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Abstract: Subversion of programmed cell death-based host defence systems is a prominent feature of
infections by large DNA viruses. African swine fever virus (ASFV) is a large DNA virus and sole
member of the Asfarviridae family that harbours the B-cell lymphoma 2 or Bcl-2 homolog A179L.
A179L has been shown to bind to a range of cell death-inducing host proteins, including pro-apoptotic
Bcl-2 proteins as well as the autophagy regulator Beclin. Here we report the crystal structure of
A179L bound to the Beclin BH3 motif. A179L engages Beclin using the same canonical ligand-binding
groove that is utilized to bind to pro-apoptotic Bcl-2 proteins. The mode of binding of Beclin to
A179L mirrors that of Beclin binding to human Bcl-2 and Bcl-xL as well as murine γ-herpesvirus
68. The introduction of bulky hydrophobic residues into the A179L ligand-binding groove via
site-directed mutagenesis ablates binding of Beclin to A179L, leading to a loss of the ability of A179L
to modulate autophagosome formation in Vero cells during starvation. Our findings provide a
mechanistic understanding for the potent autophagy inhibitory activity of A179L and serve as a
platform for more detailed investigations into the role of autophagy during ASFV infection.
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1. Introduction

The inhibition of programmed cell death pathways in infected host cells is a widely used strategy
employed by many large DNA viruses. Successful inhibition is often achieved by the use of virus
encoded homologs of the B-cell lymphoma-2 (Bcl-2) family of proteins, which are crucial arbiters
of intrinsic or mitochondrial initiated apoptosis [1]. Bcl-2 family members are distinguished into
pro-survival and pro-apoptotic signalling proteins, and bear one or more hallmark Bcl-2 homology (BH)
motifs that underpin their activity [2]. In higher organisms, pro-survival members of the family include
Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1 and Bcl-b [3], although several organisms harbour unique pro-survival
proteins that play organism-specific roles [4,5]. Pro-apoptotic proteins Bak and Bax are the executors of
cell death in mammals by causing the release of cytochrome c from the mitochondrial outer membrane
(MOM) through oligomeric pores [6,7]. The BH3-only proteins comprise the remaining pro-apoptotic
Bcl-2 members and include Bid, Bim, Noxa, Puma, Bmf, Bad, Bik and Hrk. Mechanistically the
BH3-only proteins act either by sequestering and neutralizing the pro-survival Bcl-2 members, or by
directly activating Bak and Bax. BH3-only proteins are defined by only containing the BH3 motif,
which adopts an α-helical structure to engage the canonical ligand-binding groove on the pro-survival
Bcl-2 proteins [2]. In response to certain cellular insults, including exposure to cytotoxic drugs or
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growth factor deprivation, the BH3-only proteins are up-regulated and subsequently trigger cell death
mechanisms [8].

Viruses utilize a diverse set of molecular strategies to inhibit premature host cell apoptosis.
These include direct caspase inhibition and inhibition of the intrinsic apoptosis [9]. For example,
herpesviruses such as Kaposi Sarcoma Herpesvirus (KSHV) or Epstein-Barr virus encode viral Bcl-2-like
proteins [3,10–12] that are essential for successful viral replication [13]. Poxviruses encode anti-apoptotic
proteins that often lack any overt sequence identity with Bcl-2. These include F1L from variola virus [14]
and vaccinia virus [15–20], N1L from vaccinia virus [21–23], M11L from myxoma virus [24–26] as well
as fowlpoxvirus FPV039 [27,28], canarypoxvirus CNP058 [29], orf virus ORF125 [30,31], deerpoxvirus
DPV022 [32,33] and sheeppoxvirus SPPV14 [34]. Amongst the Iridoviridae, grouper iridovirus encodes
pro-survival GIV66 [35,36].

African swine fever virus (ASFV) is the sole member of the family Asfarviridae, composed of large
double stranded DNA viruses [37]. ASFV is the causative agent of the highly transmissible lethal
haemorrhagic African swine fever infection in domestic pigs, and is endemic in East African wild pig
populations [38]. ASFV was introduced into Georgia in 2007 and has since spread across Europe and
Asia and is a severe threat to the global pig industry and food security, since there is no vaccine. ASFV
is a complex virus, encoding for at least 150 proteins, which include an arsenal of immune modulatory
proteins and virulence factors [39,40] that includes the Bcl-2 homolog A179L [41].

In cellular assays, A179L is a potent inhibitor of apoptosis, is essential to protecting both Hela
cells as well as insect cells against apoptosis [42] and is localized at the mitochondria and endoplasmic
reticulum [43]. A179L is an unusually promiscuous Bcl-2 protein and is able to bind to all major
pro-apoptotic Bcl-2 proteins using the family-defining ligand-binding groove [44]. A179L also inhibits
autophagy by binding Beclin, and prevents autophagosome formation during nutrient deprivation [43].
However, the structural basis for Beclin engagement by A179L has not been clarified. Here we report
the crystal structure of A179L in complex with the BH3 domain of Beclin. Mutations in the A179L
binding groove abolish Beclin binding and ablate its ability to interfere with autophagy. These findings
establish a mechanistic basis for ASFV-mediated inhibition of autophagy.

2. Materials and Methods

2.1. Protein Expression and Purification

Synthetic codon-optimized cDNA encoding A179L (Uniprot Accession number P42485) was cloned
into the bacterial expression vector pMAL c4x-1-M(RBS) using SacI at the 5’ end and EcoRI at the 3’
(Genscript). Recombinant A179L∆C31, a construct with the 31 C-terminal residues truncated, was
expressed in BL21 DE3 Codon Plus RIPL cells using the auto-induction method [45] for 24 h at 30 ◦C
with shaking. Bacterial cells were collected using an ultracentrifuge at 6000 rev min−1 (JLA 9.1000
rotor, Beckman Coulter Avanti J-E) for 20 min and resultant cell pellets were resuspended in 50 mL
lysis buffer A (50 mM Tris pH 8.5, 300 mM NaCl and 5 mM BME (β-Mercaptoethanol)). The cells were
lysed with sonication (Model 705 Sonic Dismembrator, Fisher Scientific, Hampton, New Hampshire,
US). The lysate was transferred into SS34 tubes for further centrifugation at 16,000 rev min−1 (JA-25.50
rotor, Beckman Coulter Avanti J-E) for 20 min. The supernatant was loaded onto a 5 mL His Trap HP,
5 mL column (GE Healthcare, Chicago, IL, USA) equilibrated with buffer A. After sample application,
the column was washed using 100 ml of buffer B (50 mM Tris pH 8.5, 300 mM NaCl, 5 mM BME
(β-Mercaptoethanol) and 25 mM of imidazole). Bound protein was then eluted with buffer C (50 mM
Tris pH 8.5, 300 mM NaCl, 5 mM BME (β-Mercaptoethanol) and 300 mM of imidazole) and dialysed
overnight into buffer A at 4 ◦C. The target protein was then concentrated using a centrifugal concentrator
with 30 kDa molecular weight cut-off (Amicon®Ultra 15) to a final volume of 1 mL. Concentrated
A179L was subjected to size-exclusion chromatography using a Superdex S200 10/300 column mounted
on an ÄKTApure system (GE Healthcare) equilibrated in 25 mM Tris pH 7.5, 150 mM NaCl with 5 mM
DTT (Dithiothreital), where it eluted as a single peak. Using SDS–PAGE analysis, the final sample was
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determined to be 95% pure. Eluted protein was concentrated using a centrifugal concentrator with a
30 kDa molecular weight cut-off (Amicon®Ultra 15) to a final concentration of 21 mg/mL.

2.2. Expression and Purification of A179L Mutants

Synthetic cDNA encoding for a codon-optimized double (V73Y/G89Y) mutant of A179L was
cloned into the pGEX-6P-3 vector (Genscript). Expression and purification of wildtype A179L as well
as A179L V73Y/G89Y was performed as previously described [44].

2.3. Measurement of Dissociation Constants

Binding affinities were measured using a MicroCal iTC200 system (GE Healthcare) at 25 ◦C
as previously described [36]. The BH3-motif peptides used were commercially synthesized and
purified to a final purity of 95% (GenScript). The sequence of the Sus scrofa Beclin peptide used was:
DGGTMENLSRRLKVTGDLFDIMSGQT (Uniprot accession code Q4A1L5; residues 103–128). All other
peptides employed were described previously [44].

2.4. Crystallization and Data Collection

A complex of A179L with Beclin BH3 peptide was prepared as previously described [46].
MBP-A179L was incubated with Beclin BH3 motif in a molar ratio of 1:1.2 (protein:peptide). The mixture
was left on ice for 10 min followed by the addition of 4 mM of maltose and further incubating for 10 more
min. High-throughput sparse matrix screening was carried out using 96-well sitting-drop trays (Swissci)
and the vapour-diffusion method at 20 ◦C at La Trobe University, Melbourne, Australia. The initial
crystallization condition used was identified using the Shotgun Screen (Molecular Dimensions).
Crystals of A179L:Beclin BH3 were obtained at 20 mg ml−1 using the sitting-drop method at 20 ◦C in
0.2 M ammonium sulfate, 0.1 M Bis-Tris pH 5.5 and 25% w/v PEG 3350. The crystals were flash-cooled
at −173 ◦C using 30% (w/v) glucose as cryo-protectant. Native diffraction data were collected at the
Australian Synchrotron MX2 beamline using an EIGER 16M detector at a wavelength of 0.9537 Å and
an oscillation range of 0.1◦ per frame. Data integration and scaling was performed using XDS [47] and
AIMLESS [48]. The structure was solved with A179L:Bax BH3 (PDB ID 5UA5) as a search model with
PHASER [49]. The structure was rebuilt manually using Coot [50] and refined using PHENIX [51].
A179L:Beclin BH3 crystals contained one chain of MBP-A179L and one chain of Beclin BH3 in the
asymmetric unit, with a calculated solvent content of 51.5%, and the final model was refined to an
Rwork/Rfree of 21.4/25.5 with 96.4% of residues in the favoured region of the Ramachandran plot and
no outliers. Details of the data-collection and refinement statistics are summarized in Table 1. PDB
coordinates have been deposited under the accession code 6TZC at the Protein Data Bank. PyMOL
Molecular Graphics System, Version 1.8 Schrödinger, LLC was used for molecular images. All software
were accessed using the SBGrid suite [52]. Raw images are stored with the SBGrid Data Bank [53].

2.5. Autophagy Assays

Recombinant, replication deficient human adenovirus 5 (rAd) encoding full-length wildtype
A179L and A179L V73Y/G89Y tagged with an N-terminal HA tag were generated using standard
techniques. Vero cells were transduced with rAd, incubated for 21 h and then incubated for another 3 h
in complete media or in Earles balanced salt solution to induce starvation. Cells were then fixed with
methanol and stained with anti-HA (clone 3F10, Roche) and anti-LC3B (L7543, Sigma). Images were
captured using a Leicia SP8 confocal microscopy and the number of LC3 puncta per cell determined
for 30 cells per condition using Imaris 9.2.1. Statistical analysis was performed in MiniTab (version
18) using analysis of variance (ANOVA) plus Tukey multiple comparison test to determine statistical
differences between groups.
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Table 1. Crystallographic data collection and refinement statistics.

A179L:Beclin BH3

Data collection
Space group P 21

Cell dimensions
a, b, c (Å) 54.56 44.34 129.02
α, β, γ (◦) 90, 94.53, 90

Resolution (Å) 51.59–2.41 (2.47–2.41) *
Rsym or Rmerge 0.12 (0.52)

I/σI 4.60 (1.40)
Completeness (%) 99.40 (99.70)

Multiplicity 2.9 (2.7)
CC1/2 0.98 (0.48)

Refinement
Resolution (Å) 48.74–2.40 (2.49–2.41) *
No. reflections 24020 (2373)

Rwork/Rfree 0.214/0.255
Molprobity clashscore 1.63

No. atoms
Protein 4081

Ligand/ion 23
Water 107

B-factors
Protein 42.56

Ligand/ion 44.98
Water 40.29

R.m.s. deviations
Bond lengths (Å) 0.013
Bond angles (◦) 1.5

* Values in parentheses are for highest-resolution shell.

3. Results

To understand the structural basis for A179L inhibition of autophagy, we determined crystal
structures of A179L bound to a peptide spanning the Beclin BH3 motif (Figures 1 and 2A, Table 1).
Previous attempts to crystallize an A179L:Beclin BH3 complex did not yield crystals that diffracted
to sufficiently high resolution, consequently we employed a maltose-binding protein fusion (MBP)
of A179L to enhance crystal contact formation. Clear and continuous density was observed for MBP
residues 3–367 and A179L 3–146, with the linker residues AQTNSSS presumed disordered. As shown
previously, A179L adopts a Bcl-2 fold featuring 8 α-helices arranged in a globular helical bundle fold.
The canonical ligand-binding groove found in other pro-survival members of the family is formed by
α-Helices 2-5 and engages the BH3 motif of pro-apoptotic proteins [3]. However, the region that is
the equivalent of α3 is not helical. Instead it is found in an extended configuration, mimicking the
corresponding region in Bcl-xL [54].
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Figure 1. Crystal structure of A179L:Beclin BH3. (A) Crystal structure of maltose-binding protein 
(MBP) fusion (green limon) in complex with maltose (blue sticks) fused at the N-terminus of A179L 
(red firebrick) in complex with a peptide spanning the BH3 motif of Beclin (cyan). A short linker 
comprising the residues NSSS lacking electron density between MBP and A179L is shown in magenta 
and was modelled by hand. (B) The conserved Bcl-2 fold of A179L comprising 8 α-helices with the 
Beclin BH3 peptide bound in the hydrophobic groove formed by α2-5. Helix names have been 
retained to be identical to those of the Bcl-xL:BH3 Beclin complex (PDB ID:2P1L) [55]. 

Figure 1. Crystal structure of A179L:Beclin BH3. (A) Crystal structure of maltose-binding protein
(MBP) fusion (green limon) in complex with maltose (blue sticks) fused at the N-terminus of A179L
(red firebrick) in complex with a peptide spanning the BH3 motif of Beclin (cyan). A short linker
comprising the residues NSSS lacking electron density between MBP and A179L is shown in magenta
and was modelled by hand. (B) The conserved Bcl-2 fold of A179L comprising 8 α-helices with the
Beclin BH3 peptide bound in the hydrophobic groove formed by α2-5. Helix names have been retained
to be identical to those of the Bcl-xL:BH3 Beclin complex (PDB ID:2P1L) [55].
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Figure 2. Comparison of the structure of A179L:Beclin BH3 with other Beclin BH3 complexes of Bcl-2
proteins. Ribbon representation of (A) A179L (firebrick) in complex with the swine Beclin BH3 motif
(cyan). A179L helices are labeled α1-8. The view in (A) shows the hydrophobic binding groove formed
by helices α2-5. (B) γ-herpesvirus 68 M11 (orange) in complex with the human Beclin BH3 motif
(cyan) (PDB ID:3BL2). (C) Human Bcl-2 (blue) in complex with the human Beclin BH3 motif (cyan)
(PDB ID:5VAU). (D) Human Bcl-xL (green) in complex with human Beclin BH3 motif (cyan) (PDB
ID:2P1L). All views in (B–D) are as in (A). The orientation of the ribbons is identical to Figure 1B and
the structures of Bcl-xL:Beclin BH3, Bcl-2:Beclin BH3 and M11 Beclin BH3 were aligned on A179L Beclin
BH3 using Coot [50].

The Beclin BH3 peptide binds into a surface groove formed by helices α2-5 of A179L (Figure 2B).
A superimposition of the A179L:Bid BH3 complex with the A179L:Beclin complexes results in an rmsd
of 0.5 Å over 143 Cα carbon atoms (Figure 3A), indicating that the mode of BH3 motif engagement is
highly similar. Beclin utilizes three canonical hydrophobic residues L110, L114 and F121 as well as
T117 to engage the A179L ligand-binding groove (Figure 4) In addition to the engagement of the four
conserved hydrophobic pockets in the A179L binding groove, the conserved ionic interaction between
pro-apoptotic BH3 motifs and pro-survival Bcl-2 proteins formed by A179L R86 and Beclin D119 is
also present. This additional ionic interaction is supplemented by further ionic interactions between
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A179L D80 and E76 with Beclin K115, as well as hydrogen bonds between A179L N83 and Beclin D119,
A179L G85 and Beclin D122, and A179L Y46 with the main chain of Beclin L114 (Figure 4).
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Figure 3. Superimposition of A179L:Beclin with A179L:Bid and other pro-survival Bcl-2:Beclin complexes.
(A) Cartoon view of A179L (firebrick):Beclin (teal) superimposed with A179L (purple):Bid (yellow) (PDB
ID 5UA4). (B) A179L:Beclin superimposed with M11:Beclin (orange), Bcl-XL:Beclin (green) and Bcl-2:Beclin
(blue). Beclin is shown as cartoon, whereas A179L, Bcl-2, Bcl-xL and M11 backbones are shown as Cα trace.
The orientation of the traces is identical to Figure 2 and the structures of Bcl-xL:Beclin BH3, Bcl-2:Beclin
BH3 and M11 Beclin BH3 were aligned on A179L Beclin BH3 using Coot [50].
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Figure 4. Detailed view of the A179L:BH3 peptide interfaces. (A) A179L is shown as a grey molecular
surface, with the backbone and floor of the binding groove shown in green and orange, respectively.
Beclin BH3 is shown in cyan. The four conserved hydrophobic residues of Beclin BH3 (L110, L114,
T117, F121) engage the binding groove and the family-defining salt bridges formed by A179L R86 and
Beclin D119 are labeled. Additional ionic interactions and hydrogen bonds are shown as black dots.
(B) 2Fo-Fc electron density map (blue mesh) of Beclin BH3 peptide (cyan) bound to A179L (orange).
Map is contoured at σ1.5.
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To examine the effect of mutations in the A179L binding groove on autophagy regulation, we
generated an A179L V73Y/G89Y double mutant. Circular dichroism spectroscopy indicates that
the A179L V73Y/G89Y double mutant maintains a strongly alpha helical fold identical to wildtype
A179L (Figure S1). Isothermal titration calorimetry revealed that A179L V73Y/G89Y lost the ability to
bind to Beclin (Figure 5). We then examined the ability of this mutant to modulate a stress-induced
autophagosome formation in Vero cells. Whilst Vero cells transfected with wildtype A179L displayed
only a small increase in the number of autophagosome-associated puncta, cells transfected with A179L
V73Y/G89Y displayed a substantial increase in the number of puncta after starvation comparable to
mock transfected cells (Figure 6, Figures S2 and S3).
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Figure 6. A179L-mediated inhibition of autophagosome formation. The number of LC3 puncta per
cell for 30 individual cells per indicated experimental condition was quantified by Imaris analysis
of confocal images. Vero cells were transduced with AdH5 vectors encoding either wildtype A179L
or A179L V73Y/G89Y, or left untransduced and were incubated for a total of 24 h. Prior to fixation,
cells were either incubated in complete cell media (NS) or starved in EBSS (ST) for 3 h to induce
autophagy. Centre lines show the medians and asterisks represent significant differences between the
values (* p < 0.05, *** p < 0.001).
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4. Discussion

Structural and functional homologs of Bcl-2 are used by numerous large DNA viruses to subvert
programmed cell death-based host defence systems. The majority of these Bcl-2 family members
subvert apoptosis [1]; however, several members have also been shown to target autophagy signalling.
ASFV encoded A179L has the capacity to inhibit apoptosis signalling by binding to the porcine
pro-apoptotic Bcl-2 proteins Bax and Bak, Bim, Bid, Bad, Bik, Bmf, Hrk, Noxa and Puma [44,56].
In addition, A179L is also able to bind both full length Beclin [43] as well as its BH3 motif [44] and
confocal microscopy experiments showed it co-localized with Beclin [43], and thus A179L harbours
dual functionality to interfere with both host apoptosis and autophagy signalling.

The ability to bind the BH3 motif of Beclin has previously been reported for a number of endogenous
cellular Bcl-2 proteins, including Bcl-2 [57] and Bcl-xL [55], as well as for several herpesviruses encoded
proteins, including Ks-Bcl-2 [58] from KSHV and M11 from murine γ68 herpesvirus [59,60] as well as
adenovirus E1B19K [61]. For three of these interactions, the structural basis for Beclin engagement has
been determined. A comparison of the Bcl-2:Beclin BH3 (PDB ID:5VAU), Bcl-xL:Beclin BH3 [55] and
M11:Beclin BH3 [60] complexes with our reported A179L:Beclin BH3 complex reveals that, whilst the
overall mode of binding as well as BH3 ligand engagement of the four hydrophobic pockets in the
ligand binding grove and the hallmark Arg-Asp salt bridge are conserved, several differences exist at
the level of individual interactions that stabilize the complexes (Figure 7).

Interestingly, all major side chain mediated ionic interactions and hydrogen bonds observed in
the A179L:Beclin complex are recapitulated in Bcl-2, Bcl-xL and M11 complexes with Beclin, including
the hallmark ionic interaction of BH3 motifs with Bcl-2, which is found between the Beclin BH3 D119
and an Arg from Bcl-2, which is further supported by an additional hydrogen bond from Beclin D119
to a conserved Asn in Bcl-2 (Figures 3 and 4). An additional ionic interaction from Beclin K117 with
a Glu and Asp on Bcl-2 is also shared amongst the A179L, Bcl-2 and Bcl-xL complexes, whereas in
the M11:Beclin complex the recipient acidic residue is a Ser that forms a hydrogen bond with K117
instead. The unique A179L interaction with Beclin is a hydrogen bond between A179L Y46 with the
main chain of Beclin L114, with the equivalent residue to Y46 in Bcl-2, Bcl-xL and M11 a Phe. The high
level of similarity between the A179L, Bcl-2 and Bcl-xL complexes with Beclin is also reflected in the
affinities of these interactions, which are comparable with A179L binding Beclin with a KD of 1.9 µM,
with the corresponding KD for Bcl-2 being 1.7–8.0 µM [56,57] and for Bcl-xL being 1.1–2.3 µM [7,51,56].
Conflicting data exists for the M11:Beclin BH3 interaction, with both a considerably tighter KD of
40 nM and a weaker one of 1.1 µM being reported [56,57]. However, despite the potentially substantial
difference in affinity between A179L and M11 for Beclin, both viral proteins are able to interfere with
autophagosome formation.

Autophagy is an intracellular bulk degradation pathway that is conserved in eukaryotic cells and
in the last decade has been implicated in a range of cellular processes. Autophagy plays an important
role in the innate and adaptive immune response to infection and can directly degrade invading
pathogens [62,63]. However, certain viruses hijack the autophagy pathway to benefit replication [64].
Little is known about the role of autophagy during ASFV infection beyond the observation that A179L
can inhibit the formation of starvation-induced autophagosomes, although the major autophagosome
structural protein LC3B localized to ASFV replication sites when overexpressed [43]. Future experiments
should focus on the functional significance of the role of autophagy, and the modulation of the pathway
by A179L, in ASFV replication. Of course it is important to note that ASFV replicates in both mammalian
and arthropod hosts and membranes that resemble autophagosomes have been observed enveloping
ASFV virions in ticks [65]. Modulation of autophagy by A179L may contribute to the persistence of
ASFV in the arthropod host [66].
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Figure 7. Detailed view of the interfaces of pro-survival Bcl-2 protein complexes with Beclin BH3.
(A) A179L is shown as a grey molecular surface, with the backbone and floor of the binding groove
shown in green and orange, respectively. Beclin BH3 is shown in cyan. (B) Surface representation
of A179L bound to Beclin BH3. A179L surface is shown in grey, charged residues are shown in blue
and red, hydrophobic residues in yellow. Beclin BH3 is shown as cyan sticks. (C) γ-herpesvirus 68
M11 (orange) in complex with the human Beclin BH3 motif (cyan) (PDB ID:3BL2). (D) Human Bcl-2
(blue) in complex with the human Beclin BH3 motif (cyan) (PDB ID:5VAU). (E) Human Bcl-xL (green)
in complex with human Beclin BH3 motif (cyan) (PDB ID:2P1L). All views in (C)–(E) are as in (A).
Hydrogen bonds and ionic interactions are shown as black dotted lines. (F) Surface representation
of M11 bound to Beclin BH3. M11 surface is shown in grey, charged residues are shown in blue and
red, hydrophobic residues in yellow. Beclin BH3 is shown as cyan sticks. (G) Surface representation
of Bcl-2 bound to Beclin BH3. M11 surface is shown in grey, charged residues are shown in blue and
red, hydrophobic residues in yellow. Beclin BH3 is shown as cyan sticks. (H) Surface representation of
Bcl-xL bound to Beclin BH3. M11 surface is shown in grey, charged residues are shown in blue and red,
hydrophobic residues in yellow. Beclin BH3 is shown as cyan sticks.
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Introduction of the large hydrophobic residue Tyr in two locations within the binding groove
of A179L ablates the ability of A179L to bind to Beclin and its ability to inhibit the formation of
autophagosomes during starvation. A previously reported mutant of A179L, A179L G89A, was shown
to no longer bind promiscuously to BH3 motifs from all major pro-apoptotic Bcl-2 proteins and Beclin,
and instead only bound Puma BH3 [44], indicating that it is indeed possible to engineer single-ligand
specificity into the A179L binding groove. Consequently, it may be possible to engineer mutants of
A179L that discriminate between its autophagy and apoptosis inhibitory function. K115 in Beclin is
engaged in two ionic interactions with A179L D80 and E76, and mutation of both residues in A179L is
likely to substantially reduce Beclin binding. Conversely, mutation of A179L L50, a residue located at
the base of the binding pocket that accepts Beclin Thr 117 for a larger hydrophobic residue, would
be predicted to favour Beclin binding over binding to pro-apoptotic Bcl-2 members that have larger
residues at the equivalent position to Beclin Thr 117.

In summary, we report the structural basis for A179L-mediated inhibition of autophagy by
determining the crystal structure of A179L bound to the Beclin BH3 motif. Furthermore, we show
that disruption of Beclin binding via targeted mutations in the A179L ligand-binding grove ablates
the ability of A179L to suppress autophagosome formation. These findings provide a mechanistic
platform for more detailed investigations into the role of A179L during autophagy inhibition and to
delineate the relative contributions that A179L-mediated suppression of apoptosis and autophagy
signaling makes during ASFV infection and viral persistence.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/9/789/s1,
Figure S1: Circular dichroism spectroscopy of wildtype A179L and double mutant A179L V73Y/G89Y protein.
Figure S2: Transduction of Vero cells with either wildtype or A179L V73Y/G89Y does not induce autophagy.
Figure S3: Wildtype A179L suppresses the formation of starvation-induced autophagosomes but not A179L
V73Y/G89Y.
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