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Pattern Formation through 
Temporal Fractional Derivatives
Hongwei Yin1,2 & Xiaoqing Wen1

It is well known that temporal first-derivative reaction-diffusion systems can produce various 
fascinating Turing patterns. However, it has been found that many physical, chemical and biological 
systems are well described by temporal fractional-derivative reaction-diffusion equations. Naturally 
arises an issue whether and how spatial patterns form for such a kind of systems. To address this issue 
clearly, we consider a classical prey-predator diffusive model with the Holling II functional response, 
where temporal fractional derivatives are introduced according to the memory character of prey’s and 
predator’s behaviors. In this paper, we show that this fractional-derivative system can form steadily 
spatial patterns even though its first-derivative counterpart can’t exhibit any steady pattern. This result 
implies that the temporal fractional derivatives can induce spatial patterns, which enriches the current 
mechanisms of pattern formation.

As a kind of organized heterogeneous macroscopic structure, spatial patterns exist extensively in the natural 
world ranging from chemical reaction systems to physical systems and to ecological systems. In order to interpret 
the formation of the patterns observed in his experiments1, Alan Turing proposed a reaction-diffusion model 
(currently popularly called as the Turing model). By model analysis, he showed that if the underlying system 
undergoes Turing bifurcation, then a so-called Turing pattern (i.e., a spontaneously-organized spatial heteroge-
neous pattern away from the stable equilibriums of the system) can occur. This pioneer work of Turing not only 
came into being theoretical foundation for understanding diverse patterns occurring in the natural world, but 
also opened a new research direction-pattern dynamics that have received extensive attention and are currently 
still a hot topic in many scientific fields, such as molecular biology2–4, biochemistry5, development biology6, epi-
demiology7,8, mechanics9, and so on.

In spite of extensive applications, Turing bifurcation theory is limited in nonlinear reaction-diffusion sys-
tems with the temporal first derivative. However, many realistic processes are well described by nonlinear 
reaction-diffusion equations with the temporal fractional derivatives because this class of derivative can deal 
comfortably with memory effect in dynamical systems10,11. In fact, more and more fractional-derivative differen-
tial equations have been successfully used in biological materials12, fluid mechanics13, quantum mechanics14, and 
so on. Thereinto, spatial patterns for some fractional-derivative reaction-diffusion systems, whose first-derivative 
counterparts can produce some spatial patterns, were deeply discussed in15–20. The current results for such a 
kind of systems mainly discovered how the temporal and spatial fractional derivatives change transient dynam-
ical behaviors and affect structure of spatial patterns. These results imply that the nonlinearity still plays the 
main role in the formation of spatial patterns. Therefore, immediately arises a question whether or not there 
is a certain causal relationship between the fractional derivative and Turing instability, that is, for a temporal 
fractional-derivative reaction-diffusion system whose temporal first-derivative counterpart cannot form any spa-
tial pattern, can the temporal fractional derivative induce the Turing instability and produce spatial patterns? 
To answer this question, we consider a classical diffusive prey-predator system with the Holling II functional 
response, where the temporal fractional derivative is introduced into this system because of the memory for the 
prey’s and predator’s behaviors, as follows:
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where u(x, t) and v(x, t) respectively describe the prey’s and predator’s densities at time t on the spatial position x. 
α is a prey’s density at which the predator has the maximum kill rate; β and γ are the maximum birth rate and 
dead rate of the predator, respectively; The operator ∆ can describe the diffusion of these two species from the 
higher density region to the lower. d denotes diffusion rate of the predator and is scaled with respect to the prey’s 
diffusion. The parameters α, β and γ are positive. ∂
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with η ∈ (0, 1) is the standard Caputo’s partial derivative 
with respect to the time variable t, which can describe the memory character of the prey’s and predator’s dynam-
ical behaviors. In particular, when η = 1 the system (1) degenerates into the temporal first-derivative system, 
which represents the instantaneous behaviors of the prey and predator. For this case, the system (1) cannot prod-
uct any spatial pattern, see ref.21. However, for the system (1) with η ∈ (0, 1), it can be found that the temporal 
fractional derivatives can induce Turing instability and that steady-state spatial patterns form ultimately for the 
system (1). This result, which enriches the current mechanisms of forming spatial patterns, is our main contribu-
tion in this paper.

The article is organized as follows: in Sec. 2, we first study the stability of the corresponding ODE system of the 
system (1). In Sec. 3, we derive the condition inducing the Turing instability for the system (1) and give out some 
numerical simulations of spatial patterns. In the final section, a brief discussion and conclusive remark are given.

Methods
Dynamic properties of the fractional-order ODE system.  We first examine the stability and Hopf 
bifurcation for the ordinary differential equation (ODE) version of the system (1). Omitting the diffusion terms 
in the system (1), one has the following ODE system
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The system (2) always has the equilibrium points =E (0, 0)0  and =E (1, 0)1 . Besides, if
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and its characteristic equation is
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However, for η ∈ (0, 1), the stability of E2 is more complex and depends on the inequality

λ ηπ
>arg

2 (7)

for the roots λ in the equation (5)22. For convenience, we consider the two cases:

	 A.	 the two roots λ in (5) have negative real parts;
	 B.	 these two roots are true complex numbers and have positive real parts.

For the case A, the stability of E2 is easy to be identified by the relationship between the roots and
coefficients in (5). For the case B, we assume the roots in (5) λ = ± ∈ +P iQ P Q R, ,  and can obtain the equiv-

alent inequality of (7),
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We define the parameter set
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Then, E2 is stable if the parameters α and β are in the set Π1 or in the set Π2.
The parameter set Π2 seems complex but nonempty, for example, we take γ = 0.5 and η = 0.8 and plot a 

parameter α − β bifurcation diagram, see Fig. 1. In Fig. 1, the curve C1 coming from the equation α = β γ
γ
−  is a 

transcritical bifurcation one, the curve C2 coming from the equation α = β γ
β γ

−
+

 is a Hopf bifurcation one for the 

system (2) with η = 1, and the curve C3 coming from the equation = ηπ− ( )tanB A
A

4
2
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1
 is a Hopf bifurcation one 

for the system (2) with η = 0.8. For the temporal first-derivative system (2), E2 is stable when the parameters α 
and β are taken in the blue region of Fig. 1. However, for the system (2) with η = 0.8, if α and β are taken in the 
red or blue region, then E2 is also stable. To illustrate this result, we choose two groups of the parameters in the 
form of (α, β): (0.175, 0.95) (marked as “×”) in the red region and (0.5, 1) (marked as “+”) in the blue region of 
Fig. 1, and respectively plot the dynamical trajectories of the systems (2) with η = 0.8 and 1 in Fig. 2. In Fig. 2A, 
E2 is stable for the system (2) with η = 0.8 for the parameters α = 0.175 and β = 0.95; for the system (2) with the 
same parameters α and β but η = 1, the periodic trajectory around E2 appears in Fig. 2B. For the parameters α = 
0.5 and β = 1, both of the fractional- and first-system (2) show the stability of E2 in Fig. 2C and Fig. 2D. These 
results imply that the temporal fractional derivatives can enlarge the range of the parameters such that E2 keeps 
stable, as is well known to us.
Turing patterns.  We will mainly show the main result of this paper that the temporal fractional derivative 
can form steady-state spatial patterns for the system (1) in one- and two- dimension spatial regions. Firstly, we 
shall discuss Turing instability for the system (1).

Turing instability.  The necessary condition of the Turing instability, it is well known, is that an equilibrium 
point for an ordinary different equation system is stable, but unstable for its corresponding reaction-diffusion 
system. Here, we only consider a small spatiotemporally inhomogeneous perturbation near E2 in the form

 λ= + +⁎ ⁎u v u v t ikr( , ) ( , ) exp( ) (10)T T

where λ is the growth of the perturbation; k is a wave number vector; I is the imaginary unit; r is the spatial vector 
with the dimension number 1, 2 or 3;   is a small parameter and represents the perturbation strength. Substituting 
(10) into (1) and only keeping the first-power term of the parameter  , we can obtain the Jacobin matrix
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Figure 1.  The bifurcation diagram of the parameters α and β for the system (2) with η = 0.8 and 1. Therein, γ = 
0.5, the position of the mark “×” is (0.175, 0.95) and the one of “+” is (0.5, 1).
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Its characteristic equation is written into
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From the characteristic equation (12) and the discussion on the stability of the system (2) in the above 
Section, E2 for the first-derivative system (2) with the parameters in Π1 is always stable for any wave numbers k. 
Consequently, the Turing instability does not occur for the first-derivative system (2) and any steady-state spatial 
pattern cannot appear.

Next, we shall focus on the instability of E2 due to some wave numbers k ≠ 0 for the fractional-derivative sys-
tem (1), but E2 is stable for the fractional-derivative system (2). From the equations (5) and (12), we find that E2 
might become unstable for the fractional- derivative system (1) with the parameters α, β and the fractional deriv-
ative η in the set Π2. From the explicit expression of B2(k) and through some tedious calculation, we can obtain a 
parameter set Π3 of E2’s instability for the system (1), which is defined by

Figure 2.  The dynamical trajectories of the fractional- and first-derivative systems. (A,B) with the parameters α 
= 0.175 and β = 0.95; (C,D) with the parameters α = 0.5 and β =1. All of these four trajectories start from u0 = 
0.2 and v0 = 0.1. The other parameters are taken as in Fig. 1.
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For the fractional-derivative system (1), the Turing instability arises when the parameters and fractional deriv-
ative are taken in the intersection Π = Π2 ∩ Π3. Therefore, the set Π is called as a Turing instability parameter 
set. In fact, the set Π is still nonempty, for example, take d = 20 and the other parameters as in Fig. 1, and plot the 
Turing instability parameter set (labeled by the pink color) in Fig. 3, where the curve C4 is a Turing bifurcation 
one and comes from the equation
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Further, we choose the parameters α = 0.175, β = 0.95, γ = 0.5, η = 0.8 and d = 20, whose position (marked 
as “×”) is in the pink region of Fig. 3, and respectively plot the suitable dispersion coefficient in Fig. 4A and 
the real part of the characteristic roots in Fig. 4B against the wave numbers k. We find the coefficient B2(k) < 0 
and the real part Re(λk) < 0 for some wave numbers k, which indicates that the Turing instability occurs for the 
parameters and fractional derivative taken in the set Π.

Figure 3.  The parameter set of the Turing instability for the fractional-derivative system (1) labeled in pink. 
Herein, d = 20 and the other parameters as in Fig. 1. The curve C4 is a Turing bifurcation one, and the position 
marked by “×” is (0.175, 0.95).

Figure 4.  The dispersion coefficient and the maximal real part of the roots in (7). The parameters are taken as 
α  =  0.175, β = 0.95, γ = 0.5, η = 0.8 and d = 20.
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Results
Turing patterns and numerical results.  We simulate the system (1) in a bounded spatial domain with 
zero-flux boundary conditions, i.e., = =∂

∂
∂
∂

0u
n

v
n

 (n denotes the normal unit vector of the boundary curve), 
which means that the prey and predator are isolated in the domain and absence of external in- put. To solve the 
system (1), we transform the continuous system to a finite dimensional system, i.e., discrete the system in both 
time and space. Without loss of generality, we take random perturbations around E2 as initial conditions of the 
system (1) in the form of σξ= +u u x( )0 1

⁎  and σξ= +⁎v v x( )0 2 , where ξ1(x) and ξ2(x) are stochastic processes 

BA

C D

FE

Figure 5.  The dynamical behaviors of the prey and predator in the fractional-derivative system (1) with the 
one-dimension space and their steady-state spatial patterns. (A and B) are dynamical trajectories of the prey 
and predator, respectively. (C and D) respectively exhibit the steady-state spatial patterns of the prey and 
predator after 1 × 105 iterations for the discrete time. (E and F) are the power spectrums for the prey’s and 
predator’s steady-state spatial patterns, respectively. Wherein, the parameters are taken as in Fig. 4.
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with respect to the spatial variable x, obeying the uniform distribution on [0, 1] and mutually independent. The 
constant σ is noise strength.

We still take the parameters as α = 0.175, β = 0.95, γ = 0.5, η = 0.8, d = 20 as well as σ = 0.1. By using the 
center difference method in space and the approximation of the Caputo’s derivative by the Grunwald-Letnikov 
one in time23, we numerically perform the fractional-derivative system (1) on the one-dimension domain with the 
spatial length L = 50, the time step ∆t = 5 × 10−3 and the uniform spatial step ∆x = 1. The prey’s and predator’s 
dynamical behaviors are respectively depicted in Fig. 5A and B. After 1 × 105 iterations for the discrete time, their 
dynamical trajectories converge to spatially inhomogeneous steady states. This implies that the steady-state spa-
tial patterns of the prey and predator ultimately form for the fractional-derivative system (1), which is respectively 
shown in Fig. 5C and D. Figure 5E and F respectively exhibit the power spectrums of the prey’s and predator’s 
spatial patterns in the one-dimension domain. These two figures verify the formation of the spatially inhomoge-
neous steady state for the fractional-derivative system (1).

By applying the same discrete scheme, the central difference method in space and the forward Euler method in 
time, and taking the same parameters and initial values, we numerically simulate the one-dimension space system 
(1) with the first derivative (i.e., η = 1), and yield the spatially homogeneous periodic solutions of the prey and 
predator in Fig. 6. The difference between Figs 5 and 6 with the same parameters implies that the fractional deriva-
tive can induce the Turing instability and product steady-state spatial patterns. Besides, by applying the same per-
forming scheme and taking the same parameters as in Fig. 5, we simulate the fractional-derivative system (1) on 
the two-dimension square domain L × L = 50 × 50 with the uniform spatial step length ∆x = ∆y = 1 and the time 
step ∆t = 3 × 10−3. After 2 × 105 iterations for the discrete time, the spatial two-dimension fractional-derivative 
system (1) ultimately converges to a steady state, and the prey’s and predator’s spatial patterns form, which are 
illustrated in Fig. 7.

To uncover the effect of the fractional derivatives on the Turing instability for the system (1), we first fix 
α = 0.175 to plot the Turing instability set of β and η in Fig. 8A, and then fix β = 0.95 to plot the Turing instability 
set of α and η in Fig. 8B. Figure 8 demonstrates that the Turing instability for the system (1) depends on the frac-
tional derivatives and the parameters in the system (1).

Figure 6.  The spatially homogeneous periodic orbits of the prey and predator in the one-dimension space 
system (1) with the first derivative. The other parameters are taken as in Fig. 5.

Figure 7.  The spatial patterns of the prey and predator for the fractional-derivative system (1) in the two-
dimension square domain. The parameters are taken as in Fig. 5.
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Discussion
At present, some mechanisms of pattern formation have been uncovered, such as cross diffusion24,25, stochastic 
noise from external and internal environment26–28, nonlocal diffusion of single species29,30 and anomalous diffu-
sion15–20. The current results imply that the nonlinear factor among these mechanisms, in essence, plays a main 
role in the pattern formation. Although some authors studied spatial patterns for some fractional- derivative 
systems, they only concerned how the fractional derivatives change spatial patterns of this kind of systems and 
neglected what role the fractional derivatives play in the pattern formation. In this paper, we studied the temporal 
fractional-derivative prey-predator diffusive system with the Holling II functional response whose corresponding 
temporal first- derivative system is impossible to form any spatial pattern, and showed that the fractional deriv-
atives play a crucial role in forming the steadily spatial pattern. Our results make us reacquaint the work of the 
fractional derivatives on dynamical systems. Currently, various shapes of spatial patterns from diffusive systems 
have been clearly identified by the multi- scale method, such as dot pattern, strip pattern, spiral pattern and so 
on. It is necessary to use this method to further check the spatial patterns from the system (1). This problem is 
expecting a future study.
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