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Capturing human categorization of natural images
by combining deep networks and cognitive models

Ruairidh M. Battleday® 3, Joshua C. Peterson® 3™ & Thomas L. Griffiths"2

Human categorization is one of the most important and successful targets of cognitive
modeling, with decades of model development and assessment using simple, low-
dimensional artificial stimuli. However, it remains unclear how these findings relate to
categorization in more natural settings, involving complex, high-dimensional stimuli. Here, we
take a step towards addressing this question by modeling human categorization over a large
behavioral dataset, comprising more than 500,000 judgments over 10,000 natural images
from ten object categories. We apply a range of machine learning methods to generate
candidate representations for these images, and show that combining rich image repre-
sentations with flexible cognitive models captures human decisions best. We also find that in
the high-dimensional representational spaces these methods generate, simple prototype
models can perform comparably to the more complex memory-based exemplar models
dominant in laboratory settings.
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he problem of categorization—how an intelligent agent
should group stimuli into discrete concepts—is an intri-
guing and valuable target for psychological research: it
extends many influential themes in Western classical thought!,
has clear interpretations at multiple levels of analysis?, and is
likely fundamental to understanding human minds and advan-
cing artificial ones3. Psychological theories of categorization
began with the notion that people learn rules or definitions for
categories®?, but the work of Rosch et al.%7 in the 1970s challenged
this view by showing that natural categories lacked defining fea-
tures and were better characterized in terms of a form of family
resemblance structure. This led researchers to explore theories in
which categories are represented by an abstract prototype, where
evaluating the similarity to this prototype could account for
behavioral phenomena such as differences in stimulus typicality
under a category®, preference for the (unseen) prototype in
recognition tasks’, and the apparent graded nature of category
structure!®. In the same decade, a competing account was offered
in which the same behavioral phenomena could be captured by
calculations performed solely on the known members—or, exem-
plars—of a category, without reference to an abstract prototype!l.
This debate has been distinctive for the role that mathematical
modeling and high-precision behavioral experiments have played
in working towards resolving it. Prototype models can be for-
malized by assuming that category membership is calculated
using a decision rule based on the similarity to the prototypes of
candidate categories!2. Exemplar models, by contrast, base this
categorization decision on the summed similarity to all known
members of a category!l’13. Formalizing these models makes it
possible to design experiments that distinguish between them,
often by constructing sets of purposefully novel stimuli that result
in different predictions for category membership under different
models. Laboratory findings in this tradition have largely favored
exemplar models, which can accommodate arbitrarily complex
boundaries between categories!®1>, demonstrating that people
can learn such boundaries when given sufficient training!316-18,
Beyond straightforward assessments of categorization accuracy,
exemplar models have a number of other advantages. As exem-
plars are stored, they provide a common substrate for both
categorization and recognition memory!®, can be leveraged in
process-level accounts of categorization?’, and could theoretically
be used for later learning or generating abstractions on-the-fly?!.
Although this work has been insightful and theoretically pro-
ductive, we know little about how it relates to the complex visual
world it was meant to describe: the focus on designing experi-
ments to distinguish between models means that it derives almost
exclusively from studies using highly controlled and simplified
perceptual stimuli, represented mathematically by low-
dimensional hand-coded descriptions of obvious features or
low-dimensional multidimensional-scaling (MDS) solutions
based on similarity judgments!1-12:17:22-31 (see Fig, 1). Extending
these findings to more realistic settings, and in particular to
natural images, remains a central challenge. There are two
compelling reasons to take this up. The first concerns ecological
validity: human categorization abilities emerge from contact with
the natural world and the problems it poses; the category divi-
sions that result may be best understood in this context. The use
of naturalistic stimuli is common in the related fields of object
and scene recognition32-3 and face perception3’-41; however, the
modeling frameworks they employ are typically inspired by
neuroscience and computer vision, making it difficult to connect
their findings back to cognitive psychology. Our contribution
here is to give a theoretical and empirical analysis of formal
cognitive models of categorization on a large and well-known set
of natural images that should allow better statistical and experi-
mental integration with these fields. In this sense, it complements

recent work that uses exemplar models to capture behavior over a
narrower subset of natural images—geological samples—which
can be more easily described in low-dimensional spaces#>43. The
second motivation is theoretical: the different mathematical forms
of prototype and exemplar strategies imply their performance will
depend differently on how stimuli are represented. In particular,
the effect of increasing the dimensionality of stimulus repre-
sentations on categorization model performance is largely unex-
plored and yet likely to be a key factor in adequately representing
more complex natural stimuli.

In this work, we take a step towards making this extension by
using a range of modern supervised and unsupervised computer
vision methods to estimate stimulus structure of more complex
and naturalistic images, which can then be used as the basis for
cognitive modeling of categorization behavior. These methods,
and in particular convolutional neural networks (CNNs), have
been applied with great recent success on the related task of
natural image classification, under the complementary strategy of
learning better feature spaces for complex naturalistic stimuli%4,
Although it is unclear to what extent CNN classification models
resemble human categorization or feature learning, two proper-
ties make them a promising source of representations for mod-
eling human categorization behavior. The first is that these
networks are trained on extremely large datasets of natural
images, implying that they generalize broadly and offer a greater
chance of approximating the experience an individual might have
had with a particular class of natural objects. As seeking such a
high degree of statistical approximation is likely the closest we
can come to matching an individual’s real set of exemplars for
naturalistic images, the ever-increasing size of training datasets
supports using such models to provide stimulus embeddings. The
second is that, given we cannot access human mental repre-
sentations directly, these CNN representations have been shown
to offer surprisingly good proxies for them in predicting visual
cortex brain activity*>#¢ and in psychological experiments
investigating similarity judgments, which are closely related to
categorization?7:48,

To evaluate models of human categorization of natural images
using these representations, we collect and present a large beha-
vioral dataset of human categorizations, which we call CIFAR-
10H. This dataset comprises over 500,000 classifications of 10,000
natural images from ten categories from the test subset of the
CIFAR-10% benchmark dataset that is widely used in computer
vision (see Fig. 2). As these images have been extensively explored
by the machine learning community, they come with a wealth of
corresponding feature sets that may be used as the representa-
tional basis for our psychological models. Furthermore, the size
and resolution of the dataset allow us to increase the flexibility of
our categorization models so that they can further adapt the
underlying high-dimensional representations to better capture
and more finely assess graded category membership over stimuli.
With this dataset in hand, we are able to extend the assessment of
cognitive models of human categorization to large and varied
numbers of more naturalistic stimuli. We find that choice of
feature representation affects the predictive performance of
categorization models profoundly, which cognitive models are of
most benefit over their machine learning counterparts for
ambiguous images, and that there is little difference in the per-
formance of prototype and exemplar strategies in the types of
high-dimensional representational spaces that support natural
image categorization best.

Results
A naturalistic image dataset. Our CIFAR-10H behavioral
dataset consists of 511,400 human categorization decisions made
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Fig. 1 Stimuli from previous seminal studies of categorization. The top row shows representative stimuli, the bottom shows the types of stimulus
representations used as input to categorization models. Stimuli and category distributions reproduced to roughly replicate those used in the following
studies: left!’, center left28, center right'2, right3© (although for the center right panel, stimulus distributions were represented—and linearly separable—in

four dimensions'2).

over 10,000 natural images and collected via Amazon Mechanical
Turk. Our image stimuli were taken from the test subset of the
CIFAR-10 dataset, which consists of 1000 images for each of the
following ten categories: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. Participants (N = 2570) were shown
Lanczos-upsampled 160 x 160-pixel images and were asked to
categorize each image as quickly and accurately as possible (see
Fig. 3a). After successful practice, each participant categorized 20
images from each category for the main experiment phase,
yielding ~50 judgments per image (see Fig. 3b). In Fig. 2, we use
these category judgments to present our images so that their
global and local similarity structure is preserved according to our
behavioral data. Based on the category judgments for each image,
we embed them into a 100 x 100 two-dimensional grid such that
adjacent images are nearest neighbors according to their category
judgments.

We chose the above image set for two reasons. First, we
consider the current work to be a conceptual step towards
modeling categorization over natural stimuli and so have chosen
images that retain some relevance to previous seminal work—for
example, their simple and well-delineated nature (see Fig. 1).
Notably, however, these stimuli are significantly more varied in
nature, both within and between categories, than artificial ones,
exhibiting variability that more closely corresponds to the natural
world. Although our common linguistic labels at the basic level of
Rosch’s taxonomy>? differ from existing laboratory work—which
is best placed at the subordinate level—the variability the dataset
affords means that there are many instances in which
distinguishing between a pair of images—of a bird and plane in
the sky, say—involves categorization using a subset of features
that parallels this previous work. The pairs of categories for which
this is especially true is evident in our confusion matrix (see
Fig. 3d). Further motivation for the use of these images rather
than more simple objects or object sketches comes from the
computer vision and machine learning communities. Although
classification algorithms have already been able to correctly
classify sketch drawings of natural objects better than
humans®!>2, for our CIFAR-10 images the state-of-the-art

classifiers and humans are approximately equally accurate,
despite nearly a decade of active investigation. Therefore, our
images represent a well-supported point in the tradeoff between
successful representational bases and the difficulty of images and
category structure, and complement another recently developed
natural image dataset that focuses more on scaling the number of
categories, as opposed to the number of images and
judgments*243, Second, CIFAR-10 is the natural candidate
from within contemporary natural image benchmarks in
computer vision, with a long and still active history of exploration
by the machine learning community. This means that in addition
to the range of representations already available, it is likely that
the baseline representations and any innovations from the present
work will continue to improve the fit to humans. The number of
images is small enough to collect enough human judgments to
offer a good approximation of the underlying population-level
guess distribution for the entire test subset (which machine
learning algorithms are not trained on) and the low resolution of
the images has advantages: it produces useful and meaningful
variation in human responses to model that reveals graded
category structure, whereas the majority of images are identifiable
once upsampled. On the other hand, the kind of ambiguity
induced by low-resolution images is akin to removing informa-
tion (and introducing perceptual noise), which contrasts with the
kind of ambiguity introduced in previous work employing highly
similar stimuli such as oriented Gabor filters?®. Finally, the
dataset contains a reasonable number of borderline examples that
are ambiguous between two or more categories (medium- and
high-entropy guess distributions; Fig. 3c), in contrast to high-
resolution datasets over hundreds of categories that are more
carefully curated—more in keeping with the nature of experi-
mental categories explored in previous work!”.

We find our CIFAR-10H dataset has a number of attractive
properties. First, there is its size: roughly 50 categorizations from
different subjects for each of 10,000 images from ten natural
categories. Having this many judgments gives us the statistical
power to fit the larger number of free parameters that are
necessary to extend cognitive models to high-dimensional stimuli.
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Fig. 2 Stimuli for current study. Ten representative natural images from each of the categories we use in our experiments, arranged by the entropy of their
associated human categorizations. Images were taken from the CIFAR-10 test set4® and clustered into ten entropy bins, with the same minimum and
maximum entropy used for all categories. Representative images were then chosen from each bin, for each category. Lower entropy means a higher degree

of human categorization consensus.

These free parameters endow models with the flexibility to
transform representations to better correspond to human
psychological representations during the training phase (in other
words, avoid underfitting)—a property that we below show
improves our modeling of human confusions for ambiguous
natural images. Conversely, we have enough datapoints so that
these free parameters are constrained to avoid generating
spurious solutions with these more flexible models (in other
words, avoid overfitting).

Encouragingly, two features of the human responses to these
images support their choice. First, the entropy distribution of
these judgments roughly follows a power-law distribution,
meaning that for most images there is a high degree of human
consensus, but there are also a sufficient number of images in
which human consensus diverges (see Fig. 3c). This property
reflects our intuitions about human categorization, in which most
stimuli are usually readily identifiable into one or two categories
and have graded category membership!?. In addition, the
confusion structure we find parallels what we would intuitively

expect from the natural world: the most confused categories are
dogs and cats, horses and deer, and automobiles and trucks (see
Fig. 3d).

Rich feature representations improve categorization models. It
seems intuitive that we categorize a novel stimulus based on its
similarity to previously learned categories or memorized exam-
ples from them. This motivates a common framework for existing
computational models: categorization as the assignment of a
novel stimulus, y, to a category, C, based on some measure of
similarity S(y, C) between a vector of feature values, y, and those
of existing category members in C. We can use the Luce-Shepard
choice rule®3>* to relate similarities to probabilities and deter-
mine the likelihood of a single categorization, made over our ten
categories:

S(Y: Ci)y
S(Y7C1)y+ o+ S(y, Clo)y ’

where y is a freely estimated response-scaling parameter.

(1)

p(Guess Category ily) =
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Fig. 3 Task paradigm and behavioral data. a Experiment web interface for our human categorization task. Participants categorized each image from an
order-randomized circular array of the CIFAR-10 labels. b Examples of images and their human guess proportions. For many images (upper plane and
cat), choices are unambiguous, matching the CIFAR-10 labels. For others (lower boat and bird), humans are far less certain. b The number of images by
the entropy of their associated human guess distributions (less entropy means humans had greater consensus). d The confusion matrix for categories
across all human judgments. Source data are provided as a Source Data file.

For both prototype and exemplar models, we use an
exponentially decreasing function of distance in the stimulus
feature space to measure the similarity between two stimulus
vectors y and z°°:

S(y, z) = exp{—d(y,2)} . (2)

The distance calculations for our models can be united under the
framework of computing the Mahalanobis distance. This means
that the distance between two stimuli is given by the following
equation:

MHD (y, z) = (y —2)" 3¢! (y—2), (3)

where X Zl is the inverse of the covariance matrix for the category

that z belongs to. We take X to be a diagonal matrix, so the
distance reduces to computing (y-2z)%/c> for each dimension,
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where o2 is the diagonal entry (the variance) associated with that
dimension. The parameters of X can thus be thought of as
reweighting the dimensions used for calculating distances: a
standard component of categorization models!3 and exactly the
transformation that was found to produce a close correspondence
between CNN representations and human judgments in previous
work?8,

In a prototype model'?, a category prototype—the average of
category members—is used for this similarity calculation: C is
represented by the central tendency, pc, of the members of
category C and S measures the similarity between a novel
stimulus vector and this category prototype—this creates a simple
decision boundary in stimulus representational space between
category prototypes. We define three Prototype models: Classic,
Linear, and Quadratic. The Classic model follows the traditional
formulation of a prototype model, assuming uniform variance for
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Model name Parameter

Table 1 Categorization model variants: descriptions and notation.

Optimization

=
M
oL

Classic Prototype Category prototypes: p
Category inverse variance: |
Choice rule: y

Category prototypes: p
Category inverse variance: cl
Choice rule: y

Category prototypes u
Category inverse variances: ¢l
Choice rule: y

Category exemplars
Distance scaling: g

Choice rule: y

Category exemplars
Attentional weights: w
Distance scaling: g

Choice rule: y

Linear Prototype

Quadratic Prototype

Exemplar (no attention)

Exemplar (attention)

Fixed
Fixed
Estimated
Fixed
Estimated
Estimated
Fixed
Estimated
Estimated
Fixed
Estimated
Estimated
Fixed
Estimated
Estimated
Estimated

cl

Q

Czl

Al

pwl

—'—‘:LZO—'—‘O—‘QZO‘ZO—‘OO
X
=2
Q.

N number of categories, Ny number of feature dimensions, N, number of parameters, )Zgj inverse of category covariance matrix in Mahalanobis distance calculation.

all categories (Xc = 0?1 for all C, where ¢? is a scalar constant and
I is the identity matrix) and so reduces to calculating the
Euclidean distance!?. The Linear model assumes the categories
share variance along each dimension (£c=ZX for all C, where X
has non-zero entries only on the diagonal) and the Quadratic
assumes that each category has its own variance along each
dimension (each Z is a distinct diagonal matrix), allowing them
to define more complex decision boundaries (linear and
quadratic, respectively)!©. In an exemplar model!3, all memorized
category members are used: C is represented by all existing
members or exemplars of category C and S measures the sum of
similarities between the novel stimulus vector and all category
exemplars, allowing the model to capture complex non-linear
decision boundary between categories that, with sufficient
samples, can approximate any Bayes optimal decision bound-
ary!>. It is in this function approximation sense, which is widely
used in machine learning, that we consider exemplar models
more complex than prototype models. We compare two well-
known exemplar models: one that assumes uniform variance
along each dimension and one with attentional weights that
assumes all exemplars share the same variance along each
dimension (the same assumption as the Linear Prototype model).
We present the best-scoring of these as our Exemplar model (see
Table 1 and “Methods” for details about how these assumptions
about variance translate to free parameters). Finally, we present
two baseline models for each of the CNN representations, which
were created by using their output probabilities as similarities and
inserting into the choice rule given above.

The formalization outlined above continues the tradition of
modeling categorization as a probabilistic procedure, in which a
novel stimulus, y, is assigned to the category it is most similar to.
We make a notational departure from this tradition in using the
Mahalanobis distance to unite the similarity comparisons of
prototype and exemplar models. We find this helpful for two
reasons: first, because it allows a more intuitive description of our
categorization models. In particular, we can see that in prototype
and exemplar strategies, a Gaussian distribution is used to model
categories and category exemplars, respectively, with the
importance of a dimension weighted inversely to the variation
along it. Under the minimal assumptions of learners having
access to information on the location and variance of categories
or exemplars, this equates to choosing the maximum entropy
distribution to guide our comparison. In light of this, our set of
models can be thought of as defining a range of boundary

complexities over stimulus space, rather than competing model
classes with different metrics, as generally depicted in previous
work. Second, it makes comparison of mathematical details
between different model types from within these classes more
clear: for instance, we see that our Linear Prototype and Exemplar
model with attentional weights are performing essentially the
same distance comparison, using a similar number of free
parameters. Finally, this formulation allows us to extend these
modeling strategies to a broader and more flexible class. We can
see this with our Quadratic prototype model, which, although
evaluated in earlier work!6, has been mostly absent from more
recent studies. Although we could also define more complex
exemplar models, this would be too computationally intensive for
the current work—instead, we leave this direction open for future
investigation.

We assess the performance of these categorization models
using five types of stimulus representations from computer vision:
unprocessed pixel data (pixels), Histograms of Oriented Gradi-
ents”® (HOGs), latent space encodings from a bidirectional
generative adversarial network®” (BiGAN), and final-layer
activations from two well-known CNN classifiers AlexNet*® and
DenseNet®. This set of representations coarsely recapitulates the
history of natural image featurization, with raw pixel inputs being
the obvious starting point. HOG features are slightly higher-level
descriptors of local features that are not learned from data.
AlexNet, which is in our case a CIFAR-sized variant of its
namesake, spearheaded the popularity of deep learning and
remains a simple yet effective deep CNN classifier. DenseNet
represents some of the architectural progress made (in this case,
skip connections) in the years since AlexNet. Finally, BIGAN is
able to obtain high performance on classification tasks after
adversarial training in which no category labels are used for
representation learning (in other words, no supervision). This
diverse set also allows us to independently factor out contribu-
tions of convolutional layers (AlexNet, DenseNet, and BiGAN)
and supervised (AlexNet and DenseNet) versus unsupervised
(BiGAN and HOG) learning, which are often conflated when
discussing CNNs. AlexNet and DenseNet were pre-trained on the
50,000-image training subset of CIFAR-10 to a test-set
classification accuracy of 82% (AlexNet) and 93% (DenseNet).
Two-dimensional linear-discriminant-analysis plots of these
representations are shown in Fig. 4.

When we stratify categorization model performance by feature
type and model class, we find that the nature of the underlying
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Fig. 4 Stimulus representations. Two-dimensional linear-discriminant-analysis projections of the five stimulus representations used in our analyses, for all
stimuli (colored by category). As the representation quality increases from left to right, the apparent class separability increases while within-class
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Fig. 5 Categorization model results. Negative log-likelihood and AIC results for all categorization models using all five stimulus representations (lower
scores mean better performance). Within each representation, models are colored and clustered by class (prototype, exemplar). Baseline model
performances are shown using a black bar for relevant feature spaces (AlexNet and DenseNet). Source data are provided as a Source Data file.

feature space greatly affects categorization model performance—
much more than the class of categorization model used (Fig. 5).
In particular, there appears to be a clear distinction between
models based on simple (AlexNet) and more advanced
(DenseNet) supervised CNN stimulus representations, which
capture human decisions well, and those based on raw pixels
(Pixels), hand-engineered computer vision features (HOG), and
an unsupervised generative CNN (BiGAN), which capture human
decisions poorly. This effect does not appear to be obviously
related to the dimensionality of stimulus representations: HOG
and DenseNet representations are roughly the same dimension-
ality, AlexNet has the second largest feature space, and BiGAN

representations are the smallest. Nor is it explained by the use of
convolutional architectures: BIGAN representations, while able to
support effective generative image modeling and comparable
downstream object classification using convolutional layers in the
original work>’, perform considerably worse than the much older
supervised AlexNet CNN. It does, however, appear related to
whether the representations come from networks that have been
designed to solve natural image classification in a supervised
manner (namely, AlexNet and DenseNet).

All parameter estimation was performed by cross-validation,
making it unlikely that our models are overfit. However, as the
log-likelihood improvements for our best-performing models

NATURE COMMUNICATIONS | (2020)11:5418 | https://doi.org/10.1038/s41467-020-18946-z | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

1 30
29 A
0.9
o >
E § 28 4
g 5
S o
S 8
< 081 ‘5
s o
g S
c B 27 |
3 §
= 3
Human @
0.7 A .
Linear prototype 26 |
Quadratic prototype
—— Exemplar
—— CNN
0.6 +— T T 25 - T
Low Medium High CNN Linear ~ Quadratic Exemplar
Label entropy prototype  prototype
Model

Fig. 6 Correlation results and second-best accuracy. Left: average Spearman’s rank correlation coefficient for images with low-, medium-, and high-
entropy guess distributions. Right: second-best accuracy (SBA) for best-performing CNN baseline and categorization models. Source data are provided as a

Source Data file.

over the one-parameter Classic prototype model and CNN
baselines are partly a product of increased expressivity, we present
Akaike Information Criterion® (AIC) scores as an alternate
measure of model fit that penalize more highly-parameterized
models. There are few notable changes as a result, indicating the
differences in results unlikely to be solely due to an increased
number of free parameters.

Cognitive models improve prediction for ambiguous images.
Next, we observe that although the baseline model performs very
well for the DenseNet representations, the use of cognitive models
still confers an improvement, capturing more of the fine-grained
graded category structure present in human categorizations. This
can be seen more easily if we stratify categorization model per-
formance by the level of uncertainty that people collectively
exhibit in judging images (Fig. 6 left). For images with high
human consensus (and therefore low guess-distribution entropy),
the CNN baseline and cognitive models perform comparably.
This is in a sense unsurprising, given that for the majority of
images there was a high human consensus on the single label the
CNN is pre-trained to predict to a high accuracy. However, the
Quadratic Prototype model and the Exemplar model still out-
perform this baseline model overall, and in particular model
graded category structure better for more interesting images
where humans were less certain (medium and high entropy).
Importantly, these improvements do not seem to be made at
the cost of losing confidence for images where humans and the
neural network baseline were certain, which is non-trivial given
the complexity of the underlying representational space they must
transform. The improvements to capturing human graded
category structure can also be seen in the greater second-best
accuracy (SBA) scores—the percentage of the time the model
correctly predicted the second most common human choice—for
these models, where, for example, the best-performing prototype
model improves performance by 3% over the baseline and 2%
over the Exemplar model over 10,000 images (Fig. 6 right). These
successful models incorporate free parameters that can be used to
modify the underlying features to better model human

categorization; the Classic Prototype model, by contrast, does
not. Given this pattern of results, we can see that transforming
supervised CNN representational spaces with cognitive categor-
ization models makes it possible to model human categorization
decisions well, and that the value of these cognitive models should
increase with the underlying uncertainty of the dataset. In this
context, it is interesting that although the DenseNet feature space
is much more compressed than AlexNet—with roughly one-third
the number of dimensions—it allows for more information
relevant to the related task of human categorization to be
retained.

Prototype models perform comparably to exemplar models.
Our third major finding is that, for all representational spaces,
there is a qualitatively different pattern of results than would be
expected from previous experiments in lower-dimensional arti-
ficial spaces: prototype models (Linear and Quadratic) perform
comparably to exemplar models (see Figs. 5 and 6). This result is
surprising given the frequent superiority in fit by exemplar
models in previous work, and the fact that prototype models form
simple decision boundaries and only make a single distance
comparison per category, whereas exemplar models can form
arbitrarily complex boundaries and make |C| = 1000 comparisons
(in our dataset).

The relative performance of prototype and exemplar models is
determined by two factors: the dimensionality of the space and
the structure of the categories in that space. To investigate the
former, we simulated categorization model performance over
increasingly complex artificial categories and varied the number
of training samples and the dimensionality of stimulus repre-
sentations (see Fig. 7). These simulations demonstrate that
intuitions about model performance developed for low-
dimensional categories do not directly transfer to higher-
dimensional ones. In particular, for more complex categories
(see Fig. 7, rightmost columns), we found that increasing the
dimensionality of stimuli resulted in a difference in the relative
performance of prototype and exemplar models. For complex
categories over a lower number of dimensions (see Fig. 7,
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Fig. 7 Performance of categorization models depends on dimensionality of stimuli. Categories of increasing complexity were created (columns, left to
right), and prototype and exemplar accuracy compared on stimuli sampled from them. Top row: representative category structures. Middle rows: prototype
(blue) and exemplar (red) model accuracy, as the number of dimensions (horizontal axes) and training samples (vertical axes) varies. Bottom row:
comparison of middle rows (prototype accuracy—exemplar). Each point represents the averaged results from 300 different distributions, with bilinear
smoothing between points. In different regimes, the relative performance of prototype and exemplar models varies significantly, in particular between the
regimes covered in laboratory studies (top left) and those necessary to cover more naturalistic categorization studies (top right). Source data are provided

as a Source Data file.

rightmost columns, left side of plots), exemplar models increas-
ingly outperform prototype models as the number of training
samples increases, which describes most previous laboratory
studies providing the strongest support for exemplar models!7-61.
However, for more complex simulated categories in higher-
dimensional spaces (see Fig. 7, rightmost columns, right side of
plots), both models perform equally well with many samples. This
finding is consistent with the idea that the mathematical
constraints on the form of category boundaries that both models
can learn have different consequences, in terms of performance,
in low- and high-dimensional spaces. For low-dimensional
spaces, where there are fewer possible ways to separate categories,
the strong constraints imposed by the functional form of
prototype models—, namely, having a hyperplane as a decision
boundary—means there are situations where the exemplar must
perform better given enough samples. However, in high-
dimensional spaces these constraints do not impose the same
penalty: prototype models can perform as well as exemplar
models. If the spatial assumptions underlying all modern
categorization models continue to be employed, it is highly likely
that we will need many dimensions to mathematically model
categorization over a large and varied range of stimuli that vary in
natural ways. What these simulation results show is that there is a

theoretical consequence of using those dimensions that interferes
with intuition and the extension of results developed in
experimental settings using simple artificial stimuli. It also helps
explain the results shown in Fig. 5, in which for the number of
feature dimensions that current models require to classify natural
images well (roughly 64-1024), the simple decision boundaries
formed by prototype models appear to perform well in
comparison to exemplar models.

If the categories are structured in a way that is consistent with
prototypes (namely that category members are relatively well
clustered and categories can be separated with simple bound-
aries), then prototype models will do well regardless of
dimensionality, as illustrated in the leftmost panels of Fig. 7.
Any conclusions based on the representations from AlexNet and
DenseNet need to be tempered by the fact that these representa-
tions were explicitly constructed to allow the neural networks to
classify stimuli via linear boundaries in these spaces. As a
consequence, we might expect that prototype models would do
well in predicting human categorization judgments using these
representations. However, we note that the Linear and Quadratic
prototype models also perform comparably to the Exemplar
model using pixels or HOG features, which are not designed to
support linear boundaries but do have very high dimensionality.
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Discussion

It is testament to the importance of categorization in accounts of
cognition that it remains a focus of research and discovery after
so many years of investigation. Continuing this rich tradition, in
the present study we have asked whether we might be able to
extend theory matured in simplified laboratory settings to capture
human behavior over stimuli more representative of the complex
visual world we have evolved and learned within. Previous work
on formal models of categorization had at least two motivations
for focusing on low-dimensional, artificial stimuli. First, these
formal models require stimuli to be represented in a feature space,
yet the psychological feature spaces that define natural categories
are unknown. This means a potentially large representational gap
exists between the inaccessible mental representations of stimuli
and our mathematical approximations of them, which can be
ameliorated by defining obvious dimensions of variation for
artificial stimuli (see Fig. 1). For more naturalistic stimuli, how-
ever, it is unlikely their variation can be suitably reduced or
attributed to a few dimensions, or category boundaries learned
over such a compressed space. Any attempt to model categor-
ization over such stimuli must therefore address the problem of
finding appropriate representations for large numbers of varied
naturalistic stimuli. Second, armed with simple stimuli, experi-
menters have been able to control the members of a category that
an individual experienced, and so have some degree of confidence
that the categorization models they were running reflected the
true psychological models. Clearly, this sort of control can never
be matched with most naturalistic stimuli. Any successful
extension of prior formal models to naturalistic stimuli must
directly address these concerns.

In the work presented above, we have adapted the traditional
methodological approach with these aims in mind. First, we use a
large, diverse collection of natural images as stimuli. Second, we
use state-of-the-art methods from computer vision to estimate the
structure of these stimuli, which our models further adapt based
on behavioral training data. This contrasts with the majority of
previous work, in which a small number of a priori-identified
features were manipulated to define and differentiate categories,
and as a consequence were limited to simple artificial stimuli.
Finally, we offset the uncertainty these advances introduce by
using a large behavioral dataset to more finely assess graded
category membership over stimuli. Taken together, our results
show that using representations derived from CNNs makes it
possible to apply psychological models of categorization to
complex naturalistic stimuli, and that the resultant models allow
for precise predictions about complex human behavior. Our most
general finding is that categorization models that incorporate
supervised CNN representations predict human categorization of
natural images well—in particular, exemplar and prototype
models that are able to modify CNN representations using
information about human behavior. This is theoretically inter-
esting because it indicates there is enough latent information and
flexibility in the existing CNN representations to harness for such
a related task, and that cognitive models can exploit it to derive
graded category structure.

Working with these complex, naturalistic stimuli reveals a
more nuanced view of human categorization. The broad con-
sensus from decades of laboratory studies using simple artificial
stimuli was that people could learn complex category boundaries
of a kind that could only be captured by an exemplar modell”.
Extrapolating from these results, we might imagine that cate-
gorization should be thought of in terms of learning complex
category boundaries in simple feature-based representations. Our
results outline an alternative perspective. We see from our
simulations that when operating in the type of high-dimensional
spaces necessary to represent large numbers of varied naturalistic

stimuli, the relative ability of prototype and exemplar models
depends on dimensionality, training set size, and model error.
Furthermore, the nature of these feature spaces themselves
appears to affect categorization profoundly, to the extent that the
choice of feature space would seem as important as the choice of
categorization strategy. When thinking about humans, feature
representations are likely to have been learned early on, through a
slow, data-driven learning process. Given these considerations,
one might expect psychological representations to reflect the
natural world, such that categorization of natural stimuli is made
as efficient and as simple as possible; of the type that could be
easily classified by a prototype-like model. On the other hand,
artificial or unlikely stimuli may at times carve out awkward
boundaries in these spaces, which perhaps also underlies the
equivocal performance of exemplar models in our work. What
seems most clear is that incorporating feature learning into stu-
dies of human categorization, as has been called for in the past®2,
and developing a deeper understanding of how these processes
interact in the context of complex natural stimuli is an important
next step towards more fully characterizing human categoriza-
tion. For such an analysis, past theoretical and simulation studies
exploring the conditions in which prototype and exemplar
models do and do not mimic each other are likely to be of great
relevance!6:63:64,

We view our approach as complementary to recent work
training CNNs to predict the MDS coordinates of naturalistic
images and using these as input for categorization models*3. The
key difference is the source of stimulus representations, their
generality, and their cost to procure. MDS-coordinate predic-
tions, if reasonably approximated, capture a great deal of infor-
mation about the aspects of stimuli that are psychologically
meaningful. However, in order to train networks to predict them,
human similarity judgments between images must be collected—
an expensive task, as the number of pairwise similarity judgments
grows quadratically with the number of images. Equally impor-
tantly, it remains to be shown that CNNs trained to predict MDS
solutions for small sets of images will generalize well to more
varied stimulus sets. On the other hand, CNNs are routinely
trained to classify thousands and even millions of natural images
with high accuracy, indicating that the information in their
representations is somewhat consistent for a wide range of
complex visual stimuli. Using these direct estimates of stimulus
structure could be considered a less precise approximation of
human mental representations; however, the already highly
relevant information they encode is easily improved by the simple
transformations implicit in almost all of our top-performing
models, which only require a training set of categorization data
that grows linearly with the number of images. Interestingly, our
simulation and results imply it is likely that as the number of
dimensions of variation climbs in a dataset, the categorization
results generated by both methods will begin to converge and so
we look forward to a test of this theory with future work.

The use and adaptation of machine learning techniques and
representations to extend psychological research into more nat-
uralistic domains is a field in its infancy. However, as we simply
cannot access human psychological representations for such
complex naturalistic stimuli, the preliminary success of our
approach is encouraging, and we are likely to see further benefits
that track the progress of large image databases and improve-
ments in deep network architectures. One natural extension here
would be to investigate the feasibility of using a machine learning
dataset with lower-level category labels; for example, a subset of
the ImageNet database®®. Beyond their interest for psychology,
human behavioral data for these domains provides a rich yet
largely unexploited training signal for computer vision systems, as
we recently demonstrated by using such information to improve
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the generalization performance and robustness of natural image
classifiers®>. More broadly, these results highlight the potential of
a new paradigm for psychological research that draws on the
increasingly abundant datasets, machine learning tools, and
behavioral data available online, rather than procuring them for
individual experiments at heavy computational and experimental
cost. Towards this aim, the large dataset we offer in this work can
provide a direct bridge between frontline efforts in machine
learning and ecologically valid cognitive modeling, the two of
which we hope continue to develop in synergy.

Methods

Stimuli. Our image stimuli were taken from the CIFAR-10 dataset, which
comprises sixty thousand 32 x 32-pixel color images from ten categories of natural
objects*’. We collected human judgments for all 10,000 images in the “test” subset,
which contains 1000 images for each of the following 10 categories: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. For the web-based
experiment, we upsampled these images to 160 x 160 pixels using scipy’s
“bicubic” image upsampling function®®.

We chose to use images from this dataset for a number of reasons. First, the
dataset has a long and still active history of exploration by the machine learning
community, meaning that in addition to the range of representations already
available, it is likely that the baseline representations and any innovations from the
present work will continue to improve the fit to humans. Second, the number of
images is still small enough for us to collect enough human judgments to offer a
good approximation of the underlying population-level guess distribution for the
entire test set. Third, the low resolution of the images is actually advantageous: it
produces useful yet meaningful variation in human responses that reveals graded
category structure, whereas the majority of images are identifiable once upsampled
(see Fig. 3). Finally, the dataset contains a reasonable number of borderline
examples that are ambiguous between two or more categories (medium- and high-
entropy guess distributions), in contrast to high-resolution datasets over hundreds
of categories that are more carefully curated—more in keeping with the nature of
experimental categories explored in previous work!”.

Human behavioral data. Our CIFAR-10H behavioral dataset consists of 511,400
human categorization decisions made over our stimulus set collected via Amazon
Mechanical Turk. In our large-scale experiment, 2570 participants were shown
upsampled 160 x 160-pixel images one at a time and were asked to categorize it by
clicking one of the 10 labels surrounding the image as quickly and accurately as
possible (see Fig. 3a). Label positions were shuffled between participants. There was
an initial training phase, during which participants had to score at least 75%
accuracy, split into 3 blocks of 20 images taken from the CIFAR-10 training set
(60 total, 6 per category). If participants failed any practice block, they were asked
to redo it until passing the threshold accuracy. After a successful practice, each
participant categorized 200 images (20 from each category) for the main experi-
ment phase. After every 20 trials, there was an attention check trial using a carefully
selected unambiguous member of a particular category. Participants who scored
below 75% on these checks were removed from the final analysis (14 participants
failed checks). The mean number of judgments per image was 51 (range: 47-63).
The mean accuracy per participant was 95% (range: 71%-100%). The mean
accuracy per image was 95% (range: 0%-100%). Average completion time was

15 minutes, and all subjects were compensated for their work (each participant was
paid $1.50). Informed consent was collected from all subjects, while the authors
were at the University of California, Berkeley, with ethical approval given to the
study protocol by the Institutional Review Board under protocol number 2015-05-
7551. We complied with all relevant ethical regulations.

We collected this amount of data for two reasons. The first is that, given
preliminary work, we knew roughly the number of categorizations needed to well-
approximate the human uncertainty over images. The second is that to fit
categorization models (for example, the Linear and Quadratic Prototype models,
and the Exemplar model with attentional weights) properly in the high-
dimensional feature spaces learned by contemporary machine learning
classification models, a certain number of parameters are needed to establish
models with the flexibility to transform representations to fit human behaviour
during the training phase (that is, to avoid underfitting) and a certain number of
datapoints are needed to avoid generating spurious solutions with these more
flexible models (that is, to avoid overfitting). The number we collect allows us to fit
(roughly) several vectors per category (covering the Linear and Quadratic
Prototype models and the Exemplar model with attentional weights).

In Fig. 2, we use these category judgments to help visualize our dataset. First, we
found the minimum (0.0) and maximum entropy common to all category guess
distributions. Then, we divided this scale into ten increasing bins, and sorted
images into these bins based on the entropy of their guess distributions. Finally, we
selected one representative image from each category for each entropy bin, and
displayed these so that they were aligned across categories.

Categorization models. Formally, we can unite prototype and exemplar strategies
of categorization under the following common framework: categorization as the
assignment of a novel stimulus y to a category C based on some measure of similarity
S(y, t) between feature vector y and those of existing category members (expressed in
a summary statistic = f{x:x € C)). This allows us to fully specify a model by a
summary statistic ¢, a similarity function S, and a function that links similarity scores
for each category to the probability of selecting that category given y.

The summary statistic ¢ describes the form of the category description that can
vary under different categorization strategies. In a prototype model!2, a category
prototype—the average of category members—is used for comparison: tc becomes
the central tendency pc of the members of category C. In an exemplar model'3, all
memorized category members are used: fc represents all existing members or
exemplars of category C and y is compared to all of them.

We take as our similarity function S a standard exponentially decreasing
function of distance in the stimulus feature space>>. We also take S to be an
additive function: if ¢ is a vector, S becomes the summation of the similarities
between y and each element of t. Rearranging the formula assigning probability to
guesses given above, we can reduce the probability of each judgment as follows:

1
eXP{ y log (th;)} + ot eXP{ylog (Séf;.ligf)))} .
(4)

p(Guess Category ily) =

This defines a sigmoid function around the classification boundary, where y
controls its slope, and therefore degree of determinism. As y — oo, the function
becomes deterministic, and as y — 0, it reduces to random responding. When
formulated in this manner, the prototype model is equivalent to a multivariate
Gaussian classifier!® and the exemplar model to a soft-nearest-neighbors classifier.
To evaluate the predictions of these models against human data, we record the
category label, C; that the participant gives to the stimulus y;. We then compute the
log likelihood of the N human guesses under the model:

1

L=)_log SO0, 1) s 1 )

=1 exp{ y log (s(y,, ‘C.))} 4+ 4 exp{y log (s(y,, o) )}
Finally, we show that this formalization of prototype and exemplar models can
unified by using the Mahalanobis distance metric to compute the distance between
vectors, subject to model-specific constraints (see subsections below). Prototype
and exemplar models differ in how their similarity to a category S(y, tc) is
calculated, to which we now turn (see Table 1 for summary).

Prototype models can be shown to be equivalent to decision-bound models!®-7,
and there is a formal correspondence between such models in the psychological
literature and a particular subset of multivariate Gaussian classifiers from statistics
in which the covariance of the Gaussian distribution describing each category is
equal to the identity matrix!>. For prototype models, similarity to a category is
taken to be an exponentially decreasing function of the distance between a stimulus
vector y and the category prototype:

8y, tc) = exp{—dc(y)} - (6)

A comparison between two categories can be expressed as a simplified ratio:
S(y. tc,) eXP{*dc) (Y)}
Site)  exp{—de,(v)}

Classic prototype models use the (squared) Euclidean distance and when the
prototypes are estimated empirically by averaging the whole set of ground-truth
category members, we call this a Classic Prototype model.

We can extend the prototype class to include several more variants by
recognizing that the squared Euclidean distance is a special case of the Mahalanobis
distance metric:

de ()} - 7)

= exp{—ldg,(y) -

SQED (y, C) = (y—#c)" I(y —pe) (8)

MHD (y, C) = (y —pc)" =" (y — ) ©)

where pc and Z¢ are the mean—or, prototype—and covariance matrix of category C.
If X is the same for all categories, then the decision boundary between
competing prototypes in feature space is closest to is a hyperplane, resulting in a
linear model!”. Taking the empirical mean of ground-truth category
representations as the prototype, pc, we can define a Linear Prototype model by
also learning a single diagonal inverse covariance matrix common to all classes C;—
that is, Eal = diag (c), where c is a vector fitted on training set data across all
categories. If Z¢ is allowed to vary across categories, then this classification
boundary can take more complex non-linear forms!°. Again, by taking the
empirical mean of ground-truth category representations as the prototype, pc, we
can define a Quadratic Prototype model by also learning a diagonal inverse
covariance matrix for each category C,—that is, Eg]l = diag(c;), where ¢; is a
vector fitted on training set data for each category C;. Using a diagonal covariance
matrix is equivalent to learning a weight for each dimension, a linear
transformation that has previously been found to be sufficient to produce a close
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correspondence between CNN representations and human similarity judgments*S.
Although there is the potential to learn the non-diagonal terms in these matrices,
we do not have enough behavioral data to fit these without incorporating a more
complex regularization framework to address overfitting. We also tested models in
which we learned the category prototypes in the form of free parameters, instead of
calculating them directly from the ground-truth representations. As these models
scored roughly the same with many more parameters, we excluded them from
further analysis.

Exemplar models compute the similarity between y and ¢ by taking the sum of
the similarities between y and each known category member:

S(y,tc) = > exp{—B d(y,x)"} ,

xeC

(10)

where g is a shape parameter (normally chosen to equal 7, below) and f is a
specificity parameter!3. The distance between two vectors is given by the following
equation:

1/r
d(y,x) = [Z wi | —J’k‘r} ) (11)
k

where we use r =2, consistent with the use of integral dimensions that cannot be
separately evaluated by participants. These models weights, wy, are positive, sum to
one, and are known as attentional weights. They serve to modify the importance of
particular dimensions of the input. If these weights are fixed uniformly in advance
—and in combination with the standard choice of g =r =2 above—we obtain an
exemplar model that uses a scaled squared Euclidean distance to compare stimulus
vectors. If instead we allow attention weights to vary, we obtain a more flexible
model. In the following analysis, we present the best performance of these models
as our Exemplar model.

Computing the above equation with these hyperparameter settings corresponds
exactly to solving the Mahalanobis distance between a novel stimulus vector and
each of the existing category members under a particular set of constraints. To see
this, note that with the choice of g = r =2, the similarity comparison becomes the
sum of squared Mahalanobis distances, with each distance comparison given by the
following form:

exp{~ d(y, %)’} =exp{—ﬁ > wilx —yk)z} (12)
k

—ep{—p (x—y)" Wl (x - y)} (13)

= exp{~(x—y)" pwl (x = y)} . (14)

where w and f8 are constrained as above, and wI can be thought of as a diagonal
inverse covariance matrix, EE’I, which is shared between categories (as in the Linear
Prototype model detailed above). This means we can unite our prototype and
exemplar model classes under the same mathematical evaluation. Finally, we note
that because these models learn the 3 parameter, they are free to unite and choose
among interpretations of the exemplar model in which the best stored exemplar is
used (corresponding to 8 — o, or where every exemplar is weighted equally f — 0,
or anywhere in between.

Stimulus representations. To evaluate categorization models on our dataset, we
need feature representations for each of our stimuli. We assess the suitability of a
range of stimulus representations from contemporary computer vision models for
this purpose, beginning with those from deep CNNs. Deep CNNs learn a series of
translation-invariant feature transformations of pixel-level input images that are
passed to a linear classification layer in order to classify large sets of natural
images**. After training, a network will generate node activations at each layer for
each image, forming vector representations that are increasingly abstract, and can
be directly input into downstream statistical models. We extract feature repre-
sentations for each of our stimuli from two popular off-the-shelf CNNs pre-trained
on the training subset of the CIFAR-10 dataset, which comprises 5000 images
from each of the 10 categories listed above. Our first network was a version of
AlexNet for CIFAR-10°3 that obtains a top-1 classification accuracy of 82% on
CIFAR-10’s test subset using Caffeb. We use this network, because it has a
simple architecture that allows for easier exploration of layers while maintaining
classification accuracy in the ballpark of much larger, state-of-the-art variants. Our
second network was a DenseNet with 40 layers, 3 dense blocks, and a growth rate
parameter of 12, trained using the keras Python library to a top-1 accuracy of
93%%. We chose this network because it achieves near state-of-the-art perfor-
mance while still being parameter efficient (for faster training). The key change
DenseNet makes to the fundamental CNN structure is that each layer passes its
output to all layers above (and as such creates a dense feed-forward connection
graph), rather than just the subsequent layer, allowing for deeper networks that
avoid vanishing gradients®®.

We also include three further sets of image representations for comparison. The
first are the raw unprocessed pixel representations for each image, downloaded
directly from the CIFAR-10 website*?. The second are HOGs for each image,

constructed using the Python opencv library’®. These features are extracted
without supervision and supported numerous computer vision tasks prior to
modern CNNs. Our most successful HOG representation for which we report
results used a window size of 8 x 8. The third set of representations are from the
latent space of a BiIGAN>. This network is convolutional, but unsupervised, and
allows us to factor out the contribution of human-derived labels in training CNNs
to learn representations useful for modeling people. Two-dimensional linear-
discriminant-analysis plots of these representations are shown in Fig. 4.

Training and evaluation. We estimated all categorization model parameters with
5-fold cross-validation and early stopping using the Adam variant of stochastic
gradient descent”! and a batch size of 256 images (see Table 1 for exact parameters
estimated for each model). We do not train the classification model parameters,
including both CNNs: these are held fixed after pretraining on the CIFAR-10
training dataset (see above). For each model, we conducted a grid search over the
learning and decay rate hyperparameters for Adam, selecting the final model
parameter set and early stopping point during training based on which gave the
lowest cross-validated average log likelihood. We used the python package
Theano’? for categorization model specification, optimization, and analysis.

Model comparison. Our primary evaluation measure for each model was log

likelihood. For all models, we computed these scores by generating predictions for
all images in our stimulus set using the averaged cross-validated parameters taken
at the early stopping point described above. We also use the AIC score to compare
models, as it gives a score for each model that takes into account the relationship
between the number of parameters they employ, and their log-likelihood scores®®

(15)

where k is the number of parameters in the model and L is the maximum log
likelihood.

In addition to log likelihood, we use two more interpretable measures of how
well our models capture graded category structure defined by the human guess
distributions. The first is the average Spearman’s rank correlation coefficient over
images (Fig. 6 left). This reflects the average of how well our models captured the
overall order of labels for each image, as derived from the human guess
distributions. It is rare, however, that humans allocate some guesses to all
categories for an image: in fact, the majority of images have guesses clustered in
one or two categories, and seldom beyond five even in the high-entropy cases. Our
probabilistic categorization models, by contrast, always allocate probability to every
class for an image, even if these are vanishingly small. To allow us to only focus on
the orderings between human guesses and significant model guesses, we round any
model probabilities below the resolution of the human data (0.04; two guesses out
of 50) to zero. This means large ordering discrepancies imposed by insignificant
categorization model probabilities do not obscure the meaningful correlation.
Finally, we stratify images based on their entropy by calculating the range in
entropy of smoothed human guess distributions (using plus-one smoothing), and
breaking this range into three bins. The first bin (low entropy: 0-0.64) contained
around 8800 images, where each image had a high human consensus. The second
bin (medium entropy: 0.64-1) had around 1000 images, and the third bin (high
entropy: 1-1.37) around 200 images. In total, around 34% of our images had
perfect human consensus for a single category. The second measure is SBA (Fig. 6
right). This measures whether the second most likely category label chosen by our
models for an image is the same as by our participants. As both of these measures
are averaged over thousands of images, the error bars are negligible and we have
not included them.

AIC =2k — 2In(L)

Baselines. As baselines, we use the raw output (softmax) probabilities of both
AlexNet and DenseNet neural networks for each image to provide S(y, tc). In deep
CNN classifiers, the softmax function takes the inner product between a matrix of
learned weights and the rasterized output of the final pooling layer, and returns a
probability distribution over all of the CIFAR-10H classes. These weights are
learned based on minimizing classification loss over the training subset of the
CIFAR-10 dataset described above. Although not explicitly trained to output
human classification probabilities, these models are the most competitive systems
available in terms of making accurate classifications at the level of human per-
formance. For this reason, and because the models output a full probability dis-
tribution over classes that may exhibit human-like confusion patterns, we expect
them to provide a meaningful and competitive baseline with which to compare our
model scores.

Noise ceiling. For the correlation analysis, we estimated the noise ceiling in human
guesses by using a split-half method. We randomized human guesses for each
image, and used half of these to predict the held-out half (using Spearman’s rank
correlation with the Spearman-Brown correction’374), For each image, we aver-
aged this correlation across 100 split-half models.

Simulations. Several key results from previous modeling work show that if arti-
ficial stimuli are sampled from overlapping—Gaussian—categories, they define
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more complex optimal decision boundaries of the type that can be captured by
non-parametric exemplar models but not parametric prototype ones!®!7. Through
the simulation experiments presented in Fig. 7, we wanted to assess how well this
conclusion would generalize to higher-dimensional stimuli and categories.

To do this, we tested classic formulations of prototype and exemplar models on
stimuli from five increasingly complex types of synthetic category over a range of
dimensions. Category complexity was defined by varying the number of Gaussian
distributions used to instantiate a category, and the parameters of those Gaussian
distributions!”. For the linear and simple case, our categories were single
Gaussians. For the medium, complex, and ill-conditioned cases, the categories were
mixtures of two Gaussians. Across these different types of category, we analyzed
the predictions of a zero-parameter Classic prototype model and a one-parameter
Exemplar model in which only the 8 parameter was estimated (using a cross-
validated grid search). All other model parameters were set to 1. Within each
category type and dimension, we sampled a varying number of training stimuli to
use to estimate the prototype and exemplar locations and then tested the models on
a fixed number of unseen test stimuli (100 stimuli per category). We created 300
distributions for each type of distribution at each dimensionality and generated
training samples randomly from them. Each point on the accuracy and comparison
plots of Fig. 7 is the average from model results over these 300 distributions.
Finally, we used the python package Matplotlib’® with the bilinear
interpolation method to create the plots themselves.

More formally, we define a category component using a Gaussian density as
follows:

x ~ N(g,X.), (16)

u o~ N(Ovl)a (17)

(18)

where d is the degrees of freedom. In the linear category case, one component was
used per category and . set to I (isotropic/spherical), then shifted so that the

means were far apart, creating a linearly separable dataset. For the simple case, one
component was used per category, with d < Ny + 20, with N4 equal to the number
of dimensions, as this was found to give two-dimensional categories that matched
the simple categories used in seminal previous work!”. For the medium case, each
category was an even mixture of two Gaussian components, with d < Ny + 20 and
the closest pair of components defined as the first category. For the complex case,
the same parameters were used except components were randomly paired to form
categories. We found that examples from these two regimes matched the complex
categories from the same study!”. Finally, we note that setting d < Ny results in an
ill-conditioned covariance matrix, and that categories constructed from randomly
paired components of this nature had a more complex structure, often with high
variance in a subset of dimensions. We call this type of distribution ill-conditioned.

c

1
S~ p Wishart(dI, d),

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The dataset presented in the current work (CIFAR-10H) is available in a public GitHub
repository: https://github.com/jcpeterson/cifar-10h (https://doi.org/10.5281/
zen0do.4008585). The image dataset (CIFAR-10%) can be found at https://www.cs.
toronto.edu/kriz/cifar.html. Source data are provided with this paper.

Code availability

All computer code is available on request from the authors.
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