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White noise stimuli are frequently used to study the
visual processing of broadband images in the laboratory.
A common goal is to describe how responses are derived
from Fourier components in the image. We investigated
this issue by recording the ocular-following responses
(OFRs) to white noise stimuli in human subjects. For a
given speed we compared OFRs to unfiltered white noise
with those to noise filtered with band-pass filters and
notch filters. Removing components with low spatial
frequency (SF) reduced OFR magnitudes, and the SF
associated with the greatest reduction matched the SF
that produced the maximal response when presented
alone. This reduction declined rapidly with SF,
compatible with a winner-take-all operation. Removing
higher SF components increased OFR magnitudes. For
higher speeds this effect became larger and propagated
toward lower SFs. All of these effects were
quantitatively well described by a model that combined
two factors: (a) an excitatory drive that reflected the
OFRs to individual Fourier components and (b) a
suppression by higher SF channels where the temporal
sampling of the display led to flicker. This nonlinear
interaction has an important practical implication: Even
with high refresh rates (150 Hz), the temporal sampling
introduced by visual displays has a significant impact on
visual processing. For instance, we show that this

distorts speed tuning curves, shifting the peak to lower
speeds. Careful attention to spectral content, in the light
of this nonlinearity, is necessary to minimize the
resulting artifact when using white noise patterns
undergoing apparent motion.

Introduction

One-dimensional (1D; e.g., barcode) and two-
dimensional (2D; e.g., random checkerboard or dots)
white noise patterns are widely used in laboratory
settings to study the visual processing of images that
are spatiotemporally broadband. Since neurons at the
earliest stages of visual processing respond to stimuli
over a limited range of spatial and temporal frequencies
(for review, see De Valois & De Valois, 1988), observed
responses to broadband stimuli can provide insight into
how these signals are integrated in subsequent pro-
cessing stages. Some of these interactions are known to
be nonlinear. For instance, when two gratings are
combined with different contrasts, responses are
dominated by the high-contrast grating in a ‘‘winner-
take-all’’ fashion. The effects were observed both in
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neuronal populations (areas MT/MST; Kumbhani,
Saber, Majaj, Tailby, & Movshon, 2008; Miura, Inaba,
Aoki, & Kawano, 2014b) and behaviorally (Liu &
Sperling, 2006; Sheliga, Kodaka, FitzGibbon, & Miles,
2006). Some nonlinearities develop during the course of
visual processing: The speed tuning of most direction-
selective neurons in the striate cortex can be well
described by a linear summation of spatiotemporal
components (Priebe, Lisberger, & Movshon, 2006),
whereas in area MT the speed tuning bandwidth to
noise is narrower than that predicted from grating
responses (Priebe, Cassanello, & Lisberger, 2003).

In this study we quantitatively evaluated the
contribution of different spatiotemporal components in
generating human ocular-following responses (OFRs)
to white noise stimuli. To accomplish this task we
compared responses to three stimuli: white noise, band-
pass filtered noise, and noise filtered with a notch filter
(the complement of each band-pass filter). The OFR is
a short-latency tracking eye movement evoked by
motion of a textured pattern (Gellman, Carl, & Miles,
1990; Miles, Kawano, & Optican, 1986), whose
characteristics (e.g., amplitude, latency) provide a
behavioral signature of neuronal mechanisms operating
at early stages of visual processing (for review, see
Masson & Perrinet, 2012; Miles, 1998; Miles & Sheliga,
2010).

We show that the magnitude of OFRs to 1D noise
stimuli can be increased by removing components with
high spatial frequency (SF), suggesting that these have
a suppressive effect. We show that this can be explained
as a consequence of temporal sampling of the display
combined with a novel nonlinearity we demonstrate: an
inhibitory effect of flicker. We show that this distorts
estimates of speed tuning measured with temporally
sampled displays. Some preliminary results of this
study were presented in abstract form elsewhere
(Sheliga, Quaia, FitzGibbon, & Cumming, 2014a,
2014b).

Experiment 1

Materials and method

Many of the techniques are described only briefly
because they are similar to those used in this laboratory
in the past (e.g., Sheliga, Chen, FitzGibbon, & Miles,
2005). Experimental protocols were approved by the
institutional review committee concerned with the use
of human subjects. Our research was carried out in
accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki), and
informed consent was obtained for experimentation
with human subjects.

Subjects

Three subjects took part in this study: two were
authors (BMS and EJF), and the third was a paid
volunteer (AGB) who was naı̈ve to the purpose of the
experiments. All subjects had normal or corrected-to-
normal vision. Viewing was binocular.

Eye-movement recording

The horizontal and vertical positions of one eye
(right: BMS and EJF; left: AGB) were recorded with an
electromagnetic induction technique (Robinson, 1963).
A scleral search coil was embedded in a silastin ring
(Collewijn, Van Der Mark, & Jansen, 1975), as
described by Yang, FitzGibbon, and Miles (2003).

Visual display and stimuli

Experiments took place in a darkened room.
Subjects’ heads were positioned using a head band and
adjustable rests (for the forehead and chin). Visual
stimuli were presented on a 21-in. cathode ray tube
(CRT) monitor located straight ahead 45.7 cm from the
corneal vertex. The monitor screen had 1024 3 768
pixel resolution (20.55 pixels/8, directly ahead of the
eyes), a vertical refresh rate of 150 Hz, and a mean
luminance of 20.8 cd/m2. The RGB signals from the
video card reached the RGB inputs of the monitor via
an attenuator (Pelli, 1997) and a video signal splitter
(AC085A-R2; Black Box Corporation, Lawrence, PA),
providing the 11-bit grayscale resolution of black-and-
white images.

Visual stimuli were seen through a rectangular
aperture (approximately 258 3 258; 512 3 512 pixels)
centered directly ahead of the eyes. Stimulus motion
was horizontal at approximately 228, 448, or 888/s
(achieved by shifting an image by 3, 6, or 12 pixels each
video frame, respectively). Three types of stimuli were
implemented.

� White noise: Vertical 1D binary white noise stimuli
(vertical barcode, such as the one shown in Figure
1A) were constructed by randomly assigning a
‘‘black’’ or ‘‘white’’ value to each successive column of
pixels. The upper panel of Figure 1B shows the results
of 1D fast Fourier transformation (FFT) of such a
stimulus along the axis of motion and illustrates the
fact that, on average, all SFs are equally represented.
The 1D noise stimuli always had 32% root mean
square (RMS) contrast.
� Band-pass filtered noise: The 1D white noise images
(32% RMS contrast) were filtered using a band-pass
filter that was Gaussian on a log scale. The central SF
of the filter varied from 0.0625 to 4 cpd in half-octave
increments, while the full width at half maximum
(FWHM) was always set to two octaves. We used a
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fixed bandwidth on a log scale because this approx-
imately describes the SF tuning of neurons in the
striate cortex (e.g., De Valois, Albrecht, & Thorell,
1982). Although De Valois et al. (1982) showed a
slight decrease in octave bandwidth with SF, the
bandwidth is more nearly constant in log frequency
than in linear frequency. Our two-octave bandwidth
is slightly larger than the mean reported by De Valois
et al. (1982), but we chose it because it produces

higher RMS contrasts and hence more robust OFRs.
The middle panel of Figure 1B shows the FFT of a
filtered noise stimulus. Because the bandwidth was
fixed on a log scale, filtered noise stimuli with higher
central SF had higher RMS contrast.
� Notch filtered noise: A range of SFs were removed
from the 1D noise using the same Gaussian function
of SF as used for band-pass filtering. Thus, these
filters were the complement of the band-pass filters:

Figure 1. Experiment 1. (A) An example of vertical 1D white noise stimulus (i.e., vertical barcode): a scaled version of a 258 3 258

1-pixel-wide pattern. (B) Upper panel: Fourier composition of a 1D 1-pixel-wide white noise stimulus. Middle panel: Fourier

composition of a 2-cpd filtered white noise stimulus. Lower panel: Fourier composition of a 1D 1-pixel-wide white noise stimulus with

notch at 2 cpd. (C) Mean eye velocity profiles over time to unfiltered white noise (dotted black trace) as well as to white noise stimuli

depleted of various SF bands (noted by grayscale coding of velocity traces; see the insert). Subject BMS. Each trace is the mean

response to 152 to 161 repetitions of the stimulus. Abscissa shows the time from the stimulus onset; horizontal dotted line

represents zero velocity; horizontal thick black line beneath the traces indicates the response measurement window. (D) Fourier

composition of a 1D 4-pixel-wide white noise stimulus.
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The sum of the band-pass filtered image and the
notch filtered image reconstructs the 1D binary noise
pattern. The lower panel of Figure 1B displays the
FFT of a stimulus with a notch at 2 cpd.

OFRs to band-pass filtered stimuli were studied for
the 448/s speed only and were randomly interleaved in a
single block of trials (54 trials/block), with the other
two stimulus types moving at this same speed. OFRs to
stimuli moving at 228/s and 888/s were run in separate
experimental sessions, and a single block (56 trials/
block) comprised randomly interleaved unfiltered and
notch filtered stimuli moving at either speed. In
Experiment 1C (below), responses to band-pass stimuli
were studied with a fixed temporal frequency (TF).

In Experiment 1 we did not adjust the luminance
contrast of the stimuli after filtering. Because our filters
had constant log bandwidth, they removed more
contrast energy with increasing center frequency. If we
had normalized the contrast after filtering, then these
stimuli would have contained more contrast energy at
low frequencies that unfiltered stimuli. This would have
made any increase in OFR difficult to interpret.
Without normalization, the fact that simply removing
contrast energy leads to an increase in OFR clearly
indicates that the components removed have a sup-
pressive effect in the unfiltered stimulus.

Experiment 1B

Experiment 1B examined whether the OFR TF
tuning depended on SF. Vertical sinusoidal gratings
(32% Michelson contrast) shifted horizontally with a
range of TFs: 1.67, 2.5, 4.17, 6.25, 8.33, 12.5, 16.7, 25,
and 37.5 cycles/s. Two SFs were tested in each subject:
0.125 and 0.5 cpd. As in all other experiments in this
article, stimuli occupied a rectangular aperture (ap-
proximately 258 3 258) centered at fixation. A single
block of trials had 36 randomly interleaved stimuli:
nine TFs, two SFs, and two directions of motion (left
vs. right).

Experiment 1C

Experiment 1C examined the OFR SF tuning for
band-pass filtered noise stimuli. Central SFs varied
from 0.0625 to 2 cpd in octave increments, and the
FWHM was two octaves. The speed of each stimulus
was chosen such that its central SF moved with the
near-optimal TF: 23.4, 19, and 17.1 cycles/s for subjects
AGB, BMS, and EJF, respectively. A single block of
trials had 12 randomly interleaved stimuli: six central
SFs and two directions of motion (left vs. right). Note
that because of our fixed octave bandwidth, RMS
contrast increased with SF. Therefore, this differs from

a traditional measurement with gratings, but it does
more directly measure the contribution of frequency
components present in our white noise stimulus.

Experiment 1D

Experiment 1D assessed the impact of temporal
incoherence (‘‘flicker’’) on the OFRs. The stimulus was
the sum of two band-pass filtered noise stimuli: one
moving and one containing a different randomly
chosen filtered noise sample on each frame (which we
call flicker). The speed of the moving stimulus was
chosen to produce a TF of 19.2 Hz for the central SF.
For comparison, moving stimuli were also presented in
isolation. The FWHM of all filters (Gaussian envelope
on log scale) was two octaves. The central SF of the
moving stimuli was 0.125 or 0.5 cpd, and the RMS
contrast was 5%. ‘‘Flickering’’ samples were produced
by filtering 32% RMS contrast 1D white noise images.
Their central SFs varied from 0.0625 to 4 cpd in octave
increments, and samples with higher central SF had
higher RMS contrast. Thirty-two randomly interleaved
stimulus conditions comprised a single block of trials.

Procedures

Experimental paradigms were controlled by two
personal computers (PCs), which communicated via
Ethernet (TCP/IP protocol). The first PC utilized Real-
Time EXperimentation software (Hays, Richmond, &
Optican, 1982), which provided the overall control of
the experimental protocol, acquisition, display, and
storage of the eye-movement data. The other PC
utilized the Psychophysics Toolbox extensions of
Matlab (Brainard, 1997; Pelli, 1997) and generated the
visual stimuli.

At the start of each trial a stationary stimulus
(randomly selected from a lookup table) and a fixation
target (diameter¼ 0.258) appeared together at the
screen center. After the subject’s eye had been
positioned within 28 of the fixation target and no
saccades had been detected (using an eye velocity
threshold of 188/s) for a randomized period of 600 to
1000 ms, the fixation target disappeared and motion
commenced. The motion lasted for 200 ms; the screen
then turned to uniform gray (luminance¼ 20.8 cd/m2),
marking the end of the trial. A new stimulus appeared
after a 500-ms intertrial interval, signaling a new trial.
The subjects were asked to refrain from blinking or
shifting fixation except during the intertrial intervals
but were given no instructions relating to the motion
stimuli. If no saccades were detected for the duration of
the trial, then the data were stored; otherwise, the trial
was aborted and repeated within the same block. Data
collection usually occurred over several sessions until
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each condition had been repeated an adequate number
of times to permit good resolution of the responses
(through averaging; the exact number of trials per
condition is indicated in the legends of all figures that
present experimental data).

Data analysis

The calibration procedure provided eye-position
data that were fitted with second-order polynomials
and later used to linearize the horizontal eye-position
data recorded during the experiment. Eye-position
signals were then smoothed with an acausal sixth-order
Butterworth filter (3 dB at 30 Hz), and mean temporal
profiles were computed for each stimulus condition.
Trials with microsaccadic intrusions (that had failed to
reach the eye velocity cut-off of 188/s used during the
experiment) were deleted. To minimize the impact of
directional asymmetries and boost the signal-to-noise
ratio, the mean horizontal eye position with each
leftward motion stimulus was subtracted from the
mean horizontal eye position with the corresponding
rightward motion stimulus (the mean horizontal eye
position). Mean eye velocity was estimated from
differences between mean horizontal eye-position
samples 10 ms apart (central difference method) and
evaluated every 1 ms. Response latency was estimated
by determining the time after stimulus onset when the
mean eye velocity first exceeded 0.18/s. The initial
OFRs to a given stimulus were quantified by measuring
the changes in the mean horizontal eye-position signals
(OFR amplitude) over the initial open-loop period—
that is, over the period up to twice the minimum
response latency. This window always commenced at
the same time after the stimulus onset (stimulus-locked
measures) and, for a given subject, was the same in all
experiments reported in this paper (66–132, 66–132,
and 74–148 ms for subjects AGB, BMS, and EJF,
respectively).

All error bars in the figures are one standard error of
the mean (actually, they were smaller than a symbol
size in the vast majority of the OFR amplitude cases
and therefore not visible on the graphs). For panel D in
Figure A1, a bootstrapping procedure was used to
construct 95% confidence intervals.

Results

Figure 1C compares mean eye velocity profiles in
response to white noise (dotted black trace) with
those in response to white noise stimuli after notch
filtering (noted by grayscale coding of velocity traces).
These profiles were obtained from subject BMS for
stimuli moving at 888/s. Removing low-SF compo-
nents produced response reductions: The light-gray

traces fall below the response to unfiltered stimuli
(dotted trace). Conversely, removing high-SF com-
ponents led to OFR enhancement, as all dark solid
traces lie above the dotted one. The strongest
attenuation and enhancement were observed for
notch filters centered at approximately 0.18 and 1
cpd, respectively. These features are quantified in
Figure 2A through C, which shows how the OFR
amplitudes change as a function of the central SF of
the notch filter in three subjects. The OFR amplitude
change for each speed of motion is calculated relative
to the response to unfiltered noise moving at the same
speed (the thin horizontal dotted lines indicate no
change in response). For all three test speeds, we
observe attenuation of the OFR amplitude when low
SFs are removed. As speed increases, the attenuation
becomes greater and the effect is maximal at lower
SF. In two subjects (AGB and EJF), for the lowest
speed used (228/s; blue square symbols), removing
high-SF components had no effect. In all other cases
the OFR is enhanced by removing high-SF compo-
nents, and again as speed increases the maximal effect
moves to lower SF. Band-pass filtered noise was
tested at 448/s only, and the OFR amplitudes to such
stimuli are shown by filled black circles in Figure 2D
through F. For comparison, the responses to notch
filtered noise moving at the same speed (open black
circles in Figure 2A through C) are replotted here as
well (open gray circles), showing that the central SFs
of a filtered stimulus producing the strongest OFR
and a notch producing the strongest OFR attenuation
are very similar. On the other hand, in the high SF
range where notch filters produced enhancement, the
band-pass filtered stimuli produce weak responses. At
the highest SFs, responses to band-pass filtered
stimuli were often in the reverse direction. This
outcome is most likely a manifestation of spatial
aliasing: Vertical arrows below the horizontal axes of
Figure 2D through F indicate the SF at which aliasing
produces the optimal TF in the reverse direction.
Note that the magnitude of these reversed responses is
much smaller than the magnitude of the enhancement
produced by notch filtering, so it seems that spatial
aliasing is not responsible for the bulk of this
enhancement.

A straightforward qualitative interpretation of all
these findings is that high and low SFs play very
different roles. It seems like low SFs provide most of
the ‘‘drive’’ for the OFR, in a way that straightfor-
wardly reflects the effect of these SF components
presented alone. Higher SF components seem to give
rise to a form of inhibition that is not seen when these
components are presented alone. In order to test these
ideas quantitatively, we now explore these two com-
ponents in more detail.
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OFR drive

The properties of the OFR have been extensively
studied using luminance-modulated sinusoidal grat-
ings, and the OFR magnitude is known to depend on
SF (e.g., Sheliga et al., 2005), TF (Gellman et al.,
1990), and contrast (e.g., Sheliga et al., 2005). In order
to test whether the drive inferred from Figure 2 might
be explained by a linear summation of spatiotemporal
components, it is necessary to estimate responses to

many combinations of SF and TF. This is a great deal
simpler if the responses are a separable function of SF
and TF, so we first examine this question in
Experiment 1B. Such spatiotemporal separability is
observed in the majority of simple cells in the striate
cortex as well as in a considerable number of complex
cells (Priebe et al., 2006) and neurons in areas MT and
MST (Miura, Inaba, Aoki, & Kawano, 2014a; Priebe
et al., 2003).

Figure 2. Experiment 1. (A–C) Dependence of mean OFR amplitude on central SF of the notch filter for three speeds of motion: blue

squares¼ 228/s; black circles¼ 448/s; red diamonds ¼ 888/s. Data are displayed as a change in the OFR amplitude relative to the

same-speed unfiltered white noise responses (noted as thin horizontal dotted lines at the ordinate axis zero level). (D–F) Dependence

of mean OFR amplitude on central SF of filtered noise stimuli. Filled black circles and diamond¼data; black dashed lines¼ Equation 3

predictions. Additional symbol conventions are shown in the rectangular insert below panels D through F. See main text for details.

Subject AGB ¼ panels A and D (172–236 trials/condition); subject BMS ¼ panels B and E (106–161 trials/condition); subject EJF ¼
panels C and F (118–178 trials/condition).
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Figure 3. Experiment 1B: Normalized TF tuning curves for sinusoidal gratings of different SFs for subjects AGB (panel A; 99–124 trials/

condition), BMS (panel D; 127–135 trials/condition), and EJF (panel G; 68–80 trials/condition). Open circles¼ 0.125 cpd; filled circles

¼ 0.5 cpd; vertical dotted line¼ optimal TF. Experiment 1C: SF tuning curves for filtered noise stimuli moving at near-optimal TF for

�
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Panels A, D, and G of Figure 3 show the normalized
TF tuning curves obtained in Experiment 1B for
sinusoidal gratings of different SFs from subjects AGB,
BMS, and EJF, respectively.1 Though SFs of sine wave
gratings differed fourfold, their TF tuning was very
similar—compare the open and filled circles data—
indicating that the responses are well described by a
separable function of SF and TF. The TF dependence
was well described by a skewed Gaussian, and the
strongest OFR amplitudes were recorded at 21.8, 15.7,
and 18.9 cycles/s for subjects AGB, BMS, and EJF,
respectively. See Supplementary Table S1 for the full
list of fit parameters. These results replicate the findings
of Gellman et al. (1990), who used continuous rather
than apparent motion stimuli.

Given this separable response, we can combine the
TF tuning with a measure of SF tuning at a single TF
to estimate the full spatiotemporal response surface. In
order to do this, we again used band-pass filtered noise,
and then set the speed such that the central SF was
always moving with the optimal TF. We chose to
measure SF tuning with filtered noise to limit the extent
to which we depend on an assumption of linear
summation over contrast. Since neurons in the striate
cortex have bandwidths that increase with SF on the
linear scale, white noise stimuli have higher contrast
within the passband as SF increases. The RMS contrast
of the stimuli used in Experiment 1C followed this
pattern so that the results can be interpreted without
requiring a strong assumption of a linear contrast
response. Panels B, E, and H of Figure 3 show the SF
tuning curves obtained in this way. The SF dependence
is well described by a skewed Gaussian function of log
frequency, and the strongest OFR amplitudes were
recorded with central SFs of 0.23, 0.27, and 0.30 cpd
for subjects AGB, BMS, and EJF, respectively.
Supplementary Table S2 provides the full list of fit
parameters. Finally, the full spatiotemporal response
surface was constructed by taking the product of the
TF and SF tuning data fits under the assumption of
spatiotemporal separability and is shown in panels C,
F, and I of Figure 3 for subjects AGB, BMS, and EJF,
respectively.

The black lines in panels C, F, and I of Figure 3
show the spatiotemporal frequency profiles of white
noise stimuli moving at 228/s (solid lines), 448/s (dashed
lines), and 888/s (dotted lines)—that is, the motion

speeds used in Experiment 1.2 These same profiles are
shown in Figure 3J through L as a function of SF. For
each motion speed, a slightly different SF produces the
strongest drive (given by the peaks of the curves). The
locations of these peaks (for each subject) are marked
by color- and symbol-coded arrows located below
Figure 2A through C. These lie very close to the
minimum in the response to a notch filtered stimulus,
confirming that this notch reflects the simple with-
drawal of drive. Figure 2A through C also shows that
larger speeds produce deeper troughs; this is also
reflected in the drive estimates from Figure 3J through
L. Taken together, these findings suggest that a
relatively simple summation of spatiotemporal com-
ponents accounts for the OFR drive produced by white
noise stimuli. Note, however, that a purely linear
summation is unlikely to provide a good account: The
width of the trough produced by notch filtering is
considerably smaller than the width of the function
describing excitatory responses to band-pass stimuli.3

This may reflect the winner-take-all behavior governing
the combination of components of different contrasts
(e.g., Sheliga et al., 2006), a possibility we return to
below.

OFR inhibition

OFRs to white noise stimuli lacking high-SF
components were stronger than those to unfiltered
noise (Figure 2A through C). This suggests that high-
SF components exert inhibitory influences on mecha-
nisms driving an OFR. Importantly, this inhibition
appears to reflect a nonlinear interaction: The band-
pass stimuli at these SFs do not produce substantial
negative responses. One possible candidate for this
inhibition might be a consequence of using apparent
motion stimuli, which contain a series of fixed-
amplitude spatial displacements applied for a number
of successive video frames. If this step size is large
relative to the receptive field size of a direction-selective
neuron, then the receptive field stimulation is equiva-
lent to stimulation with a different noise sample on
each video frame, which we call flicker. Although
flicker does not produce a consistent motion signal, it
may activate the channels in a way that can interfere
with other motion signals. In order to test this
possibility explicitly, in Experiment 1D we constructed

 
subjects AGB (panel B; 123–133 trials/condition), BMS (panel E; 193–199 trials/condition), and EJF (panel H; 99–109 trials/condition).

Vertical dotted line¼optimal central SF. The OFR spatiotemporal surfaces are derived from the TF and SF tuning data for subjects AGB

(panel C), BMS (panel F), and EJF (panel I). Black lines on the surface¼ spatiotemporal frequency profiles (SF-TF profiles) for 228/s

(solid lines), 448/s (dashed lines), and 888/s (dotted lines). SF-TF profiles as a function of SF for subjects AGB (panel J), BMS (panel K),

and EJF (panel L): solid blue lines¼ 228/s; dashed black lines¼ 448/s; dotted red lines¼ 888/s. Gray shaded areas¼ examples of the

summation areas for notch filtered (panel K) and band-pass filtered (panel L) noise stimuli. See main text for details.
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stimuli by summing one moving pattern (band-pass
filtered noise at a near-optimal TF) and one flickering
pattern (band-pass filtered noise, where we selected a
different noise pattern on each video frame).4 Figure
4A through C shows that the addition of flickering
stimuli (large circles) greatly reduced the OFRs’
responses to moving stimuli (small circles show
responses to a moving stimulus in isolation). The effect
depended on the SF of the flickering stimulus:
Flickering stimuli with central SFs in the range of 0.5 to
1 cpd were the most detrimental. The effect was largely
unaffected by changes in the SF of the moving
stimulus. Figure 4D through F plots change in OFR
amplitude as a function of flickering central SF. Pooled
data were described satisfactorily by a single semilog
Gaussian fit (r2¼ 0.760, 0.804, and 0.925 for subjects
AGB, BMS, and EJF, respectively). See Supplementary
Table S3 for the full list of fit parameters.

A simple model

The experiments above identify two factors that,
when combined, may explain the responses observed in
Figure 2. First, there is an excitatory drive, possibly
involving a winner-take-all competition between com-
ponents. We model this by a power law summation
(Britten & Heuer, 1999):

OFRDRIVE ¼
Xk
i¼1

Dn
i

 !1
n

; ð1Þ

where Di are observed responses to individual Fourier
components, and the exponent (n) determines the
strength of the winner-take-all rule (n¼ 1 correspond-
ing to purely linear summation). At each point the
value of Di is derived by multiplying the observed
response to a given SF (using the fits in Figure 3J
through L) by the contrast of that frequency in the

Figure 4. Experiment 1D. (A–C) Dependence of mean OFR amplitude on flicker SF. Small circles¼moving band-pass filtered noise

only; large circles¼ combined moving and flickering filtered noise. Central SF of moving filtered noise: open circles¼ 0.125 cpd; filled

circles¼ 0.5 cpd. (D–F) The OFR amplitude suppression (absolute drop) due to flicker. Solid lines ¼ Gaussian fits for pooled data.

Subject AGB ¼ panels A and D (152–167 trials/condition); subject BMS ¼ panels B and E (174–187 trials/condition); subject EJF ¼
panels C and F (76–99 trials/condition).
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filtered image.5 The shaded gray area in Figure 3K
illustrates the values of Di in the notch filtered stimulus
moving at 448/s. The shaded gray area in Figure 3L
illustrates the values of Di in the band-pass filtered
stimulus moving at 448/s.

Second, there is an inhibitory effect of flicker, which
arises when the discrete steps in the image movement
are large relative to the spatial filters that detect motion
at a given spatial scale. In order to model this, we first
have to define the extent of this flicker for each spatial
filter given a stimulus. One simple way to do this is to
examine the phase shifts corresponding to the image
step size. For filters of finite SF bandwidth, these phase
shifts will not be identical for different components
within the passband. We quantify the scatter in these
phase shifts simply by computing the circular variance
(CV) of the Fourier components of two filtered images
following a single apparent motion step. That is, the
image step is represented in the Fourier domain with a
set of vectors whose length represents the Fourier
amplitude and whose angle represents the phase shift
for that component. We then compute the CV of these
vectors. CV is a common measure of dispersion in
circular statistics (e.g., Berens, 2009), where a value of 0
indicates no dispersion (all vectors of the sample point
in the same direction) and a value of 1 indicates a
uniform circular distribution (the vectors are spread
out evenly around the circle). For white noise moving
with a fixed speed, the CV will also depend on filter
bandwidth.6 We chose to fix this at the mean of
physiologically observed values using a Gaussian in log
frequency with an FWHM of 1.4 octaves (De Valois et
al., 1982). Note that in filters of fixed octave
bandwidth, the CV is larger in higher SF filters, even
when comparing two stimuli with the same TF applied
to the central SF of the filter.

Given only an estimate of filter bandwidth, CV
defines the extent of flicker produced at each SF in any
stimulus, shown for our 1D noise stimuli in Figure 5A.
Higher SF channels experience more flicker than low-
SF channels, and flicker increases with stimulus speed
(a given stimulus speed in Figure 5 is coded by both line
type and its color). Note that these functions are
determined only by the stimulus and the presumed filter
bandwidth. We then combine this with our empirical
measures of inhibition by flicker (Figure 4, where our
stimulus ensures that CV ¼ 1 at all frequencies in the
flickering component) to estimate the impact of flicker
in any given stimulus:

OFRFLICKER ¼
Xk
i¼1

CVi � Fi½ �; ð2Þ

where Fi are the empirically observed values of Fourier
components, obtained from the fits in Figure 4D
through F, deconvolved with the filter that was applied

in generating the flickering stimulus. Values of Fi are
shown as green dotted-dashed lines in Figure 5B
through D.7 A point-by-point multiplication of CVi

and Fi—shown in Figure 5B through D by blue solid,
black dashed, and dotted red lines for three speeds in
each of the three subjects—results in the dependencies
showing how much loss in the OFR amplitude should
be expected due to flicker of various SF components.
The shaded areas in Figure 5C and D illustrate the
values of CVi*Fi in a 1-cpd notch filtered stimulus
moving at 888/s (red shading; Figure 5C) and a 1-cpd
band-pass filtered stimulus moving at 448/s (gray
shading; Figure 5D).

Finally we describe the OFR responses with the
difference of Equations 1 and 2 after applying a scaling
coefficient to the flicker component:

OFR ¼ OFRDRIVE � KF� OFRFLICKER: ð3Þ
Applying this model to each subject’s data requires

estimating just two free parameters: n and KF. The
model fits to OFRs in unfiltered and notch filtered
stimuli are shown in Figure 6, where it produces an
excellent account of the data in Experiment 1: r2 ¼
0.927, 0.929, and 0.932 for subjects AGB, BMS, and
EJF, respectively. The same model also describes the
responses to moving white noise passed through
different spatial band-pass filters (dashed black lines in
Figure 2D through F). We also use Equation 3 to
describe the data in Experiments 2 and 3 below
(Figures 7 and 8). In generating these fits, we found the
single pair of parameters for each subject that provided
the best description of all these data (Figures 6, 7, and
8). Table 1 provides the best-fit values of free
parameters shared by all three experiments.

Discussion

Experiment 1 demonstrated contrasting roles played
by different Fourier components in moving white noise
stimuli generating OFRs. Lower SF Fourier compo-
nents drive the OFRs, while higher SFs produce
inhibition. The drive from low SFs is largely deter-
mined by the response to the strongest single compo-
nent in a separable function describing combinations of
SF and TF. Thus, the SF at which notch filtering
produces the most attenuated response matches the
peak in the tuning to the spatiotemporal components in
that stimulus (peaks from Figure 3J through L plotted
with arrows in Figure 2A through C). However, the
width of the troughs produced by notch filtering did
not match the width of this spatiotemporal tuning: The
latter were considerably wider (p , 0.004; paired t test
using data for 448/s, n¼ 3). We quantified this by
comparing their FWHMs; the median ratio was 0.66.8

This indicates that the contribution of the most
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Figure 5. Modeling the OFR suppression by flicker. Three speeds of stimulus motion: 228/s (blue solid lines), 448/s (black dashed lines),

and 888/s (red dotted lines). (A) The dependencies between the central SF of a motion detector and extent of flicker produced by

apparent motion (quantified by CV, CVi). (B–D) A loss in the OFR amplitude expected due to flicker of various Fourier components for

subjects AGB (panel B), BMS (panel C), and EJF (panel D). The Fi values are the empirically observed values of Fourier components,

obtained from the fits in Figure 4D through F, deconvolved with the filter that was applied in generating the flickering stimulus; they

are shown as green dotted-dashed lines. A point-by-point multiplication of CVi and Fi (shown by blue solid, black dashed, and dotted

red lines) results in the dependencies showing how much loss in the OFR amplitude should be expected due to flicker of various SF

components. Shaded areas ¼ examples of the summation areas for 1-cpd–centered notch filtered (red area, panel C) and 1-cpd–

centered band-pass filtered (gray area, panel D) noise stimuli. See main text for more details.
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Figure 6. Experiment 1. Dependences of mean OFR amplitude on central SF of the notch filter for three speeds of motion: data (open

blue squares¼ 228/s; open black circles¼ 448/s; open red diamonds¼ 888/s) and Equation 3 (solid blue lines¼ 228/s; dashed black

lines¼ 448/s; dotted red lines¼ 888/s) fits. The OFRs to unfiltered noise stimuli are shown on the ordinate axis and are appropriately

color and symbol coded. Subject AGB ¼ panel A; subject BMS ¼ panel B; subject EJF ¼ panel C.

Figure 7. Experiment 2. Dependences of mean OFR amplitude on central SF of the notch filter for high SFs absent (open pink

diamonds, dashed lines) and high SFs present (open black circles, solid lines) sets of stimuli. Data (symbols) and Equation 3 (lines) fits.

The OFRs to noise stimuli that were not notch filtered are shown on the ordinate axis (filled symbols) and are appropriately color and

symbol coded. Subject AGB ¼ panel A (136–156 trials/condition); subject BMS ¼ panel B (114–123 trials/condition); subject EJF ¼
panel C (88–116 trials/condition).
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dominant Fourier component toward the OFR mag-
nitude was disproportionally high, resembling a win-
ner-take-all behavior. These two major findings of
Experiment 1 parallel neurophysiological observations
made in area MT of primates: When tested with
random dot stimuli moving at different speeds, most
MT neurons showed the same peak but narrower
tuning than predicted by the spatiotemporal response
surfaces—that is, by applying the linear model to the
responses to sine wave gratings across a wide range of
spatial and temporal frequencies (Priebe et al., 2003).
On the other hand, the vast majority of V1 neurons did
not show this narrowing of speed tuning with random
dots (Priebe et al., 2006), suggesting that a winner-take-
all–like mechanism acts after V1. Quantitatively,
deviations from the linear model predictions were
slightly stronger in our study than those found in the
MT (median FWHM ratio of 0.66 vs. 0.87), but it is
quite possible that further sharpening of the winner-
take-all–like effects occurs in visual areas beyond the
MT (e.g., in area MST, which was shown to be crucial

for OFR generation; Takemura, Murata, Kawano, &
Miles, 2007).

Because apparent motion stimuli contain discrete
image displacements (‘‘steps’’), this can disrupt motion
signals in higher SF channels. Although this is a well-
recognized property of temporally sampled displays, we
identify here a novel nonlinearity, which means that
components that lie outside the window of visibility can
profoundly influence responses to moving stimuli. We
propose that this reflects a consequence of temporal
decorrelation in spatially finite filters: Large steps
effectively produce flicker in small filters. We tested this
possibility by generating true decorrelation over a set of
SFs in the stimulus and confirmed that this reduces the
amplitude of OFRs even though they produce no
response when presented alone. A simple model based
on this observation produced an excellent account of
the responses to notch filtered stimuli across the entire
range.

The model required only two free parameters: the
exponent, n, and the scaling coefficient for flicker, KF.
The value of parameter n, though quite variable, is
higher than 8 for all subjects, commensurate with a
winner-take-all behavior in the summation of OFR
drive. The value of parameter KF varied twofold in our
three subjects. One possible interpretation of this
variability is that there is an effective difference in
channel bandwidth between subjects. In an alternative
formulation of the model we can remove the free
parameter KF and instead fit the channel bandwidth
used when calculating CV. In two subjects this
produced reasonable values for the bandwidth (2.1 in
BMS, 2.6 in EJF), but did not do so in the third.

Figure 8. Experiment 3. The OFR speed tuning. Solid lines ¼ Equation 3 fits; dashed lines ¼ SF-TF only fits (i.e., assuming no flicker

contribution). Numbers and arrows above the panels indicate stimulus speeds at which the fits place the maximal OFR: solid arrows¼
Equation 3 fits; dashed arrows ¼ no-flicker fits. Subject AGB ¼ panel A (95–103 trials/condition); subject BMS ¼ panel B (192–199

trials/condition); subject EJF ¼ panel C (66–85 trials/condition).

Subject n KF

Goodness of fit (r2)

Experiment 1 Experiment 2 Experiment 3

AGB 8.9 2.69 0.927 0.943 0.864

BMS 30.9 1.23 0.929 0.969 0.692

EJF 12.2 1.84 0.932 0.938 0.939

Table 1. Experiments 1, 2 and 3: best-fit parameters for
Equation 3. n ¼ power term, KF ¼ flicker scaling coefficient.
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However, in the absence of other evidence for
intersubject differences in bandwidth, we feel it would
be premature to commit to this form of description in
the model.

A peculiar feature of our model, however, is that it
postulates that the outputs of the mechanisms driving
and suppressing the OFRs are subtracted from one
another (Equation 3). This is puzzling because many
previous studies of interactions between Fourier
components report nonlinear interactions (Britten &
Heuer, 1999; Carandini & Heeger, 1994; Carandini,
Heeger, & Movshon, 1997; Heuer & Britten, 2002;
Kumbhani et al., 2008; Liu & Sperling, 2006; Miura et
al., 2014b; Sheliga et al., 2006; Simoncelli & Heeger,
1998). Indeed, it seems improbable that subtraction can
be a good description in all conditions. If, for example,
the strength of the driving stimulus were reduced to
produce a drive that was smaller than the flicker term in
Equation 3, it is hard to believe that adding the
flickering stimulus would reverse the direction of the
OFRs. However, we explored several other ways of
incorporating the effects of flicker (e.g., multiplicative
scaling of the OFR drive, modification of a contrast
normalization scheme), and none provided good
descriptions of the data. We therefore did an additional
experiment to test the idea that this interaction was
really subtractive.

Simoncini, Perrinet, Montagnini, Mamassian, and
Masson (2012) varied the bandwidth of band-pass
random-texture stimuli and did not report any response
reduction caused by flicker. This probably reflects two
differences between our stimuli and theirs: (a) The
bandwidth of their stimuli was much narrower
(FWHMwas always less than two octaves; range¼0.2–
1.9), and (b) the frequencies were not very high. As a
result, our estimate of flicker strength would be low in
their stimuli. For the purposes of the study by
Simoncini et al. (2012), it was advantageous not to elicit
flicker. But their results are entirely compatible with
ours.

Experiment 2

In order to test the idea of a subtractive interaction
between drive and flicker, we sought to evaluate the
effect of adding flicker to a range of stimuli that
produced different response magnitudes. We wished to
do this while keeping the stimuli as close as possible to
those used in Experiment 1. A simple way to do this is
to compare the effect of notch filtering the stimulus
with or without the high-SF components. Therefore, in
Experiment 2 we compared OFRs to two sets of white
noise stimuli moving at a certain speed. In all stimuli
composing the first set, higher SFs (which at this

particular speed of motion would develop considerable
flicker) were removed, whereas higher SFs were
preserved in stimuli of the second set. We then applied
notch filters at various central SFs, exactly as in
Experiment 1. Where high SFs have been removed, the
notch filters simply remove driving frequencies and
hence reduce responses. According to our proposed
subtractive mechanism, adding high SFs back into
these stimuli should produce a reduction in OFR of the
same magnitude regardless of the initial response
strength. If the flickering components acted through a
normalization mechanism [e.g., OFRNORM ; D/(1 þ
F)], then the effect of flicker (in absolute units) should
decline with the driving response.

Materials and method

Only methods and procedures that were different
from those used in Experiment 1 are described.

Visual stimuli

For each subject, vertical 1D 32% RMS contrast
white noise stimuli (1 pixel wide) were randomly
generated. The speed of motion was approximately 888/
s (12 pixels/frame) for all three subjects (we used a high
speed to maximize the effect of flickering components).
Two sets of stimuli were created. One was identical to
those used in Experiment 1 (‘‘high SF present’’). The
second was low-pass filtered, removing all components
with SF greater than 0.71 cpd (‘‘high SF absent’’). Both
types of stimuli were then passed through notch filters
as in Experiment 1. Each set also included a stimulus
without the notch filtering, resulting in 32 randomly
interleaved stimuli in a single block of trials.

Data analysis

Experiments 1 and 2 had several conditions in
common, one of which was the unfiltered white noise
stimulus moving at 888/s. To allow quantitative
comparisons between two experiments, we normalized
all OFR measures obtained in Experiment 2 with
respect to the OFR measure recorded in this common
condition.

Results and discussion

Figure 7A through C plots OFR amplitudes as a
function of the central SF of the notch filters for both
sets of noise stimuli: high SFs present (black circles)
and high SFs absent (pink diamonds). Equation 3—our
subtraction mechanism—provided excellent fits for
data of all subjects: r2¼ 0.943, 0.969, and 0.938 for
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subjects AGB, BMS, and EJF, respectively (both sets
of data were fitted by a single fitting procedure). That
these changes are better described by subtraction than
multiplication is most clearly seen in Figure 7D, which
plots responses in each high SF present condition
against responses in the equivalent high SF absent
condition. These data lie parallel to a line of slope 1 but
have a fixed offset relative to the identify line.

Experiment 3

In Experiment 3 we measured responses to unfiltered
white noise moving at a range of different speeds. We
had two objectives: (a) to see whether our model
provided a good account of the observed speed tuning
in these stimuli and (b) to use the resulting fits to
estimate the impact of this flicker response on the
observed speed tuning.

Materials and method

Only methods and procedures that were different
from those used in Experiment 1 are described.

Visual stimuli

Unfiltered vertical 1D white noise stimuli moved
horizontally at a range of different speeds: approxi-
mately 158, 228, 298, 368, 518, 738, and 1098/s (i.e., 2, 3,
4, 5, 7, 10, and 15 pixels/frame, respectively). A single
block of trials had 14 randomly interleaved stimuli:
seven speeds and two directions of motion (left vs.
right).

Data analysis

Experiments 1 and 3 had one condition in common:
unfiltered white noise moving at 228/s. To allow
quantitative comparisons between two experiments, we
normalized all OFR measures obtained in Experiment
3 with respect to the OFR measure recorded in this
common condition.

Results

Figure 8 plots the OFR amplitudes as a function of
speed, and Equation 3 provided good fits in all subjects
(solid lines); r2 ¼ 0.864, 0.692, and 0.939 for subjects
AGB, BMS, and EJF, respectively. The fit for subject
BMS did slightly overestimate the OFR amplitudes at
low speeds, but this feature was already evident in
Experiment 1. (Note a discrepancy between the data

point—blue square at the ordinate axis—and the fit for
the 228/s stimulus in Figure 6B.) The best-fit speed
tuning curves peaked at 478, 358, and 408/s for subjects
AGB, BMS, and EJF, respectively. For each subject
these peak values were much lower than those predicted
simply from the drive that reflects summation of
spatiotemporal components (898, 568, and 588/s for
subjects AGB, BMS, and EJF, respectively; dashed
lines).

Discussion

CRT monitors are commonly used to deliver visual
stimulation in laboratory settings.9 This inevitably
means that we must use apparent motion stimuli
(discrete image steps) to study behavioral and neural
mechanisms of visual motion processing. It is often
assumed that, provided a high-enough frame rate, this
distinction is unimportant because the window of
visibility imposed by the display encompasses the range
of the human visual system. Here we report a novel
nonlinearity, which has the result that components with
temporal frequencies beyond the Nyquist limit of the
display can systematically alter the pattern of results. In
particular, Experiment 3 documents an important
example: Estimates of speed tuning can be significantly
distorted by the flicker that apparent motion produces
in high-SF channels despite the fact that we use a
relatively high frame rate (150 Hz). At lower stimulus
refresh rates, these differences should be even greater.10

How could one minimize these detrimental effects of
the apparent motion? Increasing the refresh rate of the
CRT monitor is an obvious solution. But this approach
has its limitations because the vast majority of (still)
available CRT monitors cannot support refresh rates
higher than 150 Hz, even at the lowest spatial
resolutions. Another approach would be to diminish
the power of the high-SF components of a broadband
stimulus. The 1D white noise stimuli of our study
assigned a ‘‘black’’ or ‘‘white’’ value to each successive
pixel along the horizontal axis. If we were to randomly
assign the same value (‘‘black’’ or ‘‘white’’) to quartets
of neighboring pixels along the axis of motion—4-
pixel-wide noise—it would lead to dramatic changes in
such stimulus’ 1D FFT, removing power from high
frequencies (compare the upper panel of Figure 1B and
Figure 1D). It would lead to a much weaker flicker and,
therefore, much less interference from higher SF
components toward lower SF components. In the case
of 2D noise, increasing the size of single elements (e.g.,
checks or dots) would have the same effect. Finally, one
might consider using pink noise stimuli in place of
white noise stimuli. An additional potentially beneficial
advantage of pink noise stimuli in many applications is
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that they follow natural images’ statistics much more
closely.

Experiment 4

All of the previous experiments used 1D stimuli.
Even though the rules governing the interactions
between Fourier components may be the same in 2D
stimuli, other nonlinearities may change the effective
contribution of different frequencies. Thus, recently we
studied the OFRs to horizontal motion of vertical sine
wave gratings whose total size was fixed but who
comprised a variable number of abutting horizontal
strips where alternate strips were in counterphase
(Sheliga, Quaia, FitzGibbon, & Cumming, 2013). We
found that for any one SF, the OFRs varied with strip
height, and the optimum strip height was proportional
to stimulus wavelength; that is, as the strip height
increased, lower SFs played a stronger role. Changes in
strip height might therefore alter the balance between
drive and flicker. In noise patterns, varying strip height
spans the space between 1D noise and 2D noise. When
the strip height equals the pixel width, the stimulus is

2D noise; when the strip height equals the stimulus
height, it becomes 1D noise. Intermediate stimuli can
also be constructed by using abutting 1D noise strips of
variable height (see Figure 9). Experiment 4 therefore
set out to evaluate the interaction between strip height
and speed tuning to determine whether the interactions
we report in 1D stimuli also influence responses in 2D
stimuli.

Materials and method

Only those methods and procedures that were
different from those used in Experiment 1 are
described.

Visual stimuli

White noise stimuli comprised one or more abutting
horizontal strips of vertical 1D noise. Vertical 1D noise
was 1 pixel wide; each successive pixel along the
horizontal axis was randomly assigned a ‘‘black’’ or
‘‘white’’ value. Strip height varied from approximately
0.058 to approximately 258 (i.e., from 1 to 512 pixels) in
octave increments. Stimuli occupied a rectangular

Figure 9. Experiment 4. Examples of vertical 2D (A–C) and 1D (D) white noise stimuli: scaled versions of a 258 3 258 1-pixel-wide

patterns. Stimuli comprised one or more abutting horizontal strips of vertical 1D noise. Examples include strip heights of

approximately 0.058 (A), approximately 0.48 (B), approximately 38 (C), and approximately 258 (D).
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aperture (approximately 258 3 258) centered at fixation.
Figure 9 shows examples of stimuli; see the figure legend
for details. Several speeds of motion were tested:
approximately 78, 158, 228, 368, 588, 888, 1318, and 1978/s
(i.e., 1, 2, 3, 5, 8, 12, 18, and 27 pixels/frame,
respectively). Not every combination of strip height and
speed of motion was implemented. For every subject we
collected pilot data to select conditions that would span
the optimal speed at each strip height. All stimuli had
32% RMS contrast. Different strip height, speed, and
direction of motion conditions were randomly inter-
leaved in a single block (98–104 trials/block).

Results

Figure 10A through C plots the relationship between
strip height and OFR amplitude for eight different

speeds of noise motion for three subjects.11 There are
three major features. First, the OFR amplitudes
exhibited a great deal of variation with speed, simply
reflecting speed tuning similar to that shown in Figure
8. Second, the dependences on strip height for any
given speed were bell shaped, with a clear optimum at
each speed. This indicates that changes in strip height
are changing the effectiveness of different Fourier
components. Third, the optimal strip height—that
resulted in the largest OFR—shifted toward larger
values for higher speeds of motion. This latter result is
summarized in Figure 10D, which plots the optimal
strip height as a function of speed. Results are quite
similar for three subjects and are characterized by a
rather flat relationship for speeds up to approximately
368/s followed by a rise in the optimal strip height for
higher speeds of motion. Since the OFR is driven by
lower SF components at higher speeds (Experiment 1),

Figure 10. Experiment 4. (A–C) Dependences of mean OFR amplitude on the strip height of white noise stimulus. Different motion

speeds are color and symbol coded (see the insert). (D) The dependence between the optimal strip height and the speed of motion.

Subject AGB¼ panel A (108–174 trials/condition); subject BMS¼ panel B (142–199 trials/condition); subject EJF¼ panel C (106–160

trials/condition).
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this probably indicates that larger strip heights
preferentially activate low-SF channels. In the Appen-
dix we test whether the OFRs observed in Experiment 4
could be quantitatively accounted for by our subtrac-
tive model (Equation 3; one-subject data analysis).

General discussion and concluding
remarks

Measurements of speed tuning curves to motion of
white noise stimuli constitute an integral part of many
quantitative studies of motion sensitivity in perception
as well as in the description of neurons in different
visual cortices. In apparent motion displays, high
spatial frequencies often move with TFs that exceed the
temporal Nyquist limit of a given display. Although
these components produce no response alone, we
demonstrate an important new nonlinearity: These
flickering components suppress responses produced by
lower SF components. The effect of this nonlinearity in
single-unit studies may depend on the stage of visual
processing in which this nonlinearity is implemented.
The earliest stages of visual processing might not be
affected as much as the later ones, where more
nonlinear interactions between SF components are
observed.

We show that for any given speed of motion, the
spatiotemporal properties of the OFRs are the sole
determinant of which Fourier components will con-
tribute the most toward the OFR drive. We also
demonstrate that the contribution of the strongest
components toward the OFR magnitude is dispropor-
tionally high—a winner-take-all behavior. Despite the
fact that white noise stimuli are broadband, the SF
channel that is most activated almost completely
dominates the response. Neurophysiological evidence
suggests that this pattern of activity is already present
in the extrastriate MT (Priebe et al., 2003) but not in
the primary visual cortex (Priebe et al., 2006).

Given the evidence for winner-take-all behavior, the
OFR inhibition caused by flicker of higher SF
components is surprising. The higher SF components
make relatively weak contributions and therefore
should effectively be eliminated by the winner-take-all
stage. It is also puzzling that the interaction was best
described by subtraction because the drive signal is
directional, whereas the flicker is not. To our knowl-
edge, there are no neurophysiological demonstrations
of such subtractive interactions, though one article’s
modeling of psychophysical judgments required sub-
tractive interaction to account for direction judgements
at short latency (Serrano-Pedraza, Goddard, & Der-
rington, 2007). Some aspects of our data—for example,
that the optimal SF for flicker (;1 cpd) is substantially

higher than that for drive (compare Figure 4A through
C with Figure 3B, E, and H; also see the Appendix)—
already indicate that different mechanisms subserve
drive and flicker. It is therefore possible that the
mechanism subserving flicker is not affected by the
winner-take-all process. This suggests that in broad-
band stimuli such as those used here, the interaction
between components is more complex than the simple
winner-take-all behavior evident when just two grating
components are used (Sheliga, Fitzgibbon, & Miles,
2008; Sheliga et al., 2006). A more complex form of
winner-take-all in broadband stimuli might even
explain behavior that looks subtractive. The flickering
stimulus contains motion energy in both directions.
Consequently, if some winner-take-all–like competition
were to diminish the effect only of energy in the same
direction as the moving stimulus, the remaining signal
would appear subtractive.

It seems likely that flicker and drive are combined
differently when used for speed perception rather than
OFRs. Jogan and Stocker (2015) found that human
perceptual judgements of motion of a mix of several
band-pass stimuli whose central SFs differed eightfold
were best described by a Bayesian model of optimal
integration, quite unlike the subtraction we observed.
Simoncini et al. (2012) described opposite dynamics of
changes in the OFR versus perceptual sensitivity as the
bandwidth of their random-texture stimuli was in-
creased. Finally, Wexler, Glennerster, Cavanagh, Ito,
and Seno (2013) reported that a flicker delivered after a
period of slow motion led to a perception of high-speed
jump.

In conclusion, we have demonstrated that a novel
nonlinearity produces an artifact when using moving
white noise stimuli with discrete temporal sampling of
the display. This gives rise to artificial signals that
would not be present during continuous motion, as in
real-world settings, especially at high speeds of motion.
The impact of this nonlinearity can be limited by
carefully controlling the SF content of noise stimuli.

Keywords: visual motion, visual flicker, speed tuning,
broadband visual stimuli
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Footnotes

1 In absolute terms, the OFRs to 0.5 cpd sine wave
stimuli were smaller than those to 0.125 cpd stimuli in
all three subjects. The normalized plots hide this aspect
of the data: For each SF, the data were fit by a skewed
Gaussian function and then normalized in respect to
the maximal value of the fit. Fits shown in Figure 3A,
D, and G take into account the normalized amplitudes
of OFRs to both tested sine wave stimuli.

2 These are not straight lines because the abscissa
(but not the ordinate) is on a log scale.

3 Figure 2D through F provides an example. For a
stimulus moving at 448/s, the SF tuning curves for
band-pass stimuli (black dashed lines) were consider-
ably wider than the troughs produced by notch filtering
(gray symbols and solid lines). To facilitate the
comparison, the SF tuning curves for band-pass stimuli
are superimposed (gray dashed lines) after inverting
and scaling.

4 Note that because these samples were produced by
filtering 32% RMS contrast 1D white noise images
using a Gaussian envelope on a log scale, samples with
higher central SFs had higher RMS contrasts.

5 Because Di was derived from the fitted functions in
Figure 3J through L, we used a fine sampling of
frequency components, from 2�6 to 24 cpd, spaced
evenly in log frequency (every 0.1 log2 cpd unit; i.e., k¼
101). We used logarithmic spacing because our fitted
functions were on a logarithmic scale.

6 Phase shifts of various Fourier components were
weighted according to their power (Gaussian envelope
squared).

7 Fi was evaluated from the fits for the same spatial
frequencies as Di.

8 Range¼0.52 to 0.86 (see Supplementary Table S4).
9 The phenomena that we describe apply equally to

liquid crystal and digital light processing displays, but
these are less commonly used to study motion in the
laboratory.

10 In a pilot experiment we measured the OFR speed
tuning curves utilizing a 75-Hz stimulus refresh rate
rather than the 150-Hz rate used in all experiments of
this manuscript. This results in larger values of CV and,
hence, stronger flicker, which should reduce responses
at high speeds. The data showed peaks at 338, 258, and
268/s for subjects AGB, BMS, and EJF, respectively.
These values are lower than those obtained in
Experiment 3, as expected from our model.

11 The data were fit by the third-order polynomial
functions (see Supplementary Table S5 for the full list
of fit parameters).

12 Phases of gratings in different strips were
randomized.

13 In absolute terms, the OFRs to gratings of 6.28
strip height were smaller than those to gratings

comprising strips of the other two heights. For each
strip height condition, the data were fitted by a skewed
Gaussian and then normalized in respect to the
maximal value of the fit. The fit shown in panel A (r2¼
0.963) takes into account normalized amplitudes of
OFRs to stimuli of all three strip height conditions. See
Supplementary Table S6 for the full list of fit
parameters.

14 Best-fit values of free parameters were n ¼ 118.3
and KF¼ 1.07.
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Appendix

In one subject (BMS), we attempted to see whether
the observed OFRs could be quantitatively accounted
for by our subtractive model (Equation 3). To obtain
the data required for such an analysis, we ran
Experiments 1B through 1D using stimuli that all had
the same total size (approximately 258 3 258) but
comprised abutting strips of variable height. Panel A of

Figure A1 shows the normalized TF tuning (like in
Experiment 1B) obtained for 0.5-cpd sinusoidal grat-
ings arranged in 0.48- (pink open diamonds), 1.68- (blue
open squares), or 6.28- (green filled diamonds) high
strips.12 Although gratings’ strip heights differed 16-
fold, their tuning was similar: The response is a
separable function of TF and strip height. The
strongest OFRs were recorded at 18.6 cycles/s.13 Panel
B of Figure A1 shows the SF tuning curves (like in
Experiment 1C) for filtered noise stimuli whose strip
heights ranged from 0.18 to 258 in two-octave incre-
ments (see the Figure A1 insert for symbol definition).
All dependences were fit by skewed Gaussian functions
(median r2 ¼ 0.998, range¼ 0.984–1.000; see
Supplementary Table S7 for the full list of fit
parameters) and revealed that, as the strip height
increased, the peaks of the dependencies shifted toward
lower central SFs (similar to findings of Sheliga et al.,
2013). Panel C of Figure A1 shows results of an
experiment similar to Experiment 1D but run using
filtered noise stimuli whose strip heights ranged from

Figure A1. Experiment 4, subject BMS. (A) OFR TF tuning; 81 to 85 trials/condition. (B) OFR SF tuning; 93 to 100 trials/condition. (C)

The OFR amplitude dependence on flicker SF; 93 to 100 trials/condition. Different strip heights are color and symbol coded (see the

insert). (D) The dependence between the optimal strip height and the speed of motion. Filled circles and solid line ¼ data; gray

shaded area¼ 95% confidence interval; dashed line ¼ Equation 3 prediction; dotted line ¼ no-flicker prediction.
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0.18 to 258 in two-octave increments. Recall that in this
experiment the pattern on the screen was a sum of two
filtered noise stimuli: The first moved with the near-
optimal TF, whereas the second was a new randomly
chosen filtered noise sample substituted each frame
(i.e., flicker). Panel C shows that an addition of
flickering stimuli (larger symbols) strongly reduced the
OFRs compared with moving stimuli presented in
isolation (smaller symbols; 0.25 cpd central SF, shown
on the ordinate axis). This effect depended on SF but
did not depend on strip height. The data were well fit by
semilog Gaussians (median r2 ¼ 0.943, range¼ 0.908–
0.987). See Supplementary Table S8 for the full list of
the best-fit Gaussian parameters. Constraining the
Gaussian peak SF and sigma parameters to be the same
for stimuli of different strip height had minor impact; it
led to a 1.1% (range ¼ 0.1%–4.4%) drop in r2 values.
The best-fitting Gaussian amplitudes, on the other
hand, varied considerably with strip height (range ¼
0.0338–0.0538) and, in fact, were linearly related to the
OFR amplitudes to moving stimuli of different strip
heights when those were presented in isolation (r2¼
0.978; not shown). The changes in the amplitude of
attenuation may reflect changes in the effective SF
components that drive flicker, parallel to the changes in
drive. Using the data from panels A through C of
Figure A1, it was possible to use Equation 3 to predict
the data for subject BMS in Experiment 4 data (r2 ¼
0.957; the entire data set was evaluated by a single

fitting procedure).14 The model dependence between
the optimal strip height and speed of motion is shown
in panel D of Figure A1 using a black dashed line. This
figure also replots subject BMS’s experimentally
measured curve from Figure 10D (filled circles and
solid lines) along with its 95% confidence interval (gray
shaded area). The model fit provides a good account of
the data, although it underestimates the steepness of
the rise at the largest speeds. We also show the result of
using the model without incorporating the effect of
flicker (black dotted line), which produces similar
results over most of the range. This suggests that there
is little change in the balance of flicker and drive with
strip height so that the effects we demonstrated with 1D
noise (Experiments 1 through 3) seem to have similar
effects across this range of 2D stimuli.

The data in Figure A1 provide two indications that
the processing of these flicker signals goes through
different channels than the motion signals that drive
the response. First, the optimal SF for flicker (;1 cpd)
is substantially higher than that for drive (this is also
seen comparing Figure 4 with Figure 3). Second, while
changes in strip height cause changes in the preferred
SF for driving responses, the preferred SF for flicker
does not change with strip height. We do not have
adequate data to make well-founded suggestions about
what differences in mechanisms give rise to these
differences in behavior.
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