

where V1,V2, . . . ,VN denote vectors obtained from original
𝑘-space ACS data; second-order terms represent the vector
from the point-wise multiplication by V1,V2, . . . ,VN. For
example,V11 = [V21, V

2
2, . . . , V

2
𝑛]
𝑇. Furthermore, the dimension

of U is 𝑛 × 4𝑁, where 𝑛 is the total number of 𝑘-space
data obtained at the central strip, and Nyquist rate (𝑛 =
𝑁nyq × 𝑁𝑥, where 𝑁nyq is the number of phase-encoding
lines fully sampled with Nyquist rate, and 𝑁𝑥 is the number
of points along the frequency-encoding direction) is fully
sampled. If ACS lines are defined, which are fully sampled 𝑘-
space data at the central strip, 𝑁acs = 𝑁nyq can be derived.
Nonlinearity controlled by the parameter 𝜆 is added into
the new coordinates. Since the target channels will be used
for final reconstruction which can’t be incorporated large
nonlinearity, so both parameters 𝜆𝑡 and 𝜆𝑠 are tuned for
constructing Ut and Us, respectively. Generally, 𝜆𝑡 is much
smaller than 𝜆𝑠.

Step 3. For target and source vectors Ut and Us produced in
Step 2, mean of zero is calculated to make sureUt andUs will
be the direction of maximal variance. The mean of zero can
be calculated as follows:

Û = U −
∑𝑛𝑝=1 𝑢

𝑝

𝑛
. (8)
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Figure 1: Reconstruction comparison of PCA and KPCA with compressed data. All channel (All Ch) data are used for the reference image.
And the reconstructed images of KPCA and PCA with 10-channel (10 Ch) compressed data are, respectively, compared with the reference
image.

Step 4. For target channels, covariancematrix𝐶𝑡 is generated
as follows:

𝐶𝑡 = cov (Ût (𝑖) , Ût (𝑗)) , 1 ≤ 𝑖 ≤ 4𝑁, 1 ≤ 𝑗 ≤ 4𝑁, (9)

where one component 𝐶𝑡(𝑖, 𝑗) represents covariance between
randomvariables Ût(𝑖) and Ût(𝑗).The parameter𝜆𝑡 can be set
as zero to keep uniform with PCA-based channel reduction.

Step 5. Similarly to Step 4, covariance matrix 𝐶𝑠 is con-
structed for source channels. The difference is that the
parameter 𝜆𝑠 is chosen, which is generally larger than 𝜆𝑡 in
Step 4.

Step 6. Calculate eigenvalues and eigenvectors using singular
value decomposition (SVD) on covariance matrix 𝐶𝑡 and 𝐶𝑠,
respectively. Since nonlinear mapping is directly used here
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Figure 2: Reconstruction results of the 32-channel (32 Ch) experimental phantom images. Three methods were compared, the GRAPPA
using full channel data, the PCA-GRAPPA, and KPCA-GRAPPA using, respectively, 12-channel (12 Ch) and 16-channel (16 Ch) compressed
data.

and kernel trick matrix is not needed to be computed here,
SVD can be directly used here to calculate eigenvalues and
eigenvectors, like conventional linear PCA does [23]. The
transformation matrix T is composed of eigenvectors of the
covariance matrix, which transforms data in Ut and Us into
new coordinates.

Step 7. Generate the transformed data in the new coordinates
for 𝑁tch target channels and 𝑁sch source channels, respec-
tively. Similarly to [26], 𝑁tch and 𝑁sch are not needed to be
necessarily equal. In the calibration step, 𝑆𝑙 in (1) are obtained
from target channels and 𝑆𝑗 in (1) are obtained from source
channels to calculate weights. In the synthesis step, calculated
weights and acquired data on source channels are combined
to predict missing values on target channels, which are used
for final image reconstruction.

4. Results

We validate the proposed algorithm performance by using
three MRI datasets. At first, a uniform water phantom was
scanned using a gradient echo (GRE) sequence (15.63 kHz
bandwidth, FOV = 250mm2, matrix size = 256 × 256, TE/TR
= 10/100ms, and slice thickness = 3.0mm). Then, a coronary
brain image was acquired by using a 2D spin echo (SE)
sequence (slice thickness = 3.0mm, matrix size = 256 × 256,
FOV = 240mm2, and TE/TR = 2.29/100ms,). The third set
of axial brain data was acquired on a 3T scanner (SIEMENS
AG, Erlangen, German) with a 32-channel head coil using a

2D gradient echo sequence (TE/TR = 2.29/100ms, flip angle
= 25, matrix size = 256 × 256, slice thickness = 3mm, and
FOV = 24 cm2). The conventional GRAPPA [2] and PCA-
based GRAPPA [10] were implemented for comparing with
the proposed method on the Matlab platform (Mathworks,
Natick, MA, USA). For reference image, fully sampled data
with all channels are reconstructed via root sum of squares
(SoS).

To measure signal loss in channel compression, KPCA
and PCA channel reduction based reconstructions with fully
sampled data are evaluated firstly. Both of KPCA and PCA
are applied to reduce the total 32 channels to 10 chan-
nels without undersampling 𝑘-space data. The compressed
channels are used to reconstruct the images with inverse
Fourier transform, respectively. Both reconstructed images
are compared to the reference image with fully sampled data
of all 32 channels. As shown in Figure 1, KPCA channel
compression based reconstruction can suppress more noise
than PCA channel compression based reconstruction in the
region of interest (ROI), as demonstrated in the difference
images.

Figure 2 shows the reconstructions of the first dataset
(phantom) reconstructed by the conventional GRAPPA with
full channels, GRAPPA with PCA-based channel reduction,
and the proposedmethod using KPCA-based channel reduc-
tion.The first dataset was undersampled with an outer reduc-
tion factor (ORF) of 5 and the ACS of 42 (net acceleration
of 3.01). The configuration of the reconstruction coefficients
was 15 columns and 2 blocks. The number of target channels
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Figure 3: Reconstruction comparisons of the full 32-channel coronal human brain images.Threemethods, theGRAPPAusing full 32-channel
data, the PCA-GRAPPA, and KPCA-GRAPPA using 20-channel compressed data, were compared, respectively, at the outer reduction factors
(ORF) of 4, 5, and 6.

is set as 12 and the number of source channels is set as
16 for comparing performance. All sources of errors are
displayed by subtracting reconstructed image by reference
images. The error resources include blurring, aliasing, and
noise. The proposed method is able to suppress more noise
in comparison with traditional GRAPPA with full channels
and GRAPPA with PCA-based channel reduction.

For the second dataset, reconstruction parameters are
48 ACS lines, 15 columns, and 2 blocks. Outer reduction
factor (ORF) is set as 4, 5, and 6 for multiple comparisons.
Correspondingly, the net reduction factors are, respectively,
2.56, 2.81, and 3.01. For PCA-GRAPPA and KPCA-GRAPPA,
the number of reduced channels is set as 20 for both 𝑁tch

target channels and𝑁sch source channels.The parameter 𝜆sch
is set as 1.16 × 10−6. From left column to right column, it is
seen that reconstructions of GRAPPA, PCA-GRAPPA, and
KPCA-GRAPPA are deteriorated when ORF is increasing.
For the same ORF (from top to bottom), reconstruction of
the proposedmethod always suppressmore noise than that of
traditional GRAPPA and GRAPPA with PCA-based channel
reduction. For the column images of ORF 5, although trivial
aliasing artifacts exist in all reconstructions of GRAPPA,
PCA-GRAPPA, and KPCA-GRAPPA, the proposed method
can reconstruct the image with cleaner contents as shown in
Figure 3. Due to loss of information, reconstruction of PCA-
GRAPPA is a very little worse than GRAPPA.



Computational and Mathematical Methods in Medicine 7

Figure 4: Reconstruction results of the 32-channel axial human brain images. We compared the GRAPPA reconstructions without channel
reduction, with the PCA and KPCA-based channel reductions, when ORF = 4 and ACS = 48.

The proposed method is also evaluated and compared
with the PCA-based channel reduction method shown
in Figure 4 when using the traditional GRAPPA as the
reconstruction method of the third dataset. It is also shown
that there is no channel reduction inGRAPPA reconstruction
and complete sampling from all channels as the square root of
the reference image reconstructed for comparison. For visual
comparison, the corners of each image contain an enlarged
area of interest. Using 4ORF and 48ACS, the net acceleration
was 2.56. The number of target and sources channels is 16,
and 𝜆𝑠 is 1.23 × 10−9. Spatially varying noise is suppressed
in both conventional GRAPPA and PCA-reduced GRAPPA
reconstructions. Furthermore, the proposed method also
preserves the image details without obvious blurring. The
computation speed of the proposed method is almost the
same as the PCA-based channel reduction method (around
863 seconds), which takes only about 11% reconstruction time
of the traditional GRAPPA (7771 seconds) to reconstruct
the image but the quality is better. Selecting a small area of
interest to calculate the SNR of each reconstruction is shown
in Figure 5. The SNRs of reference, conventional GRAPPA,
PCA, and KPCA reduced GRAPPA reconstructions are
16.69 dB, 14.86 dB, 14.47 dB, and 15.42 dB, respective-
ly.

5. Conclusion

A new nonlinear kernel PCA-based channel compression
method is proposed in parallel MRI. The method maps data
to higher dimensional space by nonlinear transformation and
performs PCA to generate a set of compressed coils. The
experimental results show the proposed coil compression
method based onKPCA can not only reduce the computation
time cost but also suppress more noise in GRAPPA recon-
structions than previous PCAmethod. In the future, we plan
to do more experiments and investigate how to automatically
choose the optimal nonlinearmapping parameters of the pro-
posed algorithm for more parallel imaging reconstructions
[27–29].
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