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Diffuse X-ray scattering from correlated motions
in a protein crystal
Steve P. Meisburger 1,2, David A. Case3 & Nozomi Ando 1,2✉

Protein dynamics are integral to biological function, yet few techniques are sensitive to

collective atomic motions. A long-standing goal of X-ray crystallography has been to combine

structural information from Bragg diffraction with dynamic information contained in the

diffuse scattering background. However, the origin of macromolecular diffuse scattering has

been poorly understood, limiting its applicability. We present a finely sampled diffuse scat-

tering map from triclinic lysozyme with unprecedented accuracy and detail, clearly resolving

both the inter- and intramolecular correlations. These correlations are studied theoretically

using both all-atom molecular dynamics and simple vibrational models. Although lattice

dynamics reproduce most of the diffuse pattern, protein internal dynamics, which include

hinge-bending motions, are needed to explain the short-ranged correlations revealed by

Patterson analysis. These insights lay the groundwork for animating crystal structures with

biochemically relevant motions.
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Conventional structure determination by X-ray crystal-
lography relies on the intense spots recorded in diffraction
images, known as Bragg peaks, that represent the average

electron density of the unit cell. The average electron density is
blurred when atoms are displaced from their average positions,
leading to a decay in the Bragg intensities and giving rise to a
second signal: a continuous pattern known as diffuse scattering1,2.
Although the disorder is routinely modeled in structure refine-
ment of Bragg data as atomic displacement parameters (ADPs) or
B-factors3, information about whether groups of atoms move
independently or collectively is contained only in the diffuse
scattering (Supplementary Fig. 1). However, the diffuse signal is
weak compared to Bragg data and challenging to accurately
measure. Diffuse scattering has therefore been largely ignored in
macromolecular crystallography, and instead, atomic motions
have been inferred solely from Bragg data4–6.

The potential of diffuse scattering as a probe of protein dynamics
was envisioned over 30 years ago when Caspar et al.7 attributed the
cloudy diffuse signal from an insulin crystal to liquid-like internal
motions. More recently, it has been proposed that diffuse scattering
can also disambiguate common structure refinement models that fit
collective motions of atoms to ADPs8. Motivated by these key ideas,
a number of models of protein motion have been proposed to
explain macromolecular diffuse scattering2,9–13. However, in all
cases to-date, agreement between measurement and simulation has
been far from compelling14–20, and thus, the promise of diffuse
scattering has not yet been realized.

The main bottleneck in the field has been the lack of accurate
data. In particular, the diffuse pattern is typically a small variation
on top of a large background and is therefore easily corrupted by
intense Bragg peaks. Thus, it has been common practice to
heavily process images either by filtering or masking near-Bragg
pixels14,17. However, this treatment suppresses features that are
derived from long-ranged correlations extending beyond the unit
cell and may also alter the information contained in the
remaining signal. The emerging view is that long-ranged corre-
lations must be considered2,19,21, but despite the advent of pixel
array detectors that are newly enabling22,23, diffuse scattering
data capable of testing such models have not been reported.

To understand the fundamental origins of diffuse scattering
from protein crystals, we analyzed the total scattering from the
triclinic form of hen lysozyme (Fig. 1a) collected at ambient
temperature using a photon-counting pixel array detector (Sup-
plementary Fig. 2A). The triclinic crystals24 feature low mosaicity
and importantly, one protein molecule per unit cell, ensuring that
features between the Bragg peaks are fully resolved. By combining
high-quality experimental data with new processing methods, we
were able to construct a highly detailed map of diffuse scattering
without filtering the images. This map reveals, for the first time, a
surprisingly large contribution of long-ranged correlated motions
across multiple unit cells, while also enabling detection of protein
motions in a manner that is consistent with both Bragg diffrac-
tion and diffuse scattering.

Results
Construction of a three-dimensional reciprocal space map. For
accurate measurements of diffuse scattering at room temperature,
the main challenges are to avoid contamination by Bragg peaks
and background scattering and to achieve high signal-to-noise
while avoiding radiation damage. Using well-collimated and
monochromatic synchrotron radiation, we measured the angular
broadening (apparent mosaicity) of our triclinic lysozyme crystals
to be 0.02–0.03 degrees, which is as small as could be resolved by
the diffraction instrument25. With such low mosaicity, the sharp,
Gaussian-shaped Bragg peaks are readily distinguished from the
underlying diffuse scattering (Supplementary Fig. 3A). To take
advantage of this low mosaicity, data were collected with fine phi-
slicing (0.1 deg). Crystals were held in low-background capillaries
(Supplementary Fig. 2A), and low-dose partial datasets were col-
lected from multiple sample volumes. In total, four crystals yielded
5500 images from 11 different sample volumes (Supplementary
Fig. 2B, Supplementary Table 1). Using standard crystallography
methods, we determined a structure to 1.21Å (Supplementary
Table 2) that agrees well with a previously reported room-
temperature structure (PDB ID 4lzt24, 0.14Å r.m.s.d.). Analysis of
the structure and Bragg intensities shows that radiation damage
effects were minimal (Supplementary Fig. 4).
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Fig. 1 Diffuse scattering map of triclinic lysozyme with intensities on an absolute scale of electron units (Ie). a Ribbon diagram of lysozyme (top) and
the triclinic unit cell containing one protein (bottom). b A highly detailed three-dimensional map of diffuse scattering was obtained. The outer sphere is
drawn at 2Å resolution. c The total scattering is made up of three components: inelastic Compton scattering (lower left), a broad isotropic ring that
dominates the diffuse signal (upper left), and variational features in the diffuse scattering (right). Intense halos are visible in the layers containing Bragg
peaks (l = 0 plane, upper right). Cloudy scattering is best visualized in the planes mid-way between the Bragg peaks (l = 1∕2 plane, lower right).
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A three-dimensional diffuse map (Fig. 1b) was constructed from
the same set of images (described in detail in the “Methods”
section). Background scattering varied with spindle angle (Supple-
mentary Figs. 2A and 5) and was therefore subtracted frame-by-
frame (Supplementary Fig. 2C). Scale factors for each image pixel
were calculated from first principles to account for X-ray beam
polarization, detector absorption efficiency, solid angle, and
attenuation by air. Additionally, we utilized the high data
redundancy to correct for other experimental artifacts, including
self-absorption of the crystal, changes in illuminated volume,
differences in efficiency among the detector chips, and excess
scattering from the loop and liquid on the surface of the crystal
(Supplementary Fig. 6). Each of these corrections improved data
quality (Supplementary Fig. 7). The data were accumulated on a
fine reciprocal space grid such that the Bragg peaks were entirely
contained within the voxels centered on the reciprocal lattice nodes
(Supplementary Fig. 3B). In this grid, the reciprocal lattice vectors
a*, b*, and c* are subdivided by 13, 11, and 11, respectively. The
map had a maximum resolution of 1.25Å, and Friedel pairs were
averaged, for a total of ~50 million unique voxels.

To enable rigorous comparison between simulations and
experiment, we adapted the integral method of Krogh-Moe26,27

to place the map on an absolute scale of electron units per unit
cell (Methods, Supplementary Fig. 8). By doing so, we are able to
subtract the inelastic scattering contribution, which depends only
on the atomic inventory and is insensitive to molecular structure
(Fig. 1c, lower left). The final diffuse map thus represents
the coherent scattering of interest (Fig. 1b) with features that
depend on structure.

Phonon-like scattering. The diffuse scattering is dominated by a
broad, isotropic scattering ring with a peak at ~3Å (Fig. 1c,
upper left). Although this ring is generally attributed to water,
short-ranged protein disorder also contributes28,29. To better
visualize the non-isotropic fluctuations, we resampled the full
map mid-way between the Bragg peaks and defined the isotropic
background as one sigma level below the mean scattering of this
map in each resolution bin (Methods, Supplementary Fig. 9).
Subtracting this background from the full map reveals clear non-
isotropic features, hereafter referred to as “variational” (Fig. 1c,
and Supplementary Movie 1). The most striking variational fea-
tures are the intense halos (Fig. 1c, upper right) that appear to co-
localize with Bragg peaks at the reciprocal lattice nodes (Fig. 1b),
and are significantly asymmetric in certain directions (Supple-
mentary Fig. 10, left). Overlaid with the halos is a cloudy pattern
that is found throughout the map (Fig. 1c, lower right), which we
estimate accounts for roughly half of the integrated variational
intensity in most resolution bins (Supplementary Fig. 11).

The presence of such intense halo scattering near the Bragg peaks
was unexpected, as it implies that the correlations between atoms in
different unit cells are significant and long-ranged. In protein
crystallography, an outstanding question has been whether such
correlations are dynamic in nature, and specifically, due to lattice
vibrations7,9,15,21,28,30. The scattering intensity of a phonon
(vibrational mode) is proportional to the mean squared amplitude
of vibration and peaks at certain points in reciprocal space. In
particular, a phonon with wavevector k makes the greatest
contribution when the scattering vector q (with magnitude
qj j ¼ 2π=d) is parallel to the phonon polarization and displaced
from the nearest Bragg peak at q0 such that q− q0= ±k31. The
scattering of the so-called acoustic phonons, which are thermally
excited at room temperature, is proportional to v�2

s kj j�2, where vs is
the speed of sound. Thus, at the Bragg peak locations, acoustic
phonon scattering is expected to produce halos with a characteristic
jq� q0j�2 decay in intensity in any given direction.

With our finely sampled diffuse map, the halo scattering can be
inspected directly. We selected three symmetric and intense halos
and plotted their intensities along the three reciprocal axes on a
double-log scale, where a power law is a straight line (Fig. 2a, left).
Both the power-law behavior and the characteristic exponent are
fully consistent with acoustic phonon scattering. Furthermore, the
fact that the plot remains linear as q approaches q0 implies that
the lattice vibrations are coherent over at least 2π=jkminj � 300 Å
or ~10 unit cells. The characteristic exponent of approximately−2
is also found for other intense halos throughout the map (Fig. 2a,
right). These results are highly suggestive of vibrational lattice
dynamics.

All-atom molecular dynamics simulations. Although all-atom
MD simulations have previously been used to investigate the
contribution of protein dynamics to diffuse scattering12,16,29,32–34,
the effect of long-ranged correlations due to lattice disorder has
not been examined. We thus performed all-atom MD simulations
of triclinic lysozyme crystals as a function of supercell size
(Methods). Experimentally determined coordinates were used to
define and initialize an array of proteins comprising the supercell,
and periodic boundary conditions were imposed to remove edge
effects. Supercells composed of 1, 27 (3 × 3 × 3), 125 (5 × 5 × 5),
and 343 (7 × 7 × 7) unit cells were simulated for 5, 5, 2, and 1 μs,
respectively. Guinier’s equation35 was used to calculate the diffuse
intensity per unit cell from the simulation trajectory (Methods).
Because the boundary conditions are periodic, the diffuse scat-
tering was sampled at integer subdivisions of the reciprocal lattice
(i.e., the number of unit cells in each direction).

In the 1 unit-cell simulation (Fig. 2b), cloudy variational
features are observed in rough qualitative agreement with the
experiment (Fig. 1c, Supplementary Fig. 9B, D), suggesting that
local protein and solvent dynamics contribute to the observed
diffuse scattering. Unlike simpler models that do not include
liquid correlations in the bulk solvent, MD provides a prediction
for the isotropic component (Supplementary Fig. 9C). The overall
correlation of the isotropic component is 0.9965 between 25 and
1.25Å resolution, and the magnitude is also similar (Supplemen-
tary Fig. 9A, C). However, halos are absent, consistent with the
lack of intermolecular disorder enforced by a 1 unit-cell
simulation. As the size of the supercell is increased, the diffuse
scattering pattern evolves in a complex manner with the halos
becoming increasingly apparent (Fig. 2b), confirming that they
depend on intermolecular correlations and lattice degrees of
freedom. In the 343 unit-cell simulation, the r.m.s. displacement
of each chain about its center of mass was 0.20–0.22Å in each
direction. Although this may seem to be a small motion, the
intense halo signal is derived from constructive interference of
scattered radiation from many proteins moving collectively.

In the 343 unit-cell simulation (Fig. 2b), the simulated
scattering contains both cloudy and halo features similar to those
observed experimentally. However, the MD does not reproduce
the experiment on an absolute scale (Fig. 2c, black diamonds). To
make a quantitative comparison, we interpolated the experi-
mental map on the simulation grid (7 × 7 × 7) and computed the
Pearson correlation coefficient (CC) between the two in thin
shells of constant resolution (Fig. 2d, orange). Although we obtain
a reasonable CC of ~0.7 up to 2Å resolution, the CC decreases at
higher resolution. Moreover, there is a significant gap between
CC (Fig. 2d, orange) and CC* (Fig. 2d, black dashed), which
estimates the maximum CC a model can achieve, given the
precision of the data36. This discrepancy indicates that model-
data agreement is not limited by noise and instead points to
shortcomings of the crystal model, including the current MD
force fields. In particular, the accuracy of MD for diffuse
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scattering appears to be limited by errors in the average electron
density (Supplementary Fig. 12). To gain insight into the
underlying physics of the variational scattering features, we thus
sought simpler dynamical models that can be refined to fit both
the Bragg and diffuse data.

Lattice dynamics refined against diffuse scattering. Given the
evidence for acoustic phonon scattering, we investigated whether
vibrational models can capture the observed halo shapes and
intensities. We developed a lattice dynamics model where each
protein is able to move as a rigid body that is connected to
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neighboring molecules via spring-like interactions (detailed in
Methods). The proteins were arranged in a 13 × 11 × 11 supercell to
match the sampling of the experimental map (Fig. 3a). Residues of
neighboring molecules that form lattice contacts were linked by a
pair potential between alpha carbons (Fig. 3a, dark red lines),
reflecting a restoring force that depends on the relative displace-
ments of the two end-points. For generality, we allowed each pair

potential to be a linear combination of two types of springs:
Gaussian and directional. Gaussian springs37 have a restoring force
that is independent of the direction of the displacement relative to
the spring, and directional springs38 have a restoring force only
along the vector between the end-points.

The model was refined against a set of 400 intense halos between
2 and 2.5Å resolution, consisting of a total of ~600,000 voxels. As

Fig. 2 Evidence for long-ranged correlations in experimental maps and molecular dynamics (MD) simulations. a Throughout the diffuse map, intense
halo scattering is observed around Bragg reflections. Halo profiles centered on three Bragg reflections (q0) show a power-law decay with an exponent close
to −2 (gray line) along the directions (q− q0): a* (blue), b* (orange), and c* (green). Error bars represent the standard error of the mean. Histograms of
the best-fit exponent along a*, b* and c* (top to bottom) for the 100 most-intense halos between 2 and 10Å resolution also show that −2 is the most
frequent value. b Halo features appear in simulated scattering from supercell MD as the simulation size is increased from 1 to 343 (7 × 7 × 7) unit cells.
Each panel shows the variational component in the l = 0 plane. c Although increasing the supercell size improves agreement (green to orange), MD does
not reproduce experiment on an absolute scale (black diamonds), as judged by the standard deviation profile of the diffuse intensity. In contrast, much
better agreement is obtained with the lattice model described in Fig. 3 (blue). dMD displays a worse correlation (CC) with experiment (orange) compared
to the lattice model (blue). The dashed line represents theoretical limit of the experimental data, CC*.
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Fig. 3 Lattice dynamics model refined to diffuse scattering. a A lattice dynamics model was constructed with rigid protein units arranged in a 13 × 11 ×
11 supercell with a linear combination of Gaussian and directional springs connecting the Cα atoms of residues involved in lattice contacts (dark red lines).
Spring constants were refined to fit the variational scattering around 400 intense Bragg peaks between 2 and 2.5Å resolution. b Comparison of predicted
and measured halo intensity around the (1,2,13) Bragg reflection in the h= 1 plane. The plane perpendicular to the scattering vector is indicated by a dashed
line. The model with equal Gaussian springs does not reproduce this shape as well as the fully-refined model. c The shape anisotropy of each of the 400
halos used for model fitting was quantified and mapped as an equal-area projection of the hemisphere centered on b*. Full refinement of the spring
constants was needed to reproduce the pattern of halo anisotropy seen in experiment. d The simulated one-phonon scattering for the fully-refined lattice
model (left) is compared with the measured variational scattering (right) in the l= 0 plane. The intensity scale is the same as Fig. 1c. Blue boxes surround
halos that were included in the fit.
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there are three-dimensional halos associated with all 30,108 unique
Bragg reflections, these 400 represent a small subset (1.3%). The
spring constants were initially restrained to be all Gaussian and
equal, and restraints were relaxed during subsequent stages of
refinement. For a given set of springs, the equations of motion were
solved by the Born/Von-Karman method31,39,40, and the diffuse
scattering was calculated using the one-phonon approximation
(detailed in Methods). At each refinement stage, we monitored the
overall χ2 value between the experimental and simulated scattering
(Supplementary Fig. 13A), as well as the ability of the model to
reproduce the halo shape (Fig. 3b). To monitor agreement with halo
anisotropy, we fit each of the halos to a function of the form

I ¼ ½ðq� q0ÞTGðq� q0Þ�
�1
, where G is a 3 × 3 positive definite

matrix, and defined an anisotropy parameter, a=G⊥∕G∥− 1, where
G∥ is the component of G parallel to q0, and G⊥ is the average of the
perpendicular components. The fully-parameterized model was
necessary to reproduce the pattern of halo anisotropy (Fig. 3c,
Supplementary Fig. 13B).

After refining the lattice dynamics model using the working set of
400 halos (Fig. 3d, blue boxes), we simulated the complete diffuse
scattering map over the full resolution range. Remarkably, the
simulation reproduces many of the variational scattering features
observed in experiment (Fig. 3d, right). Anisotropic halo shapes are
reproduced even in regions of the map that were not used to refine
the model (Fig. 3d, regions outside of blue boxes). Streaks in the
pattern are also reproduced and can be attributed to a modulation
of the halos by the molecular transform (Supplementary Fig. 10).
Moreover, we find that the halos do not decay to zero mid-way
between the Bragg peaks as previously expected9, giving rise to a
cloudy pattern that resembles the cloudy variational scattering in
the data (Fig. 3d, right). The standard deviations of intensity have
very similar profiles and absolute magnitudes (Fig. 2c, blue solid
and diamonds), suggesting that the lattice dynamics make the most
significant contribution to the scattering variations. This conclusion
is supported by the much smaller variations seen in the 1 unit-cell
MD simulation (Fig. 2c, green), where lattice disorder is absent by
construction.

As before, the agreement between the experimental and
simulated maps was assessed with CC and CC*. For the lattice
dynamics model, the CC is excellent in regions of high signal-to-
noise (CC ~ 0.9 between 2 and 5Å resolution) (Supplementary
Fig. 14, solid) and only limited by the experimental precision at
higher resolution (Supplementary Fig. 14, dashed). To improve
the signal-to-noise, the maps were interpolated on a 7 × 7 × 7 grid
(Fig. 2d, blue), enabling direct comparison with the 343 unit-cell
MD simulation (Fig. 2d, orange). Strikingly, the lattice dynamics
model clearly outperforms all-atom MD in its ability to describe
the variational component (Fig. 2c, d).

The lattice model can be further assessed against existing
biophysical data. Our model predicts that sound waves should
propagate through the crystal (Supplementary Movie 2). Based on
the calculated dispersion relations of the acoustic vibrational
modes (Supplementary Fig. 15), we obtain longitudinal sound
velocities of 1.0–1.3 km s−1 and corresponding transverse velo-
cities that are slower by a factor of 1.3–2.1 depending on the
propagation direction (Supplementary Table 3). Although few
measurements of sound propagation have been made in protein
crystals, longitudinal velocities have generally been reported to be
~2 km s−1 41–43, and transverse velocities are estimated to be 2–3
times slower41,44. Thus, our interpretation that the halo scattering
arises from dynamic, rather than static, disorder appears
physically reasonable.

Contribution of lattice dynamics to atomic motion. As
described earlier, the amount of apparent motion for each atom

can be quantified from Bragg data by refining individual ADPs,
the 6 components needed to describe a 3-dimensional Gaussian
probability distribution. Our data quality was sufficient to refine
full anisotropic ADPs for every non-H atom. To determine the
extent to which lattice dynamics contribute to atomic motion,
corresponding ADPs were calculated directly from the refined
lattice model (Methods, Supplementary Table 4). In Fig. 4a, the
full ADPs of the backbone atoms are reduced to a single isotropic
B-factor per residue to facilitate visual comparison. Overall, the
backbone B-factors for the lattice model (5.2Å2 on average) fall
below those of experiment (9.4Å2 on average). The B-factors
from the lattice model show small variations, which can be
attributed to rigid-body rotational motion with an r.m.s. ampli-
tude of 0.8∘ (Supplementary Table 4). However, the B-factor
variations in the data are much more pronounced (Fig. 4a),
particularly for side-chains (Supplementary Fig. 16A). These
residual B-factors imply the existence of internal dynamics, in
other words, that atoms within the protein undergo collective
motions.

Protein dynamics refined against Bragg data. The collective
motions of lysozyme have been a topic of long-standing bio-
physical interest since hinge-bending motions between the two
domains (Fig. 4b, blue and green) were first proposed as a
mechanism for substrate binding and release45,46. To investigate
the presence of such collective motions, we developed an elastic
network model, in which each protein residue moves as a rigid
body, and all non-H atoms within 4Å are coupled with direc-
tional springs (Methods). As with the lattice model, the crystal
environment was modeled with intermolecular springs and per-
iodic boundary conditions, and the dynamics were calculated
using the Born/Von-Karman method. In order to model only the
internal protein dynamics, the Hessian matrix describing the
restoring forces was modified to suppress rigid-body motion of
the entire protein. The model was parametrized with one cou-
pling constant per residue (i.e., 129 free parameters total) so that
springs joining a residue pair were assigned a spring constant
equal to the geometric mean of the coupling constants (Methods).
The parameters were then refined by minimizing the least-
squares difference between all components of the calculated
(lattice+ internal) and experimental ADPs derived from
Bragg data.

The refined model is able to reproduce the pattern of B-factors
obtained experimentally (Fig. 4a and Supplementary Fig. 16A, B).
To assess the importance of hinge-bending in the model, we
examined the covariance matrices Cij for all alpha carbon pairs
and calculated a “directional correlation”, which is the compo-
nent of Cij along the inter-atomic vector normalized by the r.m.s.
displacements of the two atoms (Methods). By this measure
(Fig. 4c), the two domains are significantly anti-correlated as
expected for hinge-bending motion.

Contribution of protein dynamics to diffuse scattering. Lattice
dynamics account for the bulk of the variational diffuse scatter-
ing, as evaluated by CC and standard deviation (Fig. 2c, d).
However, these statistics emphasize the most intense features in
the signal, which in this case are the halos. To assess the more
subtle contributions of internal protein motions, correlations in
the signal should be separated based on length-scale. We thus
calculated the diffuse Patterson (also known as 3D-ΔPDF), which
is the Fourier transform of the diffuse scattering. The diffuse
Patterson map represents the mean autocorrelation of the dif-
ference electron density, Δρ ¼ ρ� ρh i, such that a vector from
the origin of the map corresponds to a vector between two points
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in the crystal. Thus, the central part of the diffuse Patterson is
affected only by those correlations that are short-ranged.

At large distances, the experimental diffuse Patterson displays
peaks at the lattice nodes as expected (the Fourier transform of a
lattice is also a lattice) (Fig. 5a, left), whereas continuous features
are most intense at short distances (Fig. 5a, right). To determine
whether lattice dynamics alone can account for the short-ranged
correlations, the diffuse Patterson was calculated directly from the
refined lattice model (Methods). Although the simulated and
experimental maps share similar features (Fig. 5a, b), the
amplitudes of the fluctuations are clearly underestimated for
distances shorter than ~10Å (Fig. 5f, blue curve vs. diamonds).

In contrast, the diffuse Patterson calculated from the internal
motion model, refined to the residual ADPs, shows prominent
fluctuations for pair distances less than ~10Å but very little
outside this range (Fig. 5c, f, green). Assuming that the protein
internal motions are independent of lattice motions, the diffuse
Patterson maps can be added (Fig. 5d). The combined model
displays remarkable agreement with the experimental map and

reproduces the characteristic decay of fluctuation amplitude
almost exactly (Fig. 5f, dark red curve vs. diamonds). To assess
the agreement more quantitatively, the CC profile was calculated
in reciprocal space (a Fourier transform of the 2 < r < 25Å
region). The combined model (Fig. 5g, h, dark red) displays a
significant gain in CC over the lattice model alone (Fig. 5g, h,
blue). The level of model-data agreement that we obtain is
excellent (Fig. 5g, dark red), especially when compared to the all-
atom MD simulation (Fig. 5e, g, orange) as well as all previously
reported studies14,15,17–20,33.

The question of model quality has consequence to protein
crystallography, where it is common practice to fit models of
collective motion to the B-factors, since this often increases the
data-to-parameter ratio. Diffuse scattering has been proposed as a
means of critically evaluating these models8. To explore this idea,
we repeated refinement of the internal elastic network model with
domain motions selectively suppressed. This restrained model has
the same number of free parameters as the unrestrained model
(Supplementary Note 1) and it is also able to reproduce the
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experimentally derived B-factors (R2= 0.88 for both models, see
Supplementary Fig. 16C). However, the internal dynamics are
significantly different (Fig. 4d), underscoring the challenge of
distinguishing differing models of protein motion from Bragg
data alone. Yet, the two models are distinguishable by diffuse
scattering: fluctuations in the diffuse Patterson decay more
rapidly with domain motions suppressed (Supplementary Fig. 17),
leading to a subtle but systematically worse CC, particularly at
high resolution (Fig. 5h, dashed).

Discussion
By studying the total X-ray scattering from triclinic lysozyme
crystals both experimentally and theoretically, we were able to
obtain fundamental insight into the collective motions that pro-
duce macromolecular diffuse scattering. Simple vibrational

models of the lattice and internal dynamics were developed that
explain the electron density correlations spanning two orders of
magnitude in length-scale. Vibrations of the entire protein in the
lattice account for the shapes and magnitudes of the diffuse halo
features and about half of the backbone ADPs, while internal
motions of the protein make up the remainder. The collective
nature of these internal motions was investigated by diffuse
Patterson analysis, which separates correlations based on the
inter-atomic vector. Remarkably, we found that two models that
fit the ADPs equally well could be distinguished by their agree-
ment to the experimental diffuse Patterson, experimentally
demonstrating a key application of diffuse scattering proposed a
decade ago8. Finally, although the MD was limited in its ability to
reproduce the variational diffuse scattering, our results demon-
strate that this signal provides an excellent experimental bench-
mark for improving simulations in the future.
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For over 30 years, the ultimate goal of diffuse scattering studies
has been to capture internal protein motions from crystal-
lographic data. The success of previous efforts has been limited
primarily by data quality as well as the assumption that the
variational scattering is largely due to internal motion. In fact,
lattice disorder contributes significantly, further underscoring the
need for detailed, high-quality data and realistic models. Despite
the added challenges, we have also shown that by accounting for
lattice dynamics, the remaining diffuse signal indeed contains
information about internal motion and can be used to differ-
entiate alternate models. With the initial goal of the diffuse
scattering field realized, the next grand challenge of refining
structural models that are consistent with the total scattering now
appears within reach.

Methods
Crystallization. Triclinic crystals of lysozyme were obtained by the micro-batch
method with temperature-cycling to select this crystal form based on its phase
diagram47. Lyophilized hen egg white lysozyme (Hampton Research) was dissolved
in 20mM sodium acetate (NaOAc) pH 4.6 at a stock concentration of 100mg per
mL, passed through a 0.2 μm filter, and used without further purification. All other
reagents were purchased from Sigma, unless noted. Triclinic crystals were grown
using a microbatch-under-oil technique with 8 μL drops containing 5–15mg per mL
protein, 224–300mM NaNO3, and 50mM NaOAc pH 4.5 that were covered with
20 μL paraffin oil (Hampton Research). Crystallization trays were set up at room
temperature, moved to 4 ∘C for 8–12 h, and then returned to room temperature.
Both triclinic and monoclinic crystals nucleate during the 4 ∘C incubation, however,
after returning to room temperature the triclinic crystals grow at the expense of the
monoclinic form47.

Data collection. X-ray data were collected using the macromolecular crystal-
lography beamline F1 at the Cornell High Energy Synchrotron Source (CHESS),
which provided a 12.693 keV X-ray beam collimated to 0.1 mm diameter. Room-
temperature data collection was performed using the plastic capillary sheathing
method48. Crystals were harvested using low-scatter kapton loops (MicroLoops,
MiTeGen), taking care to minimize the amount of solvent surrounding the crystal,
and placed within 2 mm diameter, 25 μm wall poly(ethylene terephthalate) capil-
laries (MicroRT, MiTeGen) with 10 μL reservoir solution in the tip. During X-ray
exposure, images were recorded every 0.1∘ using a pixel-array detector (Pilatus3
6M, Dectris) while rotating the sample at 1∘ s−1. A dose rate of 1.3 kGy s−1 was
estimated assuming a flux of 2.5 × 1010 photons s−1 and a mass energy-absorption
coefficient49 of μen ∕ ρ= 2.0 cm2 g−1. After 50 s of exposure (~65 kGy), the sample
was refreshed by translating to a new spot or replacing the crystal. A background
dataset was collected for each crystal by translating the sample out of the beam
along the spindle axis and collecting 1 s exposures while rotating at 1∘ s−1.

Structure determination from Bragg data. Bragg data were integrated using
xds50, with geometric parameters refined at 2∘ increments. The fitted peak profiles
and mosaicity per frame were examined to verify that the crystal had not slipped or
cracked. The best wedges were then scaled and merged using aimless51 (Supple-
mentary Table 1). Model building and refinement were carried out using the
ccp4 suite of programs52,53. The initial model was prepared from PDB ID 4lzt24,
using the most probable (highest occupancy) protein atom coordinates only.
Structure refinement was carried out using alternate runs of REFMAC554 and
manual modeling in coot55, with atomic displacement parameters included in the
final rounds. Alternate conformers were modeled when justified by the electron
density and stereochemistry. The atomic coordinates and structure factors have
been deposited in the Protein Data Bank under accession code 6o2h. Data col-
lection and refinement statistics are shown in Supplementary Table 2.

Overview of diffuse data processing. Reciprocal space maps were generated in
Matlab (The Mathworks) as described in the following sections. Briefly, an inte-
gration mask was first produced to separate rapidly varying features (including
Bragg peaks) from continuously varying features (including diffuse scattering) in
three-dimensional reciprocal space. Following per-pixel image corrections, the
integration mask was used to generate a coarse continuous scattering map and a
Bragg map. Using the coarse continuous scattering map, a scaling model was
refined to globally minimize the discrepancy between redundant observations.
Bragg intensities were corrected and brought into agreement with the values used
for structure determination in the previous section. The intensities were then
placed on an absolute scale. Finally, continuous scattering intensities were accu-
mulated on a fine grid to produce the final diffuse map. The scaling corrections
from the previous step were applied during integration, and redundant observa-
tions were merged without further scaling. A detailed description of each operation
is below.

Construction of integration mask. As the Bragg intensities and continuous
scattering require different corrections, a sensitive moving-window filter was first
used to detect and mask out rapidly varying features. The filter algorithm com-
pared the observed count distribution to that expected from Poisson statistics, as
described below. Briefly, a voxel was masked out if its exclusion made the neigh-
borhoods to which it contributes more Poisson-like according to the Kullback-
Leibler (KL) divergence of the observed and ideal distributions. The unmasked
voxels then describe a function that varies smoothly on the scale of the reciprocal
space grid.

X-ray images were processed in 2∘ wedges. Each pixel was mapped onto a
provisional reciprocal space grid, where the reciprocal unit cell was subdivided by a
factor of 5 in each direction. For each voxel, a histogram of counts per pixel was
accumulated. Using these count histograms, the filtering algorithm proceeded as
follows. The neighborhood (filter window) was defined as the set of voxels within a
Euclidian distance of ≤2 grid units from the central voxel. For each neighborhood,
the weighted median count rate rmedian was found, as well as the KL divergence of
the total count histogram from the expected Poisson distribution with rate rmedian.
A voxel was masked if its exclusion reduced the sum of KL divergences for all
neighborhoods. First, the voxels were ranked by this change in KL divergences,
ΔKL, in ascending order (worst offenders first). Then, voxels were masked
progressively, and the ΔKL values of neighboring voxels were updated without re-
sorting. The algorithm halted after encountering a voxel with ΔKL ≥ 0. In the
resulting integration mask, the unmasked voxel grid represented the continuous
scattering, whereas the masked voxel grid consisted mainly of Bragg peaks.

Integration and scaling. Per-pixel image corrections were applied prior to inte-
gration. Scale factors for each image pixel were calculated from first principles to
account for X-ray beam polarization, detector absorption efficiency, solid angle,
and attenuation by air (see Section 2 of the Supplementary Methods). The back-
ground count rate for each pixel was estimated from an exposure where the crystal
was translated out of the beam along the spindle axis (Supplementary Fig. 2C).

Using the mask generated in the previous step, the unmasked and masked
voxels were then integrated separately in 2∘ wedges. To generate a coarse map of
continuous scattering, the unmasked voxel grid was reduced to one sample per
reciprocal lattice node. In addition, observations of the same voxel in adjacent
wedges were combined. Then, the geometric and background corrections were
applied to the photon counts to generate a map of Imeas for the continuous
scattering (Equation 32 in the Supplementary Methods). The masked voxels
containing Bragg peaks were integrated in a similar manner, except that the local
diffuse background was subtracted and the Lorentz correction was applied
(Equation 34 in the Supplementary Methods). For the background, the value of
Imeas for the coarse continuous scattering map was used. The Bragg intensities were
further filtered to remove partial observations. The total reciprocal space volume
sampled by the detector during integration (the accumulation over contributing
pixels of Equation 28 in the Supplementary Methods) was compared with the
actual volume of the masked voxels. The peak was considered to be fully recorded if
the volumes agreed within 5%. This rejects a large fraction of the recorded Bragg
peaks, however, they are later replaced using more precise integration methods,
described below.

Using the coarse continuous scattering map, a scaling model was refined in
order to minimize the discrepancy of redundant observations and correct for
experimental artifacts. In this case, redundancy comes from Friedel symmetry and
the fact that different wedges of data overlapped in reciprocal space. The scaling
model related the expected intensity of an observation i to the merged intensity
Imerge, in terms of four correction factors, as follows:

IpredðiÞ ¼ aðxi; yi;ϕiÞdðpiÞ bðϕiÞImergeðhiÞ þ cðsi;ϕiÞ
h i

; ð1Þ

where Ipred is the model’s prediction for the measured intensity, hi is the index of
the symmetry-equivalent reflection in the asymmetric unit of reciprocal space, and
a, b, c, and d are functions of the experimental geometry; ϕi is the spindle rotation
angle, si ¼ sij j is the scattering vector magnitude, pi is the detector chip index, and
(xi, yi) is the position in the detector plane. Roughly speaking, a corrects for
absorption, b corrects for overall changes in illuminated volume and beam
intensity, c is strictly positive and corrects for excess isotropic scattering (which
may occur if extra material, such as the sample loop, passes through the beam), and
d corrects for detector chip efficiency (flat-field errors). The continuous functions
a, b, and c were obtained by linear interpolation on multi-dimensional grids. A 9 ×
9 grid was used for the detector plane position, 100 grid points were used for
scattering vector (0 < s < 0.9132Å−1), and 26 grid points were used for the spindle
angle coordinate of each 50∘ data wedge. A set of 960 discrete values was used for d,
corresponding to the 960 detector chips in the Pilatus 6M.

The parameters of the scaling model were fit by minimizing the sum of the χ2

and regularization terms, as follows:

H ¼
X
i

ImeasðiÞ � IpredðiÞ
� �2

σ�2
i þ

X
j

λjBj; ð2Þ

where σi is the uncertainty (standard error) estimate for Imeas(i), Bj are the
regularization functions and λj are the corresponding weights (Lagrange
multipliers). The regularization functions are used to stabilize refinement and to
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enforce smoothness of the correction factors. For the correction factors a, b, and c,
smoothness was enforced by minimizing the second derivative. Discrete

approximations56 of the following integrals were used:
R
dϕdxdy ∂2ϕa

��� ���2,R
dϕdxdy ∂2xaþ ∂2ya

��� ���2, R dϕ ∂2ϕb
��� ���2, R dϕds ∂2ϕc��� ���2, R dϕds ∂2s c�� ��2. In addition, the

offset correction was forced to be positive, and to stabilize the refinement, its
magnitude was minimized using a discrete approximation of

R
dϕds cj j2. Finally, the

detector correction factors were regularized using
P

p dðpÞ � 1j j2, which ensures d
= 1 in the absence of data. The nonlinear minimization problem was solved
iteratively by alternately minimizing H with constant Imerge (a linear problem) and
updating Imerge given the new scale factors57. To simplify the implementation, each
set of parameters was refined individually (or in pairs) with the others held fixed.
Satisfactory results were obtained by refining corrections in the following sequence:
b; o; cb; o; c; a; df g, where cb refers to fitting the model for c followed by b, and o is

an outlier rejection step (Supplementary Figs. 6, 7).
After refining the scaling model, redundant observations in the continuous

scattering map were merged. Observations more than 5σ from the mean were
excluded. The estimated Bragg intensities, obtained from integration of the masked
voxels, were also scaled and merged using the same model, except that the offset
correction was omitted and an outlier cutoff of 2σ was used. The merged values
were compared with the Bragg intensities integrated and merged using xds50 and
aimless51. A single scale factor was found to bring the xds/aimless values into
agreement with our Bragg intensity map. Since the intensities determined by xds
and aimless are more accurate and complete than our estimates, the xds/aimless
values were used instead for all subsequent analysis. Doing so also ensures that the
Bragg intensities matched the values used for structure determination.

Placement of intensities on an absolute scale. After merging, the intensities
were placed on an absolute scale. The overall scale factor was found by adaptation
of the total intensity method originally described by Krogh-Moe (K-M)26,27. The
standard K-M method, described in Section 2.3 of the Supplementary Methods,
involves predicting the contribution of individual atoms to the total intensity (Itotal,
predicted, Equation 40 in the Supplementary Methods) and comparing the prediction
to the measured value (Itotal,measured, Equation 41 in the Supplementary Methods)
to determine a scale factor α as follows:

α ¼ Itotal;predicted
Itotal;measured

: ð3Þ

To test for convergence, the scaling factor was calculated in two ways: first using
the standard K-M method, and second using a modified K-M method to account
for inter-atomic interference (Supplementary Fig. 8). For the standard K-M scaling
method, an estimate of the atomic inventory of the unit cell was used to calculate
the theoretical coherent and incoherent scattering for independent atoms. The
theoretical scattering calculation included 290 water molecules, 6 nitrate ions, and
1 lysozyme molecule in the unit cell, for a total of 1546 H, 613 C, 199 N, 493 O, and
10 S atoms. The total number of electrons was Z= 10720. Then, Itotal,predicted was
calculated using Equation 40 in the Supplementary Methods, integrating over the
observed region of reciprocal space. The modified K-M method was identical to the
standard K-M method, except that Itotal,predicted was modified to include the
interference between all atom pairs whose average inter-atomic distance could be
predicted from the chemical structure alone (i.e. the protein sequence and known
structure of water and solutes). Both covalent bonding and torsional restraints were
considered. Molecular coordinates were taken from the chemical component
dictionary58, and pair distances between atoms of adjacent amino acids in the
sequence were calculated assuming a planar peptide bond with a bond length of
1.33Å. This resulted in 7405 pair distances for lysozyme, 6 per nitrate molecule,
and 3 per water molecule. Then, the following bonding correction was calculated
and added to the elastic scattering in Equation 40 in the Supplementary Methods:

IbondðsÞ ¼ 2
X
n<m

f nðsÞf mðsÞ
sinð2πs rnmÞ
2πs rnm

; ð4Þ

where f is the atomic scattering factor, the sum is over bonded atom pairs, and rnm
is the inter-atomic distance.

With synthetic data, both methods converge to the expected value of 1 for α
(Supplementary Fig. 8, left). However, the modified method converges much more
quickly and provides a more accurate scale factor at the resolutions (~2Å) that are
typical for macromolecular crystallography.

Generation of the final diffuse map. A final map of the diffuse intensities ID was
generated on a fine grid with 13, 11, and 11 subdivisions along the reciprocal unit
cell vectors a*, b*, and c*, respectively. The resolution range of the map was
25–1.25Å (scattering vector of 0.04–0.8Å−1). Voxels containing Bragg peaks were
excluded. Geometric and background corrections were applied (Equation 32 in the
Supplementary Methods), and redundant observations were merged using the
scaling model derived from the coarse map, described above. Errors were estimated
using Poisson statistics and propagated through the correction, scaling and mer-
ging steps. When merging, observations with intensities more than 5σ from the
mean were flagged as outliers and excluded. Intensities were placed on an absolute

scale using the previously-determined scale factor α, and the theoretical incoherent
scattering was subtracted (Equation 36 in the Supplementary Methods). To cal-
culate the correlation coefficient for random half-datasets, the unmerged obser-
vations were randomly assigned using an algorithm that gave approximately equal
statistical weight to each half-dataset, and the half-datasets were merged separately.
The final map includes the isotropic scattering component due to elastic scattering.

All-atom molecular dynamics (MD) simulation. Four all-atom MD simulations
of triclinic lysozyme crystals were performed with 1, 27 (3 × 3 × 3), 125 (5 ×5 × 5),
and 343 (7 × 7 × 7) unit cells, similar to a 12 unit-cell simulation described pre-
viously59. The simulation was prepared using the AMBER suite, version 1860, using
the ff14SB force field for the protein61,62, the SPC/E model for water63, and the
general Amber force field (GAFF)64 parameters for the nitrate ion. The simulation
boxes had dimensions equal to integer multiples of the experimentally determined
room-temperature unit cell from PDB ID 4lzt (a= 27.24Å, b= 31.87Å, c=
34.23Å, α= 88.52∘, β= 108.53∘, γ= 111.89∘). The simulation was initialized with
the measured protein atom coordinates from PDB ID 4lzt (using the “A” alternate
conformer)24, arranged in a supercell grid. Nine nitrate ions were added per unit
cell to neutralize the charge, as well as 290 water molecules. The number of water
molecules was manually adjusted in order to achieve ~1 atm pressure at 295 K,
resulting in 290, 293, 284, and 270 waters per protein chain in the 1, 27, 125, and
343 unit cell simulations, respectively. The simulations were equilibrated for about
0.2 μs and continued for an additional 5, 5, 2, and 1 μs, respectively, saving coor-
dinates every 0.4 ns. A time step of 4 fs was used, where non-water hydrogen
masses are set to 3 amu, with a corresponding decrease in the mass of its bonded
atom65.

For each snapshot, structure factors were calculated from the atomic
coordinates using the ccp452 program sfall with its default grid parameters, a
resolution of 0.95Å, and a VDWR parameter of 3.0. The B-factor was set to 15Å2

for each atom. This value for a “snapshot” B-factor smooths the electron density
distribution to allow the Fourier transforms used by sfall to obtain a converged
result; this was tested by comparing to test calculations using twice as many grid
points in each dimension and for test calculations in which the “snapshot” B-factor
was varied between 5 and 20Å2. Since every atom was assigned the same B-factor,
its effect can be undone by multiplying the structure factors coming from the sfall
run by exp þBs2=4ð Þ. The Bragg intensity per unit cell (Equation 16 in the
Supplementary Methods) then was calculated using IB ¼ N�2 Fðh0Þh i2 where F(h0)
is the supercell structure factor evaluated at the Bragg positions h0, N is the number
of unit cells, and brackets represent an average over all saved simulation frames
(see Section 1 of the Supplementary Methods). Similarly, the diffuse scattering per
unit cell (Equation 15 in the Supplementary Methods) was calculated using
ID ¼ N�1ð F2h i � Fh i2Þ. The whole procedure is encapsulated in the md2diffuse.sh
script, distributed as a part of the AmberTools distribution (http://ambermd.org).

Lattice dynamics simulation. Lattice dynamics simulations and model refinement
were performed in Matlab. Protein molecules were modeled as rigid bodies, and the
lattice contacts were modeled as an elastic network13,37,38,66,67 with pair-wise
interactions between α carbons. The lattice contacts were identified in the all-atom
structure determined in this study (PDB ID 6o2h). First, atoms with alternate
conformers were assigned to their occupancy-weighted average positions. Then, the
atomic coordinates of the 26 nearest neighbors in the lattice were generated by
applying the crystal symmetry operators. A lattice contact was defined between any
atom in the central protein chain that came within 4Å of an atom belonging to a
neighbor. Finally, the network was reduced to a Cα model. If any atoms belonging
to a pair of residues formed a lattice contact, a spring was created between the Cα

atoms in the network. A total of 100 intermolecular springs were modeled, of
which 50 were unique due to crystal symmetry.

Two types of pair potential were modeled: Gaussian and directional, as follows:

VðGauss:Þ
jj0 ¼ 1

2
γjj0 uðjÞ � uðj0 Þ
��� ���2 ð5Þ

and

Vðdir:Þ
jj0 ¼ 1

2
γjj0 ðuðjÞ � uðj0 ÞÞ � r̂ðj;j0 Þ
� �2

; ð6Þ

where j and j0 are the node indices, u is the displacement vector of a node from its
equilibrium position, γ is a spring constant, and r̂ðj;j0 Þ is the unit vector pointing
from node j to j0 .

The equations of motion were solved in a rigid-body vibrational coordinate
system using the Born/Von-Karman method (Section 3 of the Supplementary
Methods). The diffuse scattering was calculated for a 13 × 11 × 11 periodic
supercell, chosen to match the level of detail in the experimental map, using the
one-phonon approximation (Equation 62 in the Supplementary Methods). Terms
in the one-phonon structure factor (Equation 63 in the Supplementary Methods)
were calculated using the fast-Fourier transform-based method68 with form factors
approximated by four Gaussians and a constant69,70. The scattering contribution
from the mean solvent density was modeled using Babinet’s principle: since any
constant can be added to the electron density without changing the structure factor
(except at s= 0), a constant density of ρsolv. surrounding a protein can be
equivalently modeled by a density of 0 and −ρsolv. in the solvent-excluded region.
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For reasons of computational convenience, the excluded solvent can then be
represented by pseudo-atoms with Gaussian form factors. To calculate the Babinet
representation, excluded voxels of the solvent mask from REFMAC554 were
divided among the modeled atoms based on proximity. The constant mask density
associated with each atom was approximated by a three-dimensional anisotropic
Gaussian with the same first and second moments. The overall solvent scaling
parameters ksolv. and Bsolv. were then adjusted to minimize the least-squares
difference between Fobs. and Fmodelj j, defined as follows:

Fmodel ¼ Fcalc: þ ksolv: expð�Bsolv:s
2=4Þ Fsolv: ; ð7Þ

where Fcalc. is the structure factor of the modeled atoms (protein and ordered
solvent) and Fsolv. is the structure factor of the excluded solvent. The refined
parameters ksolv. and Bsolv. were then applied to the excluded-solvent form factors.
The resulting pseudo-atoms were included in the list of atoms occupying the unit
cell and assigned to the same rigid group as the nearest protein atom.

Spring constants in the model were refined in order to minimize the least-
squares difference between the simulated one-phonon scattering and the measured
variational scattering around the 400 most intense halos in the 2–2.5Å resolution
range. Although the limited resolution range was used for refinement, the
agreement of the model was ultimately assessed throughout reciprocal space
(Fig. 2d). The reduced χ2 for refinement was calculated as follows:

χ2red: ¼
XN
n¼1

Mn

 !�1XN
n¼1

XMn

m¼1

Iðmeas:Þ
n;m � Iðcalc:Þn;m � bn

σn;m

 !2

; ð8Þ

where N= 400 is the number of halos fit, Mn is the number of measured voxels
around the nth halo (typically Mn= 13 × 11 × 11− 1 = 1572), bn is an arbitrary
constant offset for each halo (determined separately by least-squares minimization
for each n), and σ is the experimental uncertainty. The spring constants were
refined in four stages. In the first stage, all springs were set to Gaussian springs and
assigned the same spring constant. In the second stage, springs belonging to the
same interface (those involving a particular neighbor) were given the same spring
constant. In the third stage, the pair-potentials for each interface were allowed to be
a linear combination of Gaussian and directional. Finally, each pair potential was
refined individually with a linear combination of Gaussian and directional springs.
The overall χ2 was monitored during refinement to assess whether adding the extra
degrees of freedom to the model significantly improved the fit (Supplementary
Fig. 13).

After refining the model, the scattering was calculated throughout reciprocal
space using the one-phonon approximation (Equation 62 in the Supplementary
Methods). The Pearson correlation coefficient (CC) between the measured
variational scattering map and the simulation was calculated within shells of
constant resolution spanning 0.04Å−1 to 0.80Å−1 with a constant width of Δs=
0.02Å−1. Within each resolution bin, CC was calculated as follows:

CC ¼
P

n Imeas:ðsnÞ � �Imeas:ð Þ Icalc:ðsnÞ � �Icalc:ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n Imeas:ðsnÞ � �Imeas:ð Þ2Pn Icalc:ðsnÞ � �Icalc:ð Þ2

q ; ð9Þ

where �Imeas: and �Icalc: are the mean intensities in that resolution bin, and the sums
are over all measured voxels within the resolution bin (Supplementary Fig. 14). For
comparison with the MD simulation, which was calculated on a coarser 7 × 7 × 7
sub-sampled reciprocal lattice, the full map was interpolated at the voxels of the
coarser grid by least-squares fitting a 2nd order polynomial over all neighboring
voxels (a 3 × 3 × 3 kernel). Voxels at the Bragg positions (those with integer Miller
indices) were excluded. The CC was calculated, as above, between the interpolated
simulated map and a similarly interpolated experimental map (Fig. 2d).

Internal protein dynamics simulation. Internal dynamics simulations and model
refinement were performed in Matlab. The dynamics of lysozyme within the crystal
environment were simulated using an all-atom elastic network where each residue
was restrained to move as a rigid body, and lattice contacts were explicitly modeled.
To generate the model, first the atoms with alternate conformers were assigned to
their occupancy-weighted average positions. Then, springs were created between
any pair of non-H protein atoms belonging to different residues within a cutoff
distance of 4Å. Intermolecular springs were modeled between atoms in the protein
and those of its neighbors in the lattice within the 4Å cutoff distance. All springs
were of the directional type (Eq. (6)).

The equations of motion for a single unit cell were solved using the Born/Von-
Karman method as described for the lattice dynamics simulation, above, except
that the potential energy function was modified in order to remove those modes
associated with rigid-body motion of the entire protein. This was done by assigning
the component of displacement associated with such motions a restoring force of
zero. The normal modes associated with rigid-body displacements then have
eigenvalues of zero and are eliminated during generalized inversion of the
dynamical matrix (discussed in Section 3.3 of the Supplementary Methods). More
specifically, components of the Hessian matrix (Equation 45 in the Supplementary
Methods) were modified as follows:

Vðl;l0 Þ :¼ PTVðl;l0 ÞP; ð10Þ

where P is an operator that projects out the rigid-body component of displacement,

P ¼ I� AnA0ð Þ A0nAð Þ; ð11Þ
I is a 6m × 6m identity matrix (m= 129 is the number of residues), A is a 3n × 6m
matrix (n is the number of atoms in the protein) that transforms between the
Cartesian atomic displacement coordinates, u, and the generalized coordinates of
the internal dynamics model (Equation 43 in the Supplementary Methods), A0 is a
3n × 6 matrix that transforms between u and the generalized coordinates of the
lattice dynamics model, and the forward slash signifies left matrix division (if X=
A\A0, then X is the least squares solution to the system of equations AX=A0).

The model was parameterized with one coupling constant per residue, so that a
spring connecting a pair of atoms (j and j0) has a spring constant equal to the
geometric mean of the residues’ coupling constants gi and gi0 , as follows:

γj;j0 ¼
ffiffiffiffiffiffiffiffiffi
gigi0

p
: ð12Þ

The parameters were optimized in order to minimize the χ2 between the measured
and simulated atomic displacement parameters (ADPs), calculated as follows:

χ2 ¼
XN
j¼1

X9
n¼1

Uðmeas:Þ
j

� �
n
� Uðlatt:Þ

j þ Uðint:Þ
j

� �
n

� �2
; ð13Þ

where Uj

� �
n
is the nth component of the ADP for atom j (Uj is a symmetric 3 × 3

matrix with 9 components), Uðlatt:Þ
j is the calculated ADP for the fully-refined lattice

dynamics model, and Uðint:Þ
j is the calculated ADP for the internal dynamics model

(Equation 56 in the Supplementary Methods).
After refining the model, the displacement correlations were assessed using the

directional correlation coefficient, defined as follows:

CCj;j0 ¼
r̂Tj;j0 uju

T
j0

D E
r̂j;j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTrUj=3ÞðTrUj0=3Þ
q ; ð14Þ

where r̂j;j0 is the unit vector pointing from atom j to j0 .
We also defined an alternate model of internal protein motion where the modes

associated with rigid-body displacements of individual domains are suppressed.
Residues were assigned to three groups45 as follows: 5–36 and 98–129 to α, 40–94
to β, and those remaining to the hinge region. The Hessian matrix was modified as
described above, except that the P operator appearing in Eq. (10) was calculated as
follows:

P ¼ I� AnA1ð Þ A1nAð Þ; ð15Þ
where I is a 6m × 6m identity matrix (m= 129 is the number of residues), A1 is a
3n × 6d matrix (d= 3 is the number of groups) that projects from the generalized
coordinate system of the 3-group model to the atomic displacements (Equation 43
in the Supplementary Methods). The model was parameterized and refined as
described above for the unrestrained model, and the directional correlation was
calculated using Eq. (14).

Diffuse Patterson map calculation. Diffuse Patterson maps were calculated in
Matlab as the Fourier transform of the diffuse scattering (Section 1.3 in the Sup-
plementary Methods), using a three-dimensional fast-Fourier transform (FFT).

The experimental diffuse map was pre-processed before performing the FFT to
compensate for missing data. First, missing voxels in the diffuse map were filled in
with the mean values from neighboring voxels. Then, the mean intensity in each
resolution shell was subtracted, and voxels beyond the resolution limit of the map
were filled with zeros. Finally, the data array were zero-padded to yield a diffuse
Patterson map with a real-space voxel approximately 0.3Å on a side (the voxel
dimensions were a ∕ 91, b ∕ 107, and c ∕ 115, where a, b, and c are the lattice
constants).

The diffuse Patterson map for the refined vibrational model (lattice + internal)
was calculated without approximation in the central region where r < 25Å. To
perform the calculation efficiently, the scattering per unit cell (Equation 59 in the
Supplementary Methods) was rearranged to single out a reference unit cell (l = 0):

ID ¼
X
j

f j
X
l0 ;j0

f j0 e
2πis� rj�rj0 �rl0 þr0ð ÞTjTj0 T0j;l0 j0 � 1

� �8<
:

9=
;; ð16Þ

where the first sum runs over all atoms in the unit cell, fi is the atomic scattering
factor, Tj is the Debye-Waller factor (Equation 60 in the Supplementary Methods),
and T0j;l0 j0 depends on the cross-terms of the covariance matrix (Equation 61 in the
Supplementary Methods with l = 0). The term in the curly brackets resembles the
standard structure factor equation for the primed atoms, except that the origin is
shifted and the Debye-Waller factor is replaced by

Teffð Þ0j;l0 j0 ¼ TjTj0 T0j;l0 j0 � 1
� �

: ð17Þ

The effective Debye-Waller factor was separated into contributions from lattice and
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internal motion:

Teff ¼ T latt
eff þ T int

eff : ð18Þ
The lattice term was calculated as follows:

T latt
eff

� �
0j;l0 j0 ¼ TjTj0 T latt

0j;l0 j0 � 1
� �

; ð19Þ

where the experimentally determined ADPs were used in Tj and Tj0 , and T latt
0j;l0 j0 was

calculated from the refined lattice model (Equations 55 and 61 in the
Supplementary Methods). This corresponds to the definition used in the one-
phonon simulation (Equation 62 in the Supplementary Methods). For the internal
motions, the effective Debye-Waller factor was calculated as follows:

T int
eff

� �
0j;l0 j0 ¼ T latt

j T int
j T latt

j0 T int
j0 T

latt
0j;l0 j0 T int

0j;l0 j0 � 1
� �

; ð20Þ
where the T’s are calculated from the covariance matrices of the lattice and internal
dynamics simulations.

Excluded-solvent effects were modeled by pseudo-atoms with Gaussian
scattering factors, as described above for the lattice dynamics simulation. In
Eq. (16), terms in curly brackets were calculated using the FFT-based method as
described for the lattice dynamics simulation, except that each atom had an
effective Debye-Waller factor (Eq. (18)) and coordinates relative to rj. Since only
the central part of the Patterson was desired, the sum was carried out over all atoms
in the unit cell and its 26 nearest neighbors that satisfied jrj � rj0 � rl0 þ r0j< 29Å
(the cutoff distance was chosen to be somewhat larger than the maximum distance
of 25Å to avoid truncation artifacts). After calculating the diffuse intensity map
using Eq. 16, the mean intensity in each resolution shell was subtracted and voxels
outside the experimental resolution limit of 1.25Å were set to zero. Then, the map
was zero-padded, and the Patterson function was calculated using the three-
dimensional FFT, as described above for the experimental map.

The reciprocal space correlation coefficients between diffuse Patterson maps
were also calculated in Matlab. First, real space voxels with rj j< 2 Å or rj j> 25Å
were set to zero, and maps were truncated at ∣x∣ < a, ∣y∣ < b and ∣z∣ < c so that the
reciprocal space map would be oversampled by a factor of 2 in each direction.
Then, the inverse FFT of each truncated map was calculated. The Pearson
correlation coefficients (Eq. (9)) between the experimental and simulated intensity
maps were calculated in shells of constant resolution spanning 0.04 to 0.80Å−1

with bin widths of Δs= 0.04Å−1.

Data availability
The atomic coordinates and structure factors have been deposited in the Protein Data
Bank under accession code 6o2h. Diffraction images have been deposited in the SBGrid
Data Bank under ID 747 (https://doi.org/10.15785/SBGRID/747). The processed
diffuse maps have been deposited the Coherent X-ray Imaging Data Bank under ID
128 (https://doi.org/10.11577/1601281). Other data are available from the corresponding
author upon reasonable request.

Code availability
The source code used in this study for reciprocal space mapping and scattering
simulation are publicly available on GitHub (https://github.com/ando-lab/mdx-lib/tree/
natcomm). Also included are scripts for processing the lysozyme dataset and for fitting
the lattice dynamics model and elastic network models. Software used for structure
determination was curated by SBGrid71.
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