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Efficient quantum walk on a quantum processor
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Jingbo B. Wang2 & Jonathan C.F. Matthews1

The random walk formalism is used across a wide range of applications, from modelling share

prices to predicting population genetics. Likewise, quantum walks have shown much potential

as a framework for developing new quantum algorithms. Here we present explicit efficient

quantum circuits for implementing continuous-time quantum walks on the circulant class of

graphs. These circuits allow us to sample from the output probability distributions of quantum

walks on circulant graphs efficiently. We also show that solving the same sampling problem

for arbitrary circulant quantum circuits is intractable for a classical computer, assuming

conjectures from computational complexity theory. This is a new link between

continuous-time quantum walks and computational complexity theory and it indicates a

family of tasks that could ultimately demonstrate quantum supremacy over classical

computers. As a proof of principle, we experimentally implement the proposed quantum

circuit on an example circulant graph using a two-qubit photonics quantum processor.
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Q
uantum walks are the quantum mechanical analogue of
the well-known classical random walk and they have
established roles in quantum information processing1–3.

In particular, they are central to quantum algorithms created
to tackle database search4, graph isomorphism5–7, network
analysis and navigation8,9, and quantum simulation10–12, as
well as modelling biological processes13,14. Meanwhile, physical
properties of quantum walks have been demonstrated in a variety
of systems, such as nuclear magnetic resonance15,16, bulk17

and fibre18 optics, trapped ions19–21, trapped neutral atoms22

and photonics23,24. Almost all physical implementations of
quantum walk so far followed an analogue approach as for
quantum simulation25, whereby the apparatus is dedicated to
implement specific instances of Hamiltonians without translation
onto quantum logic. However, there is no existing method to
implement analogue quantum simulations with error correction
or fault tolerance, and they do not scale efficiently in resources
when simulating broad classes of large graphs. Some exceptions
of demonstrations of quantum walks, such as ref. 15, adopted
the qubit model, but did not discuss potentially efficient
implementation of quantum walks.

Efficient quantum circuit implementations of continuous-time
quantum walks (CTQWs) have been presented for sparse and
efficiently row-computable graphs26,27, and specific non-sparse
graphs28,29. However, the design of quantum circuits for
implementing CTQWs is in general difficult, since the
time-evolution operator is time dependent and non-local1. A
subset of circulant graphs have the property that their eigenvalues
and eigenvectors can be classically computed efficiently30,31.
This enables construction of a scheme that efficiently outputs the
quantum state c tð Þj i, which corresponds to the time-evolution
state of a CTQW on corresponding graphs. One can then
either implement further quantum circuit operations or perform
direct measurements on c tð Þj i to extract physically meaningful
information. For example the ‘SWAP test’32 can be used to
estimate the similarity of dynamical behaviours of two circulant
Hamiltonians operating on two different initial states, as
shown in Fig. 1a. This procedure can also be adapted to study
the stability of quantum dynamics of circulant molecules
(for example, the DNA Möbius strips33) in a perturbational
environment34,35. When measuring c tð Þj i in the computational
basis we can sample the probability distribution

pðxÞ :¼ x cðtÞjh ij j2 ð1Þ
that describes the probability of observing the quantum walker at
position xA{0, 1}n—an n-bit string, labelling one of the 2n

vertices of the given graph, as shown in Fig. 1b. Sampling of this
form is sufficient to solve various search and characterization
problems4,9, and can be used to deduce critical parameters of the
quantum walk, such as mixing time2.

Here we present efficient quantum circuits for implementing
CTQWs on circulant graphs with an eigenvalue spectrum that
can be classically computed efficiently. These quantum circuits
provide the time-evolution states of CTQWs on circulant graphs
exponentially faster than best previously known methods30.
We report a proof-of-principle experiment, where we implement
CTQWs on an example circulant graph (namely the complete
graph of four vertices) using a two-qubit photonics quantum
processor to sample the probability distributions and perform
state tomography on the output state of a CTQW. We also
provide evidence from computational complexity theory that the
probability distributions p(x) that are output from the circuits of
this circulant form are in general hard to sample from using a
classical computer, implying our scheme also provides an
exponential speedup for sampling. We adapt the methodology
of refs 36–38 to show that if there did exist a classical sampler for

a somewhat more general class of circuits, then this would have
the following unlikely complexity-theoretic implication: the
infinite tower of complexity classes known as the polynomial
hierarchy would collapse. This evidence of hardness exists despite
the classical efficiency with which properties of the CTQW, such
as the eigenvalues of circulant graphs, can be computed on a
classical machine.

Results
Quantum circuit for CTQW on circulant graph. For an
undirected graph G of N vertices, a quantum particle (or ‘quan-
tum walker’) placed on G evolves into a superposition cðtÞj i of
states in the orthonormal basis 1j i; 2j i; . . . ; Nj if g that
correspond to vertices of G. The exact evolution of the CTQW is
governed by connections between the vertices of G : c tð Þj i ¼
expð� itHÞ c 0ð Þj i where the Hamiltonian is given by H ¼ gA for
hopping rate per edge per unit time g and where A is the N-by-N
symmetric adjacency matrix, whose entries are Ajk¼ 1, if vertices
j and k are connected by an edge in G, and Ajk¼ 0 otherwise1.
The dynamics of a CTQW on a graph with N vertices can be
evaluated in time poly(N) on a classical computer. When a
CTQW takes place on a graph G of exponential size, that is,
N¼ 2n for an input of size n, it becomes interesting to use
quantum processors to simulate dynamics.
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Figure 1 | Applications for generating the time-evolution state of

circulant Hamiltonians. (a) The SWAP test32 can be used to estimate the

similarity of two evolution states of two similar circulant systems, or when

one of the Hamiltonians is non-circulant but efficiently implementable. In

brief, an ancillary qubit is entangled with the output states c and f of two

compared processes according to 1
2 0j i fj i cj i þ cj i fj i½ � þ 1

2 1j i fj i cj i �½
cj i fj i�. On measuring the ancillary qubit we obtain outcome ‘1’ with

probability 1
2 ð1� f cjh ij j2Þ—the probability of observing ‘1’ indicates the

similarity of dynamical behaviours of the two processes. See its

complexity analysis in Supplementary Note 1. (b) Probability distributions

are sampled by measuring the evolution state in a complete basis,

such as the computational basis. (c) An example of the quantum circuit

for implementing diagonal unitary operator D¼ exp(� itL), where

the circulant Hamiltonian has 5 non-zero eigenvalues. The open and

solid circles represent the control qubits as ‘if 0j i’ and ‘if 1j i’, respectively.

Ri ¼ ½1;0; 0; expð� itliÞ�ði ¼ 1; � � � ; 5Þ, where li is the corresponding

eigenvalue.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11511

2 NATURE COMMUNICATIONS | 7:11511 | DOI: 10.1038/ncomms11511 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Circulant graphs are defined by symmetric circulant adjacency
matrices for which each row j when right rotated by one element,
equals the next row jþ 1—for example, complete graphs, cycle
graphs and Mobius ladder graphs are all subclasses of circulant
graphs, and further examples are shown in Supplementary
Note 2. It follows that Hamiltonians for CTQWs on any circulant
graph have a symmetric circulant matrix representation, which
can be diagonalized by the unitary Fourier transform31, that is,
H¼QwLQ, where

Qjk ¼
1ffiffiffiffi
N
p ojk; o ¼ expð2pi=NÞ ð2Þ

and L is a diagonal matrix containing eigenvalues of H, which
are all real and whose order is determined by the order
of the eigenvectors in Q. Consequently, we have
exp(� itH)¼Qwexp(� itL)Q, where the time dependence of
exp(� itH) is confined to the diagonal unitary operator
D¼ exp(� itL).

The Fourier transformation Q can be implemented efficiently
by the well-known QFT quantum circuit39. For a circulant graph
that has N¼ 2n vertices, the required QFT of N dimensions can
be implemented with O((logN)2)¼O(n2) quantum gates acting
on O(n) qubits. To implement the inverse QFT, the same circuit
is used in reverse order with phase gates of opposite sign. D can in
general be implemented using at most N¼ 2n controlled-phase
gates with phase values being a linear function of t, because an
arbitrary phase can be applied to an arbitrary basis state,
conditional on at most n–1 qubits. However, given a circulant
graph that has O(poly(n)) non-zero eigenvalues, only O(poly(n))
controlled-phase gates are needed to implement D. If the given
circulant graph has O(2n) distinct eigenvalues, which can be
characterized efficiently (such as the cycle graphs and Mobius
ladder graphs), then we are still able to implement the diagonal
unitary operator D using polynomial quantum resources. A
general construction of efficient quantum circuits for D was given

by Childs40, and is shown in Supplementary Fig. 1 and
Supplementary Note 3 for completeness. Thus, the quantum
circuit implementations of CTQWs on circulant graphs can be
constructed, which have an overall complexity of O(poly(n)), and
act on at most O(n) qubits. Compared with the best-known
classical algorithm based on fast Fourier transform, that has the
computational complexity of O(n2n) (ref. 30), the proposed
quantum circuit implementation generates the evolution state
c tð Þj i with an exponential advantage in speed.

Experimental demonstration. To demonstrate implementation
of our scheme with two qubits, we have built photonic quantum
logic to simulate CTQWs on the K4 graph—a complete graph
with self loops on four vertices (Fig. 2a). The family of complete
graphs KN are a special kind of circulant graph, with an adjacency
matrix A where Ajk¼ 1 for all j, k. Their Hamiltonian has only 2
distinct eigenvalues, 0 and Ng. Therefore, the diagonal matrix of
eigenvalues of K4 is L ¼ diagðf4g; 0; 0; 0gÞ. We can readily
construct the quantum circuit for implementing CTQWs on K4

based on diagonalization, using the QFT matrix. However, the
choice of using the QFT matrix as the eigenbasis of Hamiltonian
is not strictly necessary—any equivalent eigenbasis can be
selected. Through the diagonalization using Hadamard
eigenbasis, an alternative efficient quantum circuit for
implementing CTQWs on K4 is shown in Fig. 2b, which can be
easily extended to KN.

We built a configurable two-qubit photonics quantum
processor (Fig. 2c), adapting the entanglement-based technique
presented in ref. 41, and implemented CTQWs on K4 graph
with various evolving times and initial states. Specifically, we
prepared two different initial states jinij i1¼ 1; 0; 0; 0½ �0 and
jinij i2¼ 1ffiffi

2
p 1; 1; 0; 0½ �0, which represent the quantum walker

starting from vertex 1, and the superposition of vertices 1 and
2, respectively. We chose the evolution time following the
list f0; 1
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Figure 2 | The schematic diagram and set-up of experimental demonstration. (a) The K4 graph. (b) The quantum circuit for implementing CTQW on the

K4 graph. This can also be used to implement CTQW on the K4 graph without self-loops, up to a global phase factor expðigtÞ. H and X represent the

Hadamard and Pauli-X gate, respectively. R ¼ 1;0; 0; exp � i4gtð Þð Þ is a phase gate. (c) The experimental set-up for a reconfigurable two-qubit photonics

quantum processor, consisting of a polarization-entangled photon source using paired type-I BiBO crystal in the sandwich configuration and displaced

Sagnac interferometers. See further details in Methods.
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periodical characteristics of CTQWs on K4 graph. For each
evolution, we sampled the corresponding probability distribution
with fixed integration time, shown in Fig. 3a,b. To measure
how close the experimental and ideal probability distributions
are, we calculated the average fidelities defined as
Faverage ¼ 1

9

P9
n¼1

P4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pideal;n ið ÞPexp;n tð Þ

p
. The achieved aver-

age fidelities for the samplings with two distinct initial states are
96.68±0.27% and 95.82±0.25%, respectively. Through the
proposed circuit implementation, we are also able to
examine the evolution states using quantum state tomography,
which is generally difficult for the analogue simulations.
For two specific evolution states joutj i1¼ expð� iH 7

8 pÞ jinij i1
and joutj i2¼ expð� iH 7

8 pÞ jinij i2, we performed quantum state
tomography and reconstructed the density matrices using the
maximum likelihood estimation technique. The two
reconstructed density matrices achieve fidelities of
85.81±1.08% and 88.44±0.97%, respectively, shown in Fig. 3c,d.

Here we have chosen to use K4 in our experiment because it is
simple enough to be implementable with state of the art
photonics capability, while it provides an example to demonstrate
our protocol for simulating CTQW on a circulant graph
with controlled quantum logic. As the size of graph increases,
the simplicity of KN implies that CTQWs on this family of
graphs can easily be simulated classically for arbitrary N—for
CTQW on a complete graph of size N, an arbitrary output

probability amplitude yh jexpð� itHÞ xj i can be readily
obtained as ðN � 1þ expð� itNgÞÞN � 1 if x¼ y, and
ð� 1þ expð� itNgÞÞN � 1 otherwise, where xj i and yj i represent
the initial state and evolution state, respectively. However, our
outlined quantum circuit implementation (Fig. 1) extends to
implement CTQW on far more complicated circulant graphs.

Hardness of the sampling problem. To provide evidence that
simulating CTQW on general circulant graphs is likely to be hard
classically, we consider a circuit of the form QwDQ, where D is a
diagonal matrix made up of poly(n) controlled-phase gates and Q
is the quantum Fourier transform. Define pD to be the probability
of measuring all qubits to be 0 in the computational basis after
QwDQ is applied to the input state 0j i� n. It is readily shown that

pD ¼ 0h j� nQyDQ 0j i� n
���

���2

¼ þh j� nD þj i� n�� ��2

¼ 0h j� nH � nDH � n 0j i� n�� ��2:
ð3Þ

This implies that pD can also be obtained through a circuit of
form H#nDH#n with D unchanged—this represents a class of
circuits known as instantaneous quantum polynomial time (IQP),
which has the following structure: each qubit line begins and ends
with a Hadamard (H) gate, and, in between, every gate is diagonal
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Figure 3 | Experimental results for simulating CTQWs on K4. (a,b) The experimental sampled probability distributions with ideal theoretical distributions

overlaid, for CTQWs on K4 graph with initial states jinij i1¼ 1;0;0;0½ �0 and jinij i2¼ 1ffiffi
2
p 1; 1;0;0½ �0 . The s.d. of each individual probability is also plotted,

which is calculated by propagating error assuming Poissonian statistics. (c,d) The ideal theoretical and experimentally reconstructed density matrices for

the states joutj i1¼ 0:75þ0:25i; �0:25þ0:25i; �0:25þ0:25i; �0:25þ0:25i½ �0 (corresponding to r1) and joutj i2¼ 0:3536þ0:3536i;0:3536þ½
0:3536i; �0:3536þ0:3536i; �0:3536þ0:3536i�0 (corresponding to r2). Both of the real and imaginary parts of the density matrices are obtained

through the maximum likelihood estimation technique, and is shown as Re(r) and Im(r), respectively. Further results are shown in Supplementary Table 1,

Supplementary Fig. 2 and Supplementary Note 4.
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in the computational basis37,42. As such, pD is a probability that is
classically hard to compute—it is known that computing pD

for arbitrary diagonal unitaries D made up of circuits of
poly(n) gates, even if each acts on O(1) qubits, is #P-hard38,43,44.
This hardness result even holds for approximating pD up to any
relative error strictly less than 1/2 (refs 38,43,44), where fpD is said
to approximate pD up to relative error E if

fpD� pD

�� �� � EpD: ð4Þ

Note that other output probabilities p(x) cannot be achieved
using IQP circuits since a general circulant graph cannot be
diagonalized by Hadamard matrices but rather by more
heterogeneous Fourier matrices.

Towards a contradiction, assume that there exists a
polynomial-time randomized classical algorithm, which samples
from p, as defined in equation (1). Then a classic result of
Stockmeyer45 states that there is an algorithm in the complexity
class FBPPNP, which can approximate any desired probability
p(x) to within relative error O(1/poly(n)). This complexity class
FBPPNP—described as polynomial-time randomized classical
computation equipped with an oracle to solve arbitrary NP
problems—sits within the infinite tower of complexity classes
known as the polynomial(-time) hierarchy46. Combining with the
above hardness result of approximating pD, we find that the
assumption implies that an FBPPNP algorithm solves a #P-hard
problem, so P#P would be contained within FBPPNP, and
therefore the polynomial hierarchy would collapse to its third
level. This consequence is considered very unlikely in
computational complexity theory46. A similar methodology has
been used to prove the hardness of IQP and boson sampling36–38.

We therefore conclude that, in general, a polynomial-time
randomized classical sampler from the distribution p is unlikely
to exist. Further, this even holds for classical algorithms which
sample from any distribution ep which approximates p up to
relative error strictly o1/2 in each probability p(x). It is worth
noting that if the output distribution results from measurements
on only O(poly(log n)) qubits47, or obeys the sparsity promise
that only a poly(n)-sized, and a priori unknown, subset of the
measurement probabilities are non-zero48, it could be classically
efficiently sampled. It was shown in ref. 38 that assuming certain
conjectures in complexity theory, it is classically hard to sample
from distributions that are close in total variation distance to
arbitrary IQP probability distributions. The differences between
circulant and IQP circuits imply that this result does not go
through immediately in our setting. Therefore, it remains open to
prove hardness of approximate simulation of CTQWs on
circulant graphs, which specifically requires to show that
computing most of the output probabilities of circulant circuits
is hard, assuming some conjectures in complexity theory.

Discussion
In this paper, we have described how CTQWs on circulant graphs
can be efficiently implemented on a quantum computer, if the
eigenvalues of the graphs can be characterized efficiently
classically. In fact, we can construct an efficient quantum circuit
to implement CTQWs on any graph whose adjacency matrix is
efficiently diagonalisable, in other words, as long as the matrix of
column eigenvectors Q and the diagonal matrix of the eigenvalue
exponentials D can be implemented efficiently. To demonstrate
our implementation scheme, we simulated CTQWs on an
example 4-vertex circulant graph, K4, using a two-qubit photonic
quantum logic circuit. We have shown that the problem of
sampling from the output probability distributions of quantum
circuits of the form QwDQ is hard for classical computers, based
on a highly plausible conjecture that the polynomial hierarchy

does not collapse. This observation is particularly interesting from
both perspectives of CTQW and computational complexity
theory, as it provides new insights into the CTQW framework
and also helps to classify and identify new problems in
computational complexity theory. For the CTQWs on the
circulant graphs of poly(n) non-zero eigenvalues, the proposed
quantum circuit implementations do not need a fully universal
quantum computer, and thus can be viewed as an intermediate
model of quantum computation. Meanwhile, the evidence we
provided for hardness of the sampling problem indicates a
promising candidate for experimentally establishing quantum
supremacy over classical computers, and further evidence against
the extended Church–Turing thesis. To claim in an experiment
super-classical performance based on the conjecture outlined in
this work, future demonstrations would need to consider
circulant graphs that are more general than KN and that are of
sufficient size to be outside the capabilities of a classical computer.
For photonics, the biggest challenges remain increasing the
number of indistinguishable photons and controlled gate
operations. For any platform, quantum circuit implementation
of CTQWs could be more appealing due to available methods in
fault tolerance and error correction, which are difficult to
implement for other intermediate models like boson sampling49

and for analogue quantum simulation. Our results may also lead
to other practical applications through the use of CTQWs for
quantum algorithm design.

Methods
Experimental set-up. A diagonally polarized, 120 mW, continuous-wave laser
beam with central wavelength of 404 nm is focused at the centre of paired type-I
BiBO crystals with their optical axes orthogonally aligned to each other, to
create the polarization entangled photon-pairs50. Through the spontaneous
parametric downconversion process, the photon pairs are generated in the state
of 1ffiffi

2
p H1H2j i þ V1V2j ið Þ, where H and V represent horizontal and vertical

polarization, respectively. The photons pass through the polarization beam-splitter
(PBS) part of the dual PBS/beam-splitter cubes on both arms to generate
two-photon four-mode state of the form 1ffiffi

2
p H1bH2bj i þ V1rV2rj ið Þ (where r and b

labels the red and blue paths shown in Fig. 2c, respectively). Rotations T1 and T2 on
each path, consisting of half wave-plate (HWP) and quarter wave plate (QWP),
convert the state into 1ffiffi

2
p f1bf2bj i þ f1rf2rj ið Þ, where f1j i and f2j i can be

arbitrary single-qubit states. The four spatial modes 1b, 2b, 1r and 2r pass through
four single-qubit quantum gates P1, P2, Q1 and Q2, respectively, where each of the
four gates is implemented through three wave plates: QWP, HWP and QWP. The
spatial modes 1b and 1r (2b and 2r) are then mixed on the beam-splitter part of the
cube. By post-selecting the case where the two photons exit at ports 1 and 2, we
obtain the state P1 � P2 þQ1 � Q2ð Þ f1f2j i. In this way, we implement a two-
qubit quantum operation of the form P1#P2þQ1#Q2 on the initialized state
f1f2j i.

As shown in Fig. 2b, the quantum circuit for implementing CTQW on the K4

graph consists of Hadamard gates (H), Pauli-X gates (X) and controlled-phase gate
(CP). CP is implemented by configuring P1 ¼ Hj i Hh j, P2¼ I, Q1 ¼ Vj i Vh j,
Q2 ¼ Rð¼ ½1; 0; 0; e� i4gt �Þ, where P1 and Q1 are implemented by polarizers.
Altogether with combining the operation (H?X)#(H?X) before CP with state
preparation and the operation (X?H)#X?H after CP with measurement setting, we
implement the whole-quantum circuit on the experimental set-up. The evolution
time of CTQW is controlled by the phase value of R, which is determined by setting
the three wave plates of Q2 in Fig. 2c to QWP p

4

� �
, HWPðoÞ, QWP p

4

� �
, where the

angle o of HWP equals to the phase of R:� 4g t. The evolution time t is then given
by t ¼ �o=ð4gÞ.
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