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Abstract: Mitochondrial dysfunction is a pathophysiological hallmark of most neurodegenerative
diseases. Several clinical trials targeting mitochondrial dysfunction have been performed with con-
flicting results. Reliable biomarkers of mitochondrial dysfunction in vivo are thus needed to optimize
future clinical trial designs. This narrative review highlights various neuroimaging methods to probe
mitochondrial dysfunction. We provide a general overview of the current biological understand-
ing of mitochondrial dysfunction in degenerative brain disorders and how distinct neuroimaging
methods can be employed to map disease-related changes. The reviewed methodological spectrum
includes positron emission tomography, magnetic resonance, magnetic resonance spectroscopy, and
near-infrared spectroscopy imaging, and how these methods can be applied to study alterations in
oxidative phosphorylation and oxidative stress. We highlight the advantages and shortcomings of
the different neuroimaging methods and discuss the necessary steps to use these for future research.
This review stresses the importance of neuroimaging methods to gain deepened insights into mito-
chondrial dysfunction in vivo, its role as a critical disease mechanism in neurodegenerative diseases,
the applicability for patient stratification in interventional trials, and the quantification of individual
treatment responses. The in vivo assessment of mitochondrial dysfunction is a crucial prerequisite
for providing individualized treatments for neurodegenerative disorders.

Keywords: neuroimaging; mitochondria; mitochondrial dysfunction; neurodegeneration; Parkinson’s
disease (PD)

1. Introduction
1.1. What Is Mitochondrial Impairment? The Molecular Complexity of a Fundamental
Cell Organelle

Bioenergetic disturbances in the nervous system have been identified as a pathophysi-
ological hallmark in many neurodegenerative diseases (NDs), including idiopathic Parkin-
son’s disease (PD) [1], atypical Parkinson’s disease (APD) [2], Alzheimer’s disease (AD) [3],
among other forms of dementia, Huntington’s disease (HD) [4], prion disease [5], motor
neuron disease (MND) [6], and certain forms of ataxia [7]. Most metabolic pathways (e.g.,
the tricarboxylic acid cycle, TCA) converge to the mitochondria and thus have an impact
on the final steps of energy production by oxidative phosphorylation (OXPHOS) [1]. Yet,
considering mitochondrial dysfunction purely by the resulting bioenergetic disturbances
would be an oversimplification [1]. As a fundamental cellular organelle, mitochondria
have widespread interconnections to the overall cellular homeostasis, making elucidating
precise disease mechanisms of NDs challenging [8]. In addition, our current understanding
of the molecular mechanisms underlying most NDs is incomplete and likely involves
many pathophysiological events and processes [9]. Whether mitochondrial dysfunction
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can be considered the primary driver or simply a bystander of neurodegeneration largely
remains to be elucidated [10]. Besides the overall complexity of disease mechanisms in
NDs, mitochondrial dysfunction can refer to various unphysiological molecular processes [1].
These processes extend but are not limited to impaired mitochondrial biogenesis, dynamics
and trafficking, calcium and metal ion dyshomeostasis, heme biosynthesis, control of cell
division and cell fate decisions, and neuroinflammation [1]. The many-faceted dysfunction
of mitochondria ultimately results in impaired energy supply and increased oxidative
stress—both mechanisms leading to neurodegeneration, disease manifestation, and pro-
gression [8]. Therefore, these mechanisms could serve as viable surrogate markers for
mitochondrial dyshomeostasis and can be mapped by innovative neuroimaging methods.

1.2. Why Could It Be Helpful to Identify Patients with Predominant Mitochondrial Dysfunction?
On the Leap to Individualized Treatment Decisions

NDs are debilitating diseases, substantially impacting the well-being of patients and
caregivers. The rising prevalence provides a significant socioeconomic burden to aging
populations [11] and cannot be solely explained by the shifting age structure in modern
societies [12]. Only symptomatic treatments are available to date, and no drug has been
shown to reveal any clinically relevant disease-modifying properties [13]. NDs follow an
individual time course often preceded by a prodromal phase [14]. Substantial neuronal cell
loss has already occurred in prodromal phases, not yet having reached a symptom-causing
threshold to facilitate a clinically established diagnosis. However, it would be highly
desirable to identify patients in the prodromal phase to start neuroprotective treatments
before disabling symptoms have occurred [14]. For some NDs, this prodromal phase can
be outlined by clinical criteria (e.g., for PD) [15] or by pre-symptomatic genetic testing (e.g.,
for HD) [16]. Nevertheless, identifying study participants in a prodromal phase causes
ethical dilemmas in conceptualizing clinical trials. Clinical concepts of the prodromal phase
also imply that not all identified individuals will manifest their suspected disease [14].
Drug candidates must meet exceptionally high safety standards to be considered for clin-
ical testing in pre-diseased individuals. Accompanying diagnostics could substantially
enrich the frequency of disease-converters to ensure clinical trial success [17]. In NDs, the
symptom severity and disease progression can be highly individual [18–20]. In addition,
clinical trials in NDs evaluate disease-modifying properties of candidate drugs following
long interventional periods [14]. Pathophysiology-orientated biomarkers and adaptive
clinical trial designs will substantially improve the efficiency of neuroprotective trials by
identifying surrogate markers for treatment response. These considerations could enrich
study participants suitable for targeted therapies in innovative clinical trial designs. Pa-
tients suffering from NDs with suspected mitochondrial dysfunction are likely the most
promising candidates for such innovative clinical trials. Human metabolism is a highly dy-
namic system. Therefore, immediate treatment responses following mitochondria-targeted
therapies (e.g., by the pharmacological enhancement of OXPHOS) could be dynamically
mapped within the scope of adaptive trials. Subsequently, reliable data can be generated
to test if the paraclinical improvement of mitochondrial dysfunction can result in clini-
cally relevant disease modification. Even though our current understanding of disease
biology is constantly expanding, the molecular events leading to NDs are complex. They
involve an interplay of various molecular events within an individual patient and disease
course [21]. The molecular heterogeneity of NDs makes it unlikely that a single drug target
can recapitulate all pathophysiological hallmarks of a given disease entity at any given
time. A combination of potentially disease-modifying treatment strategies will likely be
combined in a tailored and highly individualized fashion [21]. Developing reliable and
pathophysiology-orientated biomarkers is a compulsory prerequisite for individualized
treatment regimes. However, the role of mitochondrial dysfunction in the development
and progression of NDs is undisputed [22]. Genetic insights and pathway-based analyses
help elucidate mitochondrial dysfunction’s complexity in NDs. We refer the reader to a
review article illustrating how these approaches help identify potential treatment strate-
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gies in patients with genetic and non-genetic Parkinson’s disease as a neurodegenerative
model disease [23]. Although the evolvement and the individual time course of suspected
mitochondrial dysfunction in NDs are only poorly understood, mitochondria-targeted
therapies can still be considered a viable treatment strategy for many of these disorders [8].
The convergence of other disease mechanisms on mitochondrial homeostasis may help
to reduce the complexity of drug development and testing [24]. The unknown temporal
dynamics of mitochondrial dysfunction may result in a cause or consequence dilemma for our
current understanding of disease biology [25]. The vital role of mitochondrial homeostasis
for neuronal survival does not necessarily require causality in identifying mitochondria as
viable treatment targets. For example, repeat expansions in the HTT gene cause HD mainly
by protein misfolding and the toxic aggregation properties of the mutated HTT protein [26].
Even though mitochondrial dysfunction may not be the primary cause of neurodegen-
eration, it can be considered a direct consequence thereof [4]. Restoring mitochondrial
homeostasis in HD could improve neuronal survival in HD. The clinical and molecular
intricacy of NDs results in a pressing need for established biomarkers of mitochondrial
dysfunction [27]. These biomarkers will shed light on the unclear clinical and molecular
temporal dynamics of disease onset and progression and improve our current under-
standing of relevant disease mechanisms and the efficacy of clinical trials by dynamically
monitoring responses to mitochondria-targeted treatments. Some promising methods are
already available to establish potential biomarkers of mitochondrial dysfunction in vivo.

1.3. The Unbundling of Metabolic Pathways: Mitochondria at the Convergence of
Human Metabolism

Mammalian metabolism is highly interwoven. Most nutrients are broken down into
intermediary metabolites of the TCA. They can enter OXPHOS via complex I (by NADH)
or complex II (by FADH2) of the electron transport chain (ETC) [8]. The metabolic conflux
to the ETC offers possibilities to measure mitochondrial impairment indirectly. Upstream
metabolites (e.g., of the TCA cycle) can subsequently accumulate to impaired OXPHOS
(see Figure 1).
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Figure 1. The interconnectedness of mitochondrial metabolism and OXPHOS-targeted neuroimaging
approaches. Here, key aspects of OXPHOS are depicted. The ETC is schematically magnified (right
upper corner). Multi-colored stars (legend: right-lower corner) indicate the respective neuroimaging
modalities employed to map this particular aspect of metabolism. 18F-BCCP-EF: 2-tert-butyl-4-chloro-
5-(6-(2-(2(18F)fluoroethoxy)-ethoxy]-pyridine-3-ylmethoxy)-2H-pyridazine-3-one. ADP: adenosine
diphosphate. ATP: adenosine triphosphate. bNIRS: broadband near-infrared spectroscopy imaging.
CoQ: coenzyme Q10. Cyt c: cytochrome c. ETC: electron transport chain. FAD/FADH2: flavin adenine
dinucleotide. MRSI: magnetic resonance spectroscopy imaging. MT-MRSI: magnetization transfer
magnetic resonance spectroscopy imaging. NAD+/NADH: nicotinamide adenine dinucleotide.
OXPHOS: oxidative phosphorylation. PET: positron emission tomography. TCA: tricarboxylic acid.
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Moreover, neurons may switch to non-OXPHOS catabolism to generate energy (e.g.,
by anaerobic glycolysis) [28]. In the past, in vivo measurements of lactate (as the end route
of anaerobic glycolysis) have been evaluated to map mitochondrial impairment in patients
with NDs [29] (see Figure 2).
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Figure 2. Exemplary determination of region-specific lactate levels by employing the 1H-MRSI
methodology. Here, we demonstrate spectra derived from an example voxel (highlighted in blue) in
the brain parenchyma of the left hemisphere (panel (A)) and the posterior portion of the left lateral
ventricle (panel (B)). The respective voxel placement is shown in axial (A.I/B.I), coronal (A.II/B.II),
and sagittal orientation (A.III/B.III). In this example, higher lactate levels can be observed in the CSF
of the lateral ventricle. 1H-MRSI: proton magnetic resonance spectroscopy imaging. Cho: choline.
Cr/Cr2: creatinine. CSF: cerebrospinal fluid. Lac: lactate. NAA: N-acetyl aspartate. ppm: parts
per million.

Interestingly, other catabolic pathways (e.g., fatty acid breakdown by β-oxidation) are
located in the mitochondria and can also be considered disease-relevant surrogate markers
of mitochondrial dysfunction [30]. The interwovenness of mammalian metabolism also
impacts the specificity of single molecules to quantify mitochondrial impairment in patients
with NDs. In redox reactions, substrates of ETC complexes are often involved in various
cellular pathways (e.g., NADH/ NAD+ as a ubiquitous coenzyme in redox reactions) [31].
The respective lack of pathophysiological specificity must be considered critically in con-
ceptualizing studies probing mitochondrial impairment in NDs. However, these limitations
extend to all studies on human metabolism and are not intrinsic to neuroimaging methods.
Subsequently, quantifying single metabolites can only be interpreted as an estimation of
in vivo mitochondrial impairment.

1.4. Neuroimaging for Patient Stratification and Therapy Monitoring in Patients with Suspected
Mitochondrial Dysfunction?

The human brain accounts for only ~2% of the total body weight [32]. Based on
the striking biomass difference between the human brain and the overall organism, it
appears doubtful whether biomarkers derived from peripheral tissue (e.g., blood) can
yield substantial diagnostic value in identifying NDs patients with cerebral mitochondrial
dysfunction [1]. This is particularly important if only distinct neuronal subpopulations (e.g.,
hippocampal neurons in AD) are predominantly involved in disease development [33]. In
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marked contrast, the brain requires ~20% of the total cardiac output volume and ~25% of
the human overall energy expenditure, pointing towards an exceptionally high metabolic
demand [32]. Most of the organism’s metabolic activity is forwarded to the generation of
ATP (by OXPHOS). Neuroimaging methods addressing the cerebral energy metabolism
could therefore result in a high diagnostic yield to non-invasively identify patients with
suspected mitochondrial dysfunction.

Interestingly, the study of brain energy metabolism has been one of the key interests
of neuroscientists since the earliest neuroimaging methods have been available. For exam-
ple, the biological origin of the blood-oxygen level-dependent imaging contrast (BOLD;
frequently applied in functional MRI studies) has been elucidated for decades [34]. How-
ever, it took a substantial amount of time to advance this method to study in vivo oxygen
consumption rates [35]. There seems to be a missing link between the exciting and rapidly
expanding field of novel neuroimaging methods and the necessary translation into clinical
practice. Indeed, there are significant challenges related to the clinical applicability of many
of the following methods. We will discuss shortcomings and advancements required to
facilitate the future applicability of these methods in clinical settings.

1.5. What Can We Measure? Mitochondrial Bioenergetics and Oxidative Stress as Promising
Neuroimaging Markers of Mitochondrial Dysfunction

The synthesis of ATP by OXPHOS is recognized as the most prominent function of
mitochondria. During OXPHOS, electrons can leak from the ETC and react with O2 to, e.g.,
form superoxides (O2

−, one class of reactive oxygen species, ROS) [36]. Electron leakage
constantly occurs during physiological conditions, and the resulting ROS are removed
by various antioxidant-active coping mechanisms [36]. Mitochondrial dysfunction can
negatively affect this process and severely disturb physiological OXPHOS [8]. The harmful
elevation of ROS has several negative downstream effects, e.g., damaging proteins, which
alter cellular homeostasis and impair neuronal survival [37]. Our current understanding of
NDs suggests that many pathophysiological hallmarks directly cause or result from OX-
PHOS disturbances and oxidative stress [8]. Therefore, the in vivo assessment of OXPHOS
and oxidative stress appear viable targets for neuroimaging methods (see Figure 1). Besides
OXPHOS and oxidative stress, other relevant pathophysiological aspects of NDs linked to
mitochondrial dysfunction could be assessed by neuroimaging methods. Three prominent
examples are:

1. the investigation of OXPHOS-upstream metabolic pathways (e.g., the TCA cycle) or
the non-OXPHOS generation of ATP (e.g., by anaerobic glycolysis) [38,39],

2. the determination of brain iron deposition by iron-sensitive magnetic resonance imag-
ing (MRI) contrasts [40,41], and

3. the assessment of neuroinflammatory surrogate markers (e.g., by fluid-sensitive MRI
sequences or ligand-specific positron emission tomography (PET) imaging) [42–44].

This review will focus on neuroimaging methods to map in vivo changes of OXPHOS
and oxidative stress. These methods are based on various physical phenomena to generate
molecule-specific image contrasts. Here, we distinguish three different physical phenomena
these methods are based on:

1. Nuclear magnetic resonance (NMR). Atomic nuclei with a non-zero nuclear spin can
be considered NMR-active. MRI and magnetic resonance spectroscopy (MRSI) utilize
this phenomenon to generate image contrast or simultaneously measure multiple
metabolites. In most MRI or MRSI studies, the NMR-phenomenon of protons (1H) is
used to derive imaging data. However, these methods can also be applied to other
NMR-active nuclei (e.g., 13C-, 15N-, 17O-, or 31P-nuclei). The use of non-1H nuclei
in neuroimaging is often referred to as hetero-, multi-, or X-nuclear MR(S)I [38,45].
The acquisition of adequate X-nuclear MRSI signals critically depends on the natural
abundance, the relative sensitivity (defined by the gyromagnetic ratio and the nuclear
spin), and T1/T2 relaxation times (using quadrupolar relaxation) of the NMR-active
isotope [38,46].
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2. Near-infrared spectroscopy (NIRS). NIRS is a physical analysis technique based on the
absorption and emission of short-waved (within the near-infrared region of the electro-
magnetic spectrum) light to detect chromophoric metabolites (e.g., hemoglobin) [47].

3. Radioactive decay. PET imaging is based on the simultaneous detection of two
gamma-ray photons produced after a positron-emitting radionuclide (β+ decay) decay.
The target-specific generation of radiotracers and the distribution of these weakly
radioactively labeled substances can be used to image biochemical and physiological
functions of the brain [48].

1.6. The Scope of this Review

In this review, we will summarize how distinct neuroimaging methods can be em-
ployed to probe mitochondrial dysfunction in vivo and why this could be relevant for
improving NDs patient care. We will focus on neuroimaging methods that can directly or
indirectly map OXPHOS impairment and oxidative stress, both viable surrogate markers of
mitochondrial dysfunction. In addition, we will discuss which steps are needed to translate
recent methodological advancements into clinical practice.

2. Neuroimaging-Based Assessments of OXPHOS-Related Complexes and Metabolites

In post-mortem studies, a significant dysregulation of ETC complexes was observed in
patients with NDs [49]. These findings strongly implicate that mitochondrial dysfunction-
linked alterations in OXPHOS can be considered a highly relevant molecular mechanism
in different NDs. Histopathological examinations revealed decreased complex I level,
preferentially in the substantia nigra (SN), in patients suffering from PD [50]. These
findings are consistent with the fact that inhibitors of complex I (such as the environmental
toxins MPTP or rotenone) can cause parkinsonism in animal models and humans [51]. HD
has been associated with defects of complex II and, to a lesser extent, complex IV [52].
The chronic administration of the complex II inhibitor 3-nitropropionic acid causes an
HD-like phenotype in rodent and non-human primate models [53]. In AD, widespread
cortical complex IV defects were identified in post-mortem brain tissue [54]. The in vivo
neuroimaging-based assessment of ETC-related metabolite levels could thus help elucidate
the complex role of OXPHOS disturbances in NDs.

2.1. 31Phosphorus-Magnetic Resonance Spectroscopy Imaging to Quantify OXPHOS-Related
Metabolite Levels In Vivo

In general, MRSI can provide a unique view into these metabolic processes in vivo [38].
NMR-active nuclei are partially shielded from the static magnetic field by surrounding elec-
trons, which causes slight magnetic field distortions. These distortions result in so-called
chemical shifts (usually expressed in parts per million, ppm), which can be used to identify
distinct metabolites in a spectrum based on their known molecular structure [55]. Besides
the flexibility and widespread applicability of 1H-MRSI, 31P-MRSI offers unique opportuni-
ties to investigate OXPHOS-related mitochondrial dysfunction in vivo. The 31P nucleus has
a significantly lower gyromagnetic ratio compared to 1H. However, the natural abundance
of the 31P nucleus in living tissues is close to 100%, resulting in robust NMR signals [56].
Therefore, 31P-MRSI can be applied to map high-energy phosphorus-containing metabolites
(HEPs), such as ATP or phosphocreatine (PCr), in vivo [56] (see Figure 3).

HEPs can be interpreted as the end route of OXPHOS. In previous studies, HEPs
have been expressed as a ratio to inorganic phosphate (iP) to account for intraindividual
differences, e.g., in the alimentary intake of phosphorus-containing nutrients [57]. HEPs
can form a highly dynamic equilibrium and can be considered together to describe the
cerebral bioenergetic state. The in vivo concentrations of AMP and ADP are usually below
the detection limits of 31P-MRSI. In addition, the reliable quantification of AMP/ADP is
hindered by the spectral overlap to other metabolites [56]. The in vivo study of HEPs has
already been applied to patients with PD [58], APD [59], AD [57], and HD [60], among
others. In addition, NAD can also be quantified by 31P-MRSI [61,62]. NAD is an essential
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coenzyme in various redox reactions and can be present in a reduced (NADH) or oxidized
(NAD+) state. NADH is the substrate of complex I of the ETC (the starting point of OX-
PHOS). In addition, experimental evidence suggests that the NADH/NAD+ ratio plays a
crucial role in regulating OXPHOS and maintaining overall mitochondrial homeostasis [31].
The NADH/NAD+ ratio could be a surrogate marker of complex I activity and the general
neuronal bioenergetic and redox state. Based on the substantial spectral overlap of NADH
and NAD+, the 31P-MRSI-based differentiation of these metabolites requires elaborate
experimental procedures. State-of-the-art 31P-MRSI platforms have proven the technical
feasibility of NAD+/NADH differentiation in vivo [61,62]. Numerous studies have demon-
strated the involvement of NAD metabolism in NDs, such as in AD or PD. Decreased NAD
levels have been observed in both patient groups [31]. These findings finally led to the
clinical evaluation of NAD precursors as potential treatments, e.g., for PD [63]. In general,
MRSI studies benefit from high or ultrahigh magnetic field strengths to, e.g., shorten T1
relaxation times. Moreover, increased spectral resolution can substantially improve the dif-
ferentiation of neighboring or partially overlapping peaks in 31P-MRSI-derived spectra [55].
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technical feasibility of NAD+/NADH differentiation in vivo [61,62]. Numerous studies 

Figure 3. An exemplary illustration of 31P-MRSI acquisition workflow. Here, we highlighted an ac-
quired spectrum from a single voxel (blue box) displayed in axial (panel (A.I)), coronal (panel (A.II)),
and sagittal (panel (A.III)). The preprocessed (before peak-annotation) spectrum is shown in panel
(B.I). In panel (B.II), the different peaks of the spectrum have been annotated based on a model
fit (highlighted in red) by incorporating prior knowledge. Metabolite levels can be quantified by
calculating the respective area under the peak. ATP gives rise to three signal peaks (α/β/γATP) based
on the number of phosphorus nuclei in this molecule. Some metabolite peaks overlap (e.g., αATP
and NAD; right upper corner). Here, elaborate experimental setups, acquisition protocols, and higher
static magnetic field strengths are desirable to disentangle these metabolites. 31P-MRSI: 31phosphorus
magnetic resonance spectroscopy imaging. ATP: adenosine triphosphate. iP: inorganic phosphate.
NAD: nicotinamide adenine dinucleotide. PCr: phosphocreatinine. ppm: parts per million.

2.2. Dynamic Measurements of OXPHOS Reaction Kinetics by 31phosphorus Magnetization
Transfer Magnetic Resonance Spectroscopy Imaging

Combining 31P-MRSI with magnetization transfer preparation pulses (31P-MT-MRSI)
can quantify OXPHOS-related kinetic reaction parameters of in vivo ATP metabolism [64].
In particular, three reaction rates have been the subject of previous research: iP � ATP,
iP � PCr, and PCr � ATP [64]. Determining these steady-state reaction rates opens up
many exciting opportunities to study brain energy metabolism in NDs in-depth. The
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31P-MT-MRSI methodology has already been used to study patients with HD [60]. After
visual stimulation, an increase in iP � PCr and iP � ATP ratios was observed in the
occipital lobe of these patients. Following a similar experimental procedure, the investiga-
tional nutritional supplement triheptanoin restored the iP � PCr ratio in early-stage HD
patients by providing TCA cycle substrates [65]. 31P-MT-MRSI can therefore be of particular
interest to foster our understanding of impaired PCr metabolism, which has previously
been implicated in HD [66]. However, the technical complexity of 31P-MT-MRSI hinders its
widespread applicability in NDs research. 31P-MT-MRSI remains an active research area
but has already been applied in other NDs, such as monogenic and idiopathic PD [58].

2.3. Quantitative Assessment of Mitochondrial Complex I by Positron Emission Tomography
Imaging Radiotracer

Based on the prominent role of complex I disturbances in NDs, several PET radio-
tracers have been evaluated for quantitative imaging [67]. Out of these, the radiotracer
18F-BCPP-EF has entered clinical evaluation. Rodent studies have shown that 18F-BCPP-EF
yields a high molecular specificity and undergoes dynamic changes following the adminis-
tration of complex I inhibitors [68]. Studies in non-human primates additionally validated
these findings in conscious, untreated, and MPTP-treated animals [69,70]. 18F-BCPP-EF is
currently under investigation for the assessment of patients with NDs. In PD patients, de-
creased binding levels of 18F-BCPP-EF have been observed in several neuroanatomical key
structures without reaching statistical significance [71]. In the same study, the longitudinal
assessment of PD patients showed a trend without reaching the significance level [71]. In a
multimodal PET imaging study in patients with AD, 18F-BCPP-EF binding is closely associ-
ated with the in vivo tau deposition but not the overall amyloid load [72]. 18F-BCPP-EF
yields immense promises for evaluating mitochondrial dysfunction in patients with NDs.
Even though more extensive studies are needed to assess the clinical applicability, a recent
study has shown a convincingly high test-retest variability as an essential prerequisite for
upcoming clinical trials [73].

2.4. Broadband Near-Infrared Spectroscopy to Dynamically Map Cytochrome c Oxidase Activity

NIRS helps to understand in vivo brain physiology and disease states non-invasively.
Near-infrared light can, to a certain extent, penetrate living tissues. Here, absorbent
molecules (so-called chromophores) can be measured by their respective tissue-related light
attenuation [47]. Neuroscientists have widely used NIRS to measure changes in oxygenated
(HbO2) and deoxygenated (Hb) hemoglobin, mainly following neuronal activation. Here,
distinct frequencies of the near-infrared spectrum are usually used to map HbO2/Hb [47].
The mitochondrial enzyme cytochrome c oxidase (CCO) is one of the most abundant enzymes
found in mammals. CCO can also serve as a chromophore in NIRS studies. Interest-
ingly, the extinction spectrum of CCO changes based on its respective redox state (CCO
vs. oxCCO) [74]. This phenomenon is of particular interest to measure OXPHOS distur-
bances by this methodology. However, lower CCO concentrations compared to HbO2/Hb
chromophores pose a significant challenge for standard NIRS techniques [74]. CCO shows
a broad absorption peak that is significantly different from HbO2/Hb chromophores [47].
Specific hardware setups are needed to disentangle the signals derived from the other
chromophores in vivo. Ongoing advancements in standard NIRS technology led to the
development of a method called broadband NIRS (bNIRS) [74]. bNIRS emits light within
a wide frequency-range of the near-infrared spectrum to overcome these challenges [74].
Several in vitro and in vivo studies have demonstrated the successful separation of the
CCO/oxCCO signal from HbO2/Hb changes by bNIRS [47]. Usually, physiological chal-
lenges are required to induce CCO/oxCCO signal changes. Within the given experimental
setup, physiological parameters (e.g., the breathing rate) must be carefully monitored and
considered as potential cofounders of derived findings [75,76]. The overall interpretation
of derived CCO/oxCCO signal changes can be assisted by physiological models already
available [77]. Unfortunately, these devices are currently not commercially available. In
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addition, many experimental options are available, including different algorithms for data
processing, the precise definition of chromophore absorption spectra, and the number and
variety of emitted wavelengths.

3. Neuroimaging Assessments of In Vivo Oxygen Consumption

Mitochondrial dysfunction can lead to impaired brain oxygen metabolism [49]. In
recent years, various neuroimaging techniques such as PET, MRI, and MRSI have been
developed to study brain oxygen metabolism in vivo. These methods are discussed below,
and we will stress how these methods can enhance our pathophysiological understanding
of impaired oxygen metabolism in mitochondrial dysfunction.

3.1. 15Oxygen-Positron Emission Tomography Imaging of In Vivo Oxygen Metabolism

The first method developed to probe brain oxygen metabolism was PET imaging
with 15O2 tracers. Here, the patient inhales 15O2-enriched breathing gas, which enters the
human body via the respiratory system, diffuses into the bloodstream, and reaches the
brain tissue via the capillary bed. This process can be modeled by the single-tissue kinetic
model [78,79]. Different kinetic parameters can be derived from this model; the extraction
of 15O2 from the bloodstream into the brain tissue has been termed oxygen extraction
fraction (OEF) [80]. Aerobic metabolic processes in the brain tissue then convert 15O2 to
metabolic 15O-containing water (H2

15O), which can recirculate through the body. To enable
complete quantification of oxygen consumption, three-step methods consisting of three
separate PET measurements on 15O2, C15O, and H2

15O or C15O2 are usually used [80].
Nevertheless, there are already promising investigations regarding faster methods

that require fewer PET scans using dual tracers [81]. In addition, arterial blood sampling
has been evaluated to provide input variables for the 15O2-PET tracer kinetics model and
the post-processing of neuroimaging data [78,82]. In general, blood sampling has been
performed manually, but methodological advancements led to the automation of sampling
regimes [81]. However, repetitive blood sampling is cumbersome and a significant burden
for patients. The administration of inhalable radiotracers can be classified as continuous
or bolus inhalation. The latter is characterized by short inhalation times of only up to one
minute [79,83]. Bolus inhalation requires lower radiation doses and overall shorter scan
times. The dynamic nature of the bolus inhalation regime helps to disentangle the temporal
resolution of key aspects of oxygen metabolism, including the characterization of the cere-
bral blood flow (CBF) and the cerebral metabolic rate of oxygen consumption (CMRO2) [80].
Accordingly, the investigator must carefully select the advantages and disadvantages of
respective experimental designs. Another challenge is the brain physiology itself; physi-
ological parameters (such as heart rate, cardiac output volume, and breathing frequency,
among others) should be kept as constant as possible. However, this crucial aspect is often
challenged by the long and complex image acquisition procedures [80,84]. One significant
limitation of 15O-PET studies is their complex logistical requirements [85]. For example,
the tracer activity and flow rate must be set as accurately as possible; otherwise, large
measurement errors can occur [86,87]. Since the 15O-tracer has a short half-life of approxi-
mately two minutes, a cyclotron should be as close as possible to the recording site, which
substantially hinders the widespread clinical applicability [85,88]. In addition, handling
gaseous radioactive tracers raises safety concerns that need to be addressed. Shielding
devices and gamma camera-controlled exhaust systems for the scanner room have been
successfully employed in the past [89].

The applicability of 15O2-PET within NDs research is critically dependent on the
standardization of the experimental setup, image acquisition parameters, and reliable
pre-and post-processing algorithms for subsequent neuroimaging analyses. Even though
the 15O2-PET methodology has been a subject of interest for decades, extensive research
is still needed to enter systematic clinical evaluation. Currently, 15O2-PET imaging is con-
sidered the gold standard for investigating cerebral oxygen metabolism, particularly by
determining physiological key parameters such as the OEF or CMRO2 [80,90]. Therefore, al-
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though 15O2-PET imaging has been performed several times in humans, it has usually been
done in healthy individuals and rarely in patients with NDs [91–93]. For further in-depth
information about the historical development of the 15O2-PET methodology [82], relevant
aspects for the experimental implementation of 15O2-PET, respective implications for the
translation of 15O2-PET into clinical practice [94], as well as technical considerations [80],
we kindly refer the interested reader to abovementioned review articles.

3.2. 17Oxygen-Magnetic Resonance Spectroscopy Imaging to Assess the Cerebral Metabolic Rate of
Oxygen Consumption

At the end of the 1980s, an MRI-based alternative to 15O2-PET imaging emerged [90].
In contrast to the radioactive 15O isotope, the non-radioactive oxygen isotope (17O) has
been identified as an NMR-active, non-zero spin system [95]. Similar to 15O2-PET imaging,
17O2-enriched gases are inhaled and diffused via the respiratory and vascular systems
throughout the whole body of an organism. Regarding the assessment of mitochondrial
dysfunction, H2

17O is synthesized by complex IV during OXPHOS [38,88]. Preferably,
ultrahigh-field detection of H2

17O turnover by 17O-MRSI yields promising opportunities
for the non-invasive assessment of cellular metabolism [96–99]. In this regard, the signal
obtained by one measurement simultaneously reflects three processes occurring in vivo:

1. oxygen consumption in the mitochondria via complex IV,
2. leaching of H2

17O from the brain via blood perfusion, and
3. recirculation of H2

17O-containing blood. Here, H2
17O is generated throughout the

whole body of a given organism and returns to the brain via the bloodstream [38].

In 17O-MRSI neuroimaging studies, a high rate of H2
17O generation indicates a high

degree of oxygen consumption. Dynamic measurements of the oxygen consumption allow
for the estimation of both CMRO2 and CBF [88]. To date, the quantification of brain CMRO2
via 17O-MRSI has been performed in animal models [95,100,101] and humans [102]. In
addition, previous 17O-MRSI studies were able to differentiate CMRO2 in cerebral gray
and white matter [102–104]. To a certain degree, in vivo 17O-MRSI allows for the spatially
resolved detection of the NMR-signals, which is often considered an intrinsic limitation
of heteronuclear MRSI studies [90,105]. However, specific MRI hardware setups and
acquisition protocols are necessary for 17O-MRSI studies, in particular because of the short
T1 and T2 relaxation times [88]. Compared to 1H- or 31P-MRSI, 17O-MRSI depends more
on the use of high or ultra-high static magnetic field strength (usually ≥7 T) [96]. Spatial
resolutions down to only a few millimeters have been obtained in animal studies. The
feasibility of the dynamic in vivo 17O-MRSI method has already been confirmed for various
magnetic field strengths ranging from 3 T to 16.4 T [106–108]. Likewise, feasibility studies
on the brains of healthy and diseased individuals have yielded encouraging results [103].
Distinct hardware requirements, the limited availability of 17O-MRSI sequences, and the
high production costs of 17O-enriched gases currently hinder widespread utilization in
human-related studies. Several approaches are being evaluated to tackle these challenges,
e.g., by reusing 17O-enriched gases [103].

3.3. Estimating Brain Oxygen Metabolism by Conventional Magnetic Resonance Imaging Methods

In contrast to the abovementioned MRSI-based approaches, methodological advance-
ments of conventional MRI methods have also been adapted to study brain oxygen
metabolism. These methods are based on classical 1H-MRI and can only indirectly of-
fer insights into cerebral oxygen consumption using physiological models [109–114]. There
are, in general, three indirect methods to map oxygen metabolism by conventional MRI
methods [88]:

1. BOLD functional magnetic resonance imaging (fMRI). Here, physiological challenges
(using interleaved hypercapnic and hyperoxic states) are demanded to calibrate the
fMRI signal [115].
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2. T2-relaxation-under-tagging (TRUST) and susceptibility-based oximetry (SBO) [116,117].
Here, venous oxygenation is investigated using the spin labeling principle (similar to
arterial spin labeling, ASL).

3. Quantitative BOLD imaging to determine the cerebral venous blood volume and deoxy-
hemoglobin concentrations from transverse relaxation times (T2 or T2*) [118,119].

One significant advantage of these approaches is that clinically widely available MRI
scanners can be used [120]. In general, alterations of the BOLD signal are composed
of changes in blood flow and the change in oxygen metabolism following neuronal de-
mand [120]. The so-called calibrated fMRI can estimate the latter. Calibration steps are
performed beforehand to disentangle the different origins of the BOLD signal. For example,
the study participant inhales predefined breathing gas mixtures, either containing higher
ratios of CO2 or O2, to alter the cerebral blood flow in a standardized and predictable
manner. Respective changes of the BOLD signal in response to these gas mixtures can be
combined with other physiological parameters (e.g., the breathing rate) as input variables
for the model-based estimation of key aspects of the cerebral oxygen metabolism [120]. This
methodology has evolved to the more advanced dual-calibrated fMRI method. Here, ASL and
BOLD imaging have been combined to objectively quantify the changes in cerebral perfu-
sion following respiratory challenges [35,121]. In the previous method, cerebral perfusion
changes have only been assumed based on the known regulation of the neurovascular tone
by altered CO2- or O2 levels. However, individual differences in cerebral perfusion follow-
ing the standardized administration of predefined breathing gases have been black-boxed.
Therefore, the combination of ASL and BOLD imaging in dual-calibrated fMRI studies adds
another level of certainty to quantifying OEF, CMRO2, and CBF in vivo [121]. In summary,
several promising methods are available to map cerebral oxygen metabolism, but most
of them have yet to be established in comprehensive studies. In particular, multimodal
neuroimaging assessments of cerebral oxygen metabolism will likely provide rewarding
impulses for future research.

4. Neuroimaging-Based In Vivo Assessment of Oxidative Stress

Oxidative stress is a well-established mechanism by which degeneration occurs in
NDs [122]. In general, oxidative stress is characterized by an imbalance of pro-oxidant
substances (e.g., hydrogen peroxide, H2O2) and cellular coping mechanisms (e.g., the
enzymatic degradation of pro-oxidant molecules). The balance between pro- and antiox-
idant mechanisms is highly regulated. An excessive amount of pro-oxidant molecules
can substantially damage various cellular components, including proteins, lipids, and
DNA. However, many pro-oxidant molecules result from physiological processes and have
important intracellular signaling functions [123,124]. During OXPHOS, by-products of ATP
synthesis, e.g., ROS, can promote neuronal development and homeostasis if they do not
exceed critical thresholds [123,125,126]. A plethora of cellular coping mechanisms against
oxidative stress has been described. Two main concepts can be distinguished:

1. antioxidant enzyme systems (such as glutathione reductase, glutathione peroxidase,
and catalases, among others) [127] and

2. low-molecular-weight antioxidants (glutathione (GSH), uric acid, ascorbic acid, and
melatonin, among others) [128,129].

However, suppose these protective mechanisms are disturbed or overloaded. In that
case, excessive amounts of ROS can cause undesirable oxidative damage to lipids, proteins,
and (mitochondrial) DNA, leading to cell degeneration and functional impairment through
aberrant cell signaling and dysfunctional redox control [123,125]. The subsequent distur-
bance of cellular homeostasis can lead to a vicious cycle, i.e., if altered proteins become pro-
oxidant substances [125]. Different aspects of human brain physiology make it susceptible
to oxidative stress, e.g., by the high metabolic demand of neuronal tissue [124,126,130,131].
Mitochondria are prone to oxidative stress, mainly driven by the proximity of the ETC (as
the primary generator of pro-oxidant molecules via OXPHOS) to crucial mitochondrial
structures, such as the mitochondrial DNA (mtDNA). mtDNA damage caused by oxidative
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stress has already been identified as a frequent phenomenon in human aging [132–134].
Levels of oxidative stress exceeding physiological aging are a pathophysiological hallmark
in many NDs [124,130,135]. In preclinical studies, oxidative stress can be measured with
various methods. For example, paramagnetic electron resonance, ex vivo fluorescence
staining, or high-performance liquid chromatography analyses have been proven helpful in
elucidating the role of oxidative stress in NDs [136–138]. However, the development of neu-
roimaging methods for non-invasive, in vivo, and real-time assessments of oxidative stress
often lacks clinical validation [139]. In general, the below-listed neuroimaging approaches
can either assess one single molecular aspect of oxidative stress (i.e., by quantifying a single
low-molecular-weight antioxidant) or by estimating the redox state of the human brain
more holistically (i.e., by QUEnch-assiSTed-MRI, QUEST-MRI). These methods have intrin-
sic shortcomings, which may hinder their applicability in a clinical setting, considering the
molecular complexity of oxidative stress and its respective regulation in vivo.

4.1. Proton-Magnetic Resonance Spectroscopy Imaging to Quantify Low-Molecular-
Weight Antioxidants

Endogenous levels of ROS scavengers such as GSH and ascorbic acid have already been
measured by 1H-MRSI in rodent models and humans [140–142]. In the following paragraph,
we focus on GSH based on the eminent pathophysiological role and potential therapeutic
implications [143]. Decreased GSH levels and the resulting vulnerability to oxidative stress
have been implicated in many NDs [144–146]. Due to its thiol group, GSH has strong
antioxidant properties and is therefore considered an important oxidative stress coping
mechanism in neurons [147]. Reduced GSH can transfer electrons to ROS molecules and
renders them harmless. Two oxidized GSH molecules can form a disulfide bond resulting in
the synthesis of GSH disulfide (GSSG). The enzyme GSH reductase can reconvert the GSSG
dimers into the biologically active, reduced GSH monomers. Thus, sufficient GSH levels are
crucial to protect neurons against ROS-mediated cellular damage, support oxidative stress
defense mechanisms, and maintain the physiological redox state in neurons [148–150].
Concludingly, the supplementation of GSH (or its precursor N-acetylcysteine, NAC) has
been considered a dietary supplement in healthy individuals and a viable treatment regime
in patients with NDs [151–155]. However, GSH/NAC supplementation may benefit only
those individuals with low GSH levels before treatment, as has already been demonstrated
in healthy individuals [156]. Significant challenges, such as the overall sensitivity of
1H-MRSI to detect GSH or the spectral overlap with other 1H-NMR active metabolites,
necessitated technological advancements in the conventional 1H-MRSI methodology (e.g.,
by spectral editing techniques). For an extensive methodological review of these techniques,
we refer to Choi et al. [157]. To date, the MEscher GArwood-Point RESolved Spectroscopy
technique has been preferred in the previous studies [142,152,158]. The in vivo detection of
cerebral GSH levels via 1H-MRSI will enhance our pharmacokinetic understanding of GSH
supplementation and can advance personalized treatment decisions [152,158,159].

4.2. Probing Oxidative Stress by Over-Reductive Tissue State-Specific Radiotracer

The PET radioligand 62Cu-ATSM has been evaluated as a marker of oxidative stress
in vitro and in vivo [160]. 62Cu-ATSM accumulates in brain regions with an intracellular
over-reductive state, an epiphenomenon caused by oxidative stress [160]. In vitro studies
have shown that higher intracellular retention of 62Cu-ATSM was present in cell lines with
increased ROS due to mitochondrial dysfunction [161,162]. In PD patients, a correlation
between increased 62Cu-ATSM accumulation in the striatum and the overall disease severity
has been demonstrated [163]. Similar findings have also been shown for MND patients,
where the increased 62Cu-ATSM retention in the motor cortex correlated with the functional
disability [164]. Based on these promising findings, further studies will likely provide
exciting insights into the disease mechanisms of other NDs.
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4.3. Iron-Sensitive Magnetic Resonance Imaging to Unravel the Generation of Oxidative Stress

Susceptibility-weighted imaging (SWI) is based on the measurement of local field
inhomogeneities introduced by the presence of non-heme iron or copper [165,166]. The
Fenton reaction (the oxidation of organic substrates catalyzed by iron salts with H2O2) has
been identified as a primary source of ROS in NDs [167]. However, conventional SWI cannot
be applied to differentiate between Fe2+ and Fe3+ ions, a crucial methodological hurdle to
gaining deepened insights into the Fenton reaction-mediated promotion of oxidative stress.
So far, only one phantom study has been published where the differentiation of Fe2+ and
Fe3+ ions has been achieved by combining SWI and MRI relaxometry [168]. In vivo studies
are still lacking but could substantially benefit NDs research.

4.4. Assessments of the Short-Term Response to Antioxidant Treatments by QUEnch-assiSTed MRI

Most of the previously discussed neuroimaging methods can give static insights into
oxidative stress and may change within the individual disease course of patients with NDs.
However, these methods are unlikely to recapitulate short-term effects or imminent changes
in oxidative stress. The underlying idea that antioxidants could provide disease-modifying
properties has been around for decades [8]. The design of clinical trials to address the
unmet need for disease-modifying therapies in NDs encounters unique logistical chal-
lenges (e.g., caused by prolonged interventional periods to verify any disease-modifying
effect). In addition, the multi-faceted regulation of oxidative stress in vivo requires careful
decisions on promising candidate drugs, respective dosing regimes, and the correct timing
of interventions within an individual disease course [169]. To overcome these hurdles,
the neuroimaging-guided decision support and the time- and cost-effective evaluation
of potential drug candidates is highly desirable. A recent modality called QUEST-MRI
addresses many of the concerns above; here, the amount of paramagnetic ROS molecules
can be indirectly measured via treatment-induced alterations of the in vivo relaxation rate
(R1, 1/T1) [139]. QUEST-MRI does not require the administration of exogenous contrast
agents, offers a high spatial resolution, and requires only standard MRI hardware [139].
This method can potentially broaden our understanding of the regional specificity of oxida-
tive stress, can help evaluate novel antioxidant treatments in animal models or patients
with NDs, and may guide personalized treatment decisions in the future. QUEST-MRI
has already been successfully applied in rodent models and humans [170,171]. However,
studies on patients with NDs are currently lacking.

Overall, several neuroimaging methods offer promising opportunities for studying
oxidative stress. However, necessary steps towards these methods’ clinical applicability
must be taken. To date, bright and innovative approaches are available, but need procedural
standardization and further experimental validation. The pre-experimental definition of
viable neuroimaging markers must follow the proposed method of action of planned
therapeutic interventions. Due to the complexity of oxidative stress in NDs, there will most
likely be no one-size-fits-all approach.

5. Summary

Mitochondrial dysfunction, in particular impaired OXPHOS and increased oxidative
stress, plays a vital role in the pathophysiology of NDs. However, the clinical evaluation of
mitochondria-targeted therapies in these disorders yielded conflicting results, and disease-
modifying properties have not yet been reported. The complexity of in vivo mitochondrial
dysfunction is a significant challenge for identifying viable treatment targets. The neu-
roimaging methods reviewed here can serve as feasible surrogate markers of mitochondrial
dysfunction in vivo. Reliable biomarkers of mitochondrial dysfunction are urgently needed
to improve the efficacy of clinical trials and guide personalized treatments in patients
with NDs.

Furthermore, our current understanding of mitochondrial dysfunction in NDs appears
to be too simplistic. Distinct facets of in vivo OXPHOS and oxidative stress, as well as their
neuroanatomical, cellular, and subcellular compartmentalization, need to be evaluated
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within the scope of existing experimental neuroimaging techniques. Findings from distinct
spatial and temporal practical scales are required in order to ensure their clinical applicabil-
ity. The reviewed methods offer unique strengths and shortcomings for human use. These
extend but are not limited to the invasiveness of a procedure, human safety concerns (e.g.,
from radiation), logistical hurdles (e.g., the required hardware), the overall acquisition time,
the varying spatial and temporal resolution, the reproducibility of imaging results, the
detection sensitivity, acquisition times, and the pathophysiological specificity of derived
imaging contrasts. The standardization and multi-center evaluation of these methods
are necessary prerequisites for human-related studies and their translation into clinical
practice. The ongoing methodological advancements will foster a deepened understanding
of mitochondrial dysfunction in NDs and probably have implications for the development
of targeted therapies.
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