
Stem Cells Translational Medicine, 2023, 12, 17–25
https://doi.org/10.1093/stcltm/szac081
Advance access publication 26 December 2022
Concise Review

Received: 27 July 2022; Accepted: 16 October 2022.
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 
commercial re-use, please contact journals.permissions@oup.com.

Adipose-Derived Stromal Cells for Chronic Wounds: 
Scientific Evidence and Roadmap Toward Clinical Practice
Nicolo C. Brembilla1,2, Hubert Vuagnat3, Wolf-Henning Boehncke1,2, Karl-Heinz Krause1,4, 
Olivier Preynat-Seauve*,4,5,

1Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
2Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
3Program for Wounds and Wound Healing, Care Directorate, Geneva University Hospitals, Geneva, Switzerland
4Laboratory of Therapy and Stem Cells, Geneva University Hospitals, Geneva, Switzerland
5Department of Medicine, Faculty of Medicine, University of Geneva; Geneva, Switzerland
*Corresponding author: Olivier Preynat-Seauve, PATIM, 1 rue Michel Servet CH-1211 Geneva 4, Switzerland. Tel: +41223794139;  
Email: olivier.preynat-seauve@hcuge.ch

Abstract 
Chronic wounds, ie, non-healing ulcers, have a prevalence of ~1% in the general population. Chronic wounds strongly affect the quality of life 
and generate considerable medical costs. A fraction of chronic wounds will heal within months of appropriate treatment; however, a signifi-
cant fraction of patients will develop therapy-refractory chronic wounds, leading to chronic pain, infection, and amputation. Given the paucity 
of therapeutic options for refractory wounds, cell therapy and in particular the use of adipose-derived stromal cells (ASC) has emerged as a 
promising concept. ASC can be used as autologous or allogeneic cells. They can be delivered in suspension or in 3D cultures within scaffolds. 
ASC can be used without further processing (stromal vascular fraction of the adipose tissue) or can be expanded in vitro. ASC-derived non-
cellular components, such as conditioned media or exosomes, have also been investigated. Many in vitro and preclinical studies in animals have 
demonstrated the ASC efficacy on wounds. ASC efficiency appears to occur mainly through their regenerative secretome. Hitherto, the majority 
of clinical trials focused mainly on safety issues. However more recently, a small number of randomized, well-controlled trials provided the first 
convincing evidence for the clinical efficacy of ASC-based chronic wound therapies in humans. This brief review summarizes the current knowl-
edge on the mechanism of action, delivery, and efficacy of ASC in chronic wound therapy. It also discusses the scientific and pharmaceutical 
challenges to be solved before ASC-based wound therapy enters clinical reality.
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Significance Statement
This concise review provides an update on the evidence for the benefit of adipose-derived stromal cells in skin wound healing, their 
mechanisms of action, mode of delivery, and the current challenges in implementing the treatment procedures clinically.

Introduction
Chronic wounds are a major consequence of chronic vas-
cular deficiencies induced by several diseases including dia-
betes and aging. Severe ulcers form particularly in feet and 
legs due to a combination of poor arterial circulation, chronic 
irritation from friction and pressure combined with a reduced 
ability to feel pain in the feet due to nerve damage. They are 
chronically painful and often result in clinical depression and 
a high risk of amputation. Chronic wounds have a preva-
lence of ~1% in the general population and, in addition to 
the strong impact on the quality of life, generate consider-
able medical costs. Despite the variety of therapies available 
to clinicians, treatment of chronic wounds suffers from a lack 
of gold standards and is ineffective for a fraction of non-
healing patients. Numerous preclinical and clinical studies 
demonstrated the potential of adipose-derived stromal cells 
(ASC) to treat refractory chronic wounds thanks to their re-
generative properties. Despite emerging promising controlled 
trials, several challenges have also been highlighted. This ar-
ticle summarizes the knowledge on mechanism of action and 
delivery of ASC and discusses the current scientific and phar-
maceutical challenges to be solved before ASC-based wound 
therapy becomes a clinical reality.

Chronic Wounds With Therapeutic Failure: the 
Unmet Need
Wound healing is a complex biological process. Most 
clinicians divide it in 4 overlapping phases1: Hemostasis is the 
first phase directly linked to the “trauma” induced bleeding. 
Over a period of a minutes to hours, the aggregated platelets 
release mediators that initiate the second inflammatory phase. 
Through inflammation, the wound site proceeds to autolysis 
of the dead tissues, defends itself against bacterial infection, 
and moves in a few days into the third proliferative phase. 
Angiogenesis is induced during this much longer phase (3-4 
weeks) to restore and increase the blood flow in the newly 
forming tissue. Under the action of growth factors, dermal 
fibroblasts multiply to produce extracellular matrix, and 
keratinocytes proliferate to create the newly formed epi-
dermis, leading to the complete wound closure. It usually takes 
a several months or years to create a skin tissue with its final 
composition and strength, which is the fourth or remodelling 
phase. Although there is no strict definition, chronic wounds2 
(also known as “difficult to heal”, “non-healing” or “hard-to- 
heal” wounds) are referred to ulcers which fail to heal in a 
timely and orderly manner.3 Chronic wounds encompass a 
very large number of different aetiologies. In industrialized 
countries, the leading causes, both in number and in costs are 
venous leg ulcers, diabetic foot ulcers and pressure ulcers.4 
Vascular defects, creating excessive local pressure or absence 
of oxygen supply, and hyperglycaemia, affecting the healing 
process, are the 2 major factors predisposing to chronicity.5 
Although chronic wounds represent a major health concern, 
they are not yet fully recognized as a major medical entity. 
Global medico-economic studies are yet scarce but show a 

high impact on both quality of life and health economics.6 A 
2014 estimate in the US on Medicare spending for all wound 
types ranges between $28.1 and $96.8 billion USD. In the 
UK, it was estimated in 2018 that 3.8 million patients with 
wounds were managed for an annual cost of 8.3 billion GBP.7 
A concern arising from this study is the sharp increase of 71% 
in the prevalence of patients treated compared to 5 years be-
fore. To treat chronic wounds, clinicians will seek to identify 
and optimise the natural phases of healing. This is made easier 
by following some basic therapeutic principles: (i) diagnosing 
and treating the exact cause that lead to the wound, but also 
any other conditions that could interfere with healing; (ii) 
keeping the wound at an optimal moisture level so that the 
different cells and biological factors can operate optimally; 
(iii) protecting the wound from further trauma; (iv) keeping 
the wound bed free from necrotic material and infection; 
(v) reducing oedema around the wound, as it prevents ox-
ygen from diffusing and nutrients from reaching the wound 
bed while retaining pro-inflammatory cytokines and prote-
olytic environment. Basic modern wound dressings, such as 
hydro cellular foams, gelling fibers, alginates and hydrogels, 
aim to provide this favorable environment for healing. In ad-
dition, they can be impregnated with antimicrobial agents 
(silver, polyhexamethyline biguanide, honey, and others). 
By following these basic clinical principles, most wounds, 
even complicated, will heal. Each patient will benefit of an 
individualized treatment plan and thorough revaluations. 
These will allow the detection of a small percentage of 
wounds that will evolve toward chronicity. If this is the case, 
the clinician must go back to the basic principles, specifically 
checking whether the causative agent has been corrected 
(eg, whether pressure was relieved in pressure ulcer, whether 
revascularisation is effective in an arterial ulcer). A wide range 
of more advanced therapies is offered to the clinicians8,9: skin 
autograft, negative pressure wound therapy, collagen-derived 
products, Matrix Metallo Proteinases (MMP) inhibitors, arti-
ficial cellular and acellular matrixes and platelet-rich plasma 
have now been used for a few decades. In this context, new 
approaches capable of better restoring the natural healing 
process are warranted. Cellular therapies based on the use of 
ASC represent a promising option to meet this need.

Mechanism of Action and ASC Delivery on 
Wounds
ASC (also referred as adipose-derived stem cells, mesen-
chymal stem cells from the adipose tissue or mesenchymal 
stromal cells) are defined by their phenotype (negative for 
CD45, CD235a, CD31, and positive for CD34, CD90, CD73, 
CD105, and CD44), in vitro attachment and expansion on 
plastic culture plates, and multipotent differentiation toward 
adipocytes, chondroblasts, and osteoblasts upon appropriated 
stimuli.10 Other sources of stromal cells than the adipose 
tissue have been demonstrated to be effective in the treat-
ment of chronic wounds (ie, cord blood, bone marrow). This 
review focuses specifically on ASC because adipose tissue is 
considered the most convenient and a less invasive source of 
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stromal cells. There is a consensus that ASC act on wounds 
primary through the production of a regenerative secretome11 
rather than cell differentiation. Exploited through the use of a 
conditioned media,12-14 purified exosomes,15 or cell therapy,11 
the ASC secretome contains ECM proteins (collagens, lam-
inin, fibronectin),16 and many MMPs that are key players 
in the healing process.17 In wounds, excessive levels of some 
MMPs have been correlated with chronicity,18 probably 
altering the equilibrium between ECM production and degra-
dation. It is still not clear whether the concomitant production 
of ECM and MMPs by therapeutic ASC contributes to their 
therapeutic effect on chronic wounds where a disequilibrium 
in remodelling is observed. ASC have an immunomodulatory 
role: when the local microenvironment is not-inflammatory, 
ASC tend to promote inflammation thanks to the production 
of inflammatory factors: IL-1beta, IL-6, IL-8, MCP-1. In the 
presence of inflammatory factors, they rather have inhibitory 
functions through the secretion of IL1-RA, IL-10, TGF-β.19,20 
In a therapeutic context where wound chronicity is frequently 
associated with a blockage at the inflammatory phase, ASC 
could act through their anti-inflammatory functions rather 
than through a pro-inflammatory/angiogenic activity. A large 
body of evidence suggests that the angiogenic properties of 
ASC21 play a key role in wounds. ASC primarily stimulate 
angiogenesis through paracrine secretions of angiopoietins, 
VEGF, FGF-2, PDGF, TGF-β, and HGF,22-24 while also 

supporting angiogenesis through their own differentia-
tion toward endothelial cells.25 In addition to angiogenesis, 
ASC produce cell growth factors (such as FGFs, EGF, KGF, 
IGF) promoting the proliferation of dermal fibroblast and 
keratinocytes26 leading to the dermo-epidermic reconstruc-
tion. They also secrete anti-fibrotic molecules27 that could 
positively affect chronic wounds, express pattern recognition 
receptors against pathogens, such as Toll-like receptors,28 and 
exert an anti-microbial activity.29 ASC have been described 
to reduce pain associated with chronic wounds, but a direct 
action on the nervous system has never been demonstrated. 
Their beneficial effects are more likely due to their anti- 
inflammatory properties and/or ability to close wounds. 
Although not considered crucial, the multipotent capacities 
of ASC could play a role in their therapeutic action on 
wounds. ASC can indeed differentiate into dermic fibroblasts 
accelerating granulation tissue formation30,31 or keratinocyte-
like cells having the capacity to form a stratified epidermis.32 
ASC are enriched in the stromal vascular fraction (SVF) of the 
adipose tissue, which can be directly used for therapeutic in-
tervention. Nonetheless, numerous studies use in vitro purified 
autologous or allogeneic ASC33 or their secreted exosomes.34 
Table 1 describes and compares the advantages and limita-
tions of the different ASC sources that do/do not use a scaf-
fold to form a gel or a more solid structure that can be applied 
as a patch. Fat harvesting area influences the quality of ASC 

Table 1. Comparison of the different ASC sources available for the treatment of chronic wounds

Advantages Limitations

SVF Quick production Dilution of ASC

Simplified reglementation (not ATMP) Uncontrolled activity

Contains other cells involved in healing Lack of standardization

Automated production available

Reduced costs

Living cells: prolonged activity in vivo

Controlled clinical trials showing efficacy

Allo-ASC Standardization > SVF Heavier reglementation than SVF (ATMP)

Costs < auto ASC Possible immune rejection

One donor for multiple controlled freezable productions Increased safety controls (viral)

More controlled activity than SVF No engrafment

Living cells: prolonged activity in vivo

Controlled clinical trials showing efficacy

Auto-ASC Standardization > SVF Heavier reglementation than SVF (ATMP)

Safety controls < allo ASC Too high costs of production

No immune rejection One donor for one treatment

Possibility of long-term engraftment

More controlled activity than SVF

Living cells: prolonged activity in vivo

Controlled clinical trials showing efficacy

Conditioned media Freezable for large scale production Short-term activity in vivo

Costs < auto ASC No controlled clinical trials available

One donor for multiple controlled and freezable productions

Exosomes Standardization > SVF Costs of production (better if allo)

Living material: prolonged activity in vivo Heavier reglementation than SVF (ATMP)

Costs < auto exosomes if allo No controlled clinical trials available

More controlled activity than SVF

Abbreviations: ASC, adipose-derived stromal cells; ATMP, advanced therapy medicinal products; SVF, stromal vascular fraction; Allo ASC, allogeneic ASC; 
auto ASC, autologous ASC.
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production. Compared to abdomen, thighs showed increased 
viability and yield.35 The dose required for ASC treatment 
on wounds, which can be measured in cell concentration for 
suspensions or in cell density for topical applications, cannot 
be easily defined. The dose, currently not formally established 
by appropriate studies, must allow sufficient and prolonged 
action/stability of the ASC secretome on the healing process. 
ASC has been spread as a cell suspension directly on the 
wound cavity or injected subcutaneously or in muscles near 
the wound. However, the latter route of administration is not 
optimal because it relies on multiple and painful injection sites 
that cannot be adequately controlled spatially. A few studies 
showed that clusterization into spheroids enhanced the ther-
apeutic effects of ASC,36,37 fostering wound closure and 
increasing their engraftment with less cell apoptosis. Some 
authors introduced ASC spheroids on adhesive films directly 
covering the ulcer.38 The inclusion of ASC within scaffolds 
may provide a bio-compatible 3D microenvironment closer 
to the in vivo situation, with stronger cell-to-cell and cell-to 
matrix interactions. ASC in a physically stable scaffold can 
be locally concentrated in the entire surface of the wound 
and maximize their effect on the healing process. Scaffolds 
should possess several features, such as bio-compatibility, 
non-toxicity, resemblance to the ECM and optimal po-
rosity to support ASC growth and activity. Many scaffolds 
combined with ASC have been tested on wounds: chitosan,39 
fibrin,40 hyaluronic acid,41 collagen sponge,42 collagen pep-
tide scaffolds,43 decellularized tissues,44,45 atelocollagen,46,47 
amniotic membranes,48 platelet gels,49 and mixtures of dif-
ferent scaffolds.50 These biomaterials are not only physical 
3D support but can be biologically active on wounds and/or 
ASC,51 resulting in improved healing properties, regulations 

of proliferation, adhesion, and the secretome composition. 
Figure 1 summarizes the different modes of ASC delivery 
described to date in wound care.

Preclinical and Clinical Studies Evaluating the 
Use of ASC on Skin Wounds
Many preclinical studies in animals have reported the in 
vivo efficacy of ASC on chronic wounds, using different 
sources, animal models, and modes of administration. Several 
preclinical reports have shown that ASC increase wound 
healing in vivo through the promotion of angiogenesis, col-
lagen deposition, and re-epithelization.52-54 Several uncon-
trolled trials in humans demonstrated the safety of ASC on 
wounds and reported encouraging data with regard to their 
efficacy.55 However, the most important and recent advances 
were performed through emerging controlled trials. Table 2 
summarizes the completed controlled clinical trials to date 
and the currently registered trials in clinicaltrials.gov. Most 
studies used SVF and only one controlled trial evaluated allo-
genic ASC in a scaffold. This latter controlled trial56 tested the 
efficacy of a treatment based on an allogeneic ASC/hydrogel 
sheet on 44 patients with chronic wounds. A complete wound 
closure in the treatment group versus the control group was 
observed in 73% vs 47% of cases at week 8, and 82% vs 
53% at week 12. No adverse events related to wound dressing 
were noticed, providing a very encouraging study for the use 
of ASC in humans. In another controlled trial, 100 patients 
with chronic wounds received a subcutaneous injection of 
autologous SVF near the wound.57 Before treatment they re-
ported poor epithelization, heavy inflammation, and imma-
ture granulation tissue. In the study group and compared 
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to the control group, re-epithelization, mature granulation 
tissue formation, collagen deposition and angiogenesis was 
shown, confirming the mechanism of action of ASC on var-
ious healing phases. Authors reported a complete healing in 
92% of treated patients versus 60% of control patients, with 
a reduced time for complete closure of 50%. A controlled 
study was also performed to evaluate the efficacy of ASC in 
336 patients with skin wounds from 2016 to 2021.58 Authors 
topically introduced ASC in a saline buffer directly on the 
wound. Granulation was significantly improved in the ASC-
treated group compared with the control group receiving 
standard dressing with no serious adverse event. As of today, 
5 clinical trials are registered in clinicaltrials.gov to evaluate 
the efficacy of ASC therapy on skin wounds.

From Bench to Clinical Implementation: 
Scientific Challenges
In recent decades, the scientific and medical community has 
made significant progress in understanding the functional 
properties of ASC. Clinical applications, as described above, 
are beginning to become a reality. However, the road is still 
long and complex, and several aspects related to biology of 
ASCs still need to be understood in order to achieve wide-
spread application of these therapies. First, the source of the 
cells. In general terms, adipose tissue is an advantageous choice 
in terms of safety, collection, culture, and ethical concerns 
compared with other sources such as bone marrow. Adipose 
tissue includes 2 distinct subtypes, white and brown, and its 
composition may vary depending on the anatomical location. 
Of course, the characteristics of ASCs also vary according to 
the type and anatomical region of adipose tissue harvested, 
with white subcutaneous abdominal adipose tissue currently 
considered the best source for yield and quality.59 Second, 
researchers have shown that the technique of fat harvesting60 
and the method used to isolate and expand ASC largely in-
fluence their basic characteristics and functionality.61-63  
These considerations extend to the culture condition used, 
which is a critical prerequisite for clinical translation. Studies 
using animal-derived growth supplements, such as animal 
serum, are common, but this has critical limitations and 

safety concerns for regulatory authorities. Several alternative 
formulations free of animal products have been developed to 
enable good medical practice—compliant production.64 The 
storage condition of ASC adds to the list of debated topics: 
some authors have shown that cryopreservation can inter-
fere with their immunomodulatory properties while others 
argue that their basic functions remain unchanged by the 
freezing process.65,66 The general lack of standardization is 
undoubtedly one of the major obstacles and challenges that 
researchers must overcome to get the green light from regula-
tory authorities and ultimately bring ASC to patients in rou-
tine clinical practice. Establishing a commonly accepted ASC 
definition and providing manufacturing guidelines would also 
enable better cross-interpretation of clinical trials, once again 
accelerating the possibility of routine clinical adoption.

Another important issue is the immunogenicity of ASC. 
ASCs, and mesenchymal stem cells in general, have long 
been considered hypoimmunogenic because of the ab-
sence of HLA class II, low expression of HLA class I and 
co-stimulatory molecules such as CD40 and CD80. However, 
some studies have highlighted that ASCs can become more 
immunogenic during cell expansion in vitro, depending on 
culture conditions,67,68 and may induce cellular and humoral 
responses when used in an allogeneic setting.69,70 Complement 
activation properties have also been reported.71 These aspects 
need to be better addressed for each specific clinical applica-
tion, as alloreactivity may lead to decreased viability of ASC. 
However, the extent to which this affects therapeutic efficacy 
remains unknown, particularly in local application for wound 
care, where the cells can exert their beneficial effects in a par-
ticularly short time. The possibility of using allogeneic ASC 
goes beyond simply discussing possible alloreactivity, but 
needs to be considered for broader commercial and scientific 
implications. For example, age, sex, health status, and weight 
are all factors that have been shown to have a potential impact 
on the regenerative potential or proliferative capacity of ASC. 
Thus, the donor status becomes a critical parameter that can 
directly influence the success of therapy. This issue will never 
be resolved in an autologous setting, and autologous ASC 
therapy could potentially be so patient-dependent as to pre-
vent comprehensive clinical adoption. The use of prevalidated 

Table 2 Reported controlled and currently registered clinical trials.

Disease Auto/allo Controlled ASC sources Delivery mode Participants PMID Efficacy

CW Auto Yes SVF sc injection 100 34596433 yes

AW ? Yes not reported sc injection 346 35368914 yes

CW Auto Yes SVF+PRP topical 40 27071140 yes

VLU Auto Yes SVF+HA dressing sc injection 16 30583949 yes

DFU Auto Yes SVF-SVF/PRP vs control sc injection 334 32633854 no

DFU Allo Yes ASC+hydrogel Topical 59 30679183 yes

Disease Auto/allo Controlled ASC sources Delivery mode Participants ClinicalTrial.gov ID

VU Auto Yes SVF sc injection 36 NCT02961699

DFU, VU PU Auto No SVF sc injection 25 NCT02092870

DFU Allo No ASC topical 46 NCT03865394

CW Auto No SVF sc injection 10 NCT02590042

CW Auto No SVF/fat na 40 NCT03882983

Abbreviations: CW, chronic wounds; AW, acute wounds; VU, venous ulcer; DFU, diabetic foot ulcer; PU, pressure ulcer; sc, subcutaneous; SVF, stromal 
vascular fraction; HA, hyaluronic acid; na, not available; ?, not reported.
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“standardized” allogeneic stem cells would therefore also be 
advantageous from the point of view of efficacy. In this re-
gard, and of great significance, a solution of expanded alloge-
neic ASC was approved in 2018 by the European Medicines 
Agency under the trade name Alofisel for the treatment (local 
injection) of complex perianal fistulas in adult patients with 
Crohn’s disease. This is a milestone in regenerative medicine, 
as it demonstrates the willingness of regulatory authorities to 
be open to these innovative cell-based therapeutic strategies. 
In a randomized phase III trial that preceded the drug’s ap-
proval,72,73 about one-third of patients showed anti-donor an-
tibody production at week 12. Of note, the immunogenicity 
of allogeneic ASC had no effect on in vivo safety or efficacy 
at week 52.

From Bench to Clinical Implementation: Drug 
Development Issues
The scientific promise hold by ASC-based therapy in wound 
care will only translate into reality if such therapies are 
successfully adopted into clinical routine. Indeed, despite 
growing investment and enthusiasm from controlled clin-
ical trial, at the light of the scientific limitations described 
above, the market does not yet seem ready for large-scale 
adoption.74 Industries do not see a sufficient return on in-
vestment for cell therapies and are only timidly entering 
in this new market. Public entities, ie, universities and 
hospitals, effectively master the manufacturing process, 
but lack the vocation for scale-up to enable widespread 
clinical application. First, these treatments are based on 
live and rare cells. A single “production batch” is capable, 
at best, ie, an allogeneic therapy, of satisfying only a few 
dozen patients, when compared with the millions of doses 
produced by a single batch of a traditional drug. This aspect 
is exacerbated in autologous approaches, where one batch 
allows for the generation of a single treatment. In addition, 
automation is still minimal and most of the work relies on 
manual processes that require highly skilled operators.75 
This results in very limited productivity and high pro-
duction costs. Another problem is a particularly complex 
supply and logistics chain. Speaking generally, in both au-
tologous and allogeneic approaches, the raw material is 
taken from a human being. This means that the harvesting 
procedure must be performed in an appropriate hospital fa-
cility by qualified personnel. Once produced, the treatment 
does not go through the traditional distribution chain, as is 
the case with most traditional drugs. In fact, the final treat-
ment cannot be consumed independently by the patient, to 
date, but must be administered to the patient by trained 
personnel in an appropriate facility. This is an important 
issue, as the lack of adequate education and training of 
hospital staff on this new family of drugs may jeopardize 
the success of the therapy itself. Inappropriate handling of 
live-cell products by the hospital personnel has been indeed 
associated with increased ASC mortality and aggregation, 
leading to the failure of precursor formulations of Alofisel 
during phase III studies, despite successful completion of 
phases I and II.76,77 The living nature of both the sampled 
material and the final treatment means that all transport 
must be carried out under controlled conditions. Logistical 
complexity is again greatest in autologous applications, 
since the same patient is both the source for sampling the 
material to generate the treatment and the recipient of the 

therapy. This result, among other things, in the inability to 
plan the production process, which begins when the patient 
presents to the clinic. While not comparable to a classic 
“off-the-shelf” drug, the logistical complexity in the case 
of allogeneic therapy is reduced by the ability to disconnect 
the beginning (the sampling of human tissue from a donor) 
with the end of the chain (the treated patient). Production 
and logistical constraints increase production costs, which 
in turn affect the final price of the treatment. Mesenchymal 
stem cell therapies will most likely rank at the high end of 
the cost range in the multitude of treatment offerings for 
chronic wound management. This high upfront cost must 
be weighed against the total costs that would otherwise 
be incurred with one-or more-standard therapies over the 
time required for manage the wound. It is worth noting 
that the treatment and care of chronic wounds account 
for more than 3% of total health expenditure in devel-
oped countries.78,79 Most of these costs are due to the long 
treatment/hospitalization times of hard-to-heal cases. Even 
a moderate increase in the efficacy rate (ie, reduction in 
treatment/hospitalization time) in this subgroup of patients 
will thus have a large impact on total costs. Well-designed 
pharmacoeconomic studies will thus be the trump card in 
convincing payers, who are usually reluctant to reimburse 
high costs if their benefit is not clearly demonstrated. And 
this will not be easy to achieve, since the broader economic 
and social benefits that ASC-based therapies would pro-
duce could not be directly realized by payers, and the slow 
long-term savings in the health budget may not be attrac-
tive to payers when compared with the high upfront costs.

Concluding Remarks
Recent evidence, particularly in controlled studies, suggests 
that ASC could be a superior treatment option for patients 
with chronic wounds. An allogenic source of expanded ASC 
could allow a more controlled manufacturing setting and 
guarantee a higher access to therapy. Although the available 
results are encouraging, further controlled studies are still 
needed, particularly to explore the impact of allogeneic ASC/
scaffold combined products and the possibility of long-term 
storage in secured cell banks for subsequent off-the-shelf 
topical application. Regulatory barriers to the use of alloge-
neic cells remain a major unresolved challenge to bring these 
therapies to large-scale clinical adoption.
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