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Cell surface proteins of parasites play a role in pathogenesis by modulating mammalian cell recognition and cell adhesion during
infection. B-Galactofuranose (Galf) is an important component of glycoproteins and glycolipids found on the cell surface of
Leishmania spp. and Trypanosoma cruzi. -Galf -containing glycans have been shown to be important in parasite-cell interaction
and protection against oxidative stress. Here, we discuss the role of f-Galf in pathogenesis and recent studies on the Galf-
biosynthetic enzymes: UDP-galactose 4’ epimerase (GalE), UDP-galactopyranose mutase (UGM), and UDP-galactofuranosyl
transferase (GalfT). The central role in Galf formation, its unique chemical mechanism, and the absence of a homologous enzyme
in humans identify UGM as the most attractive drug target in the -Galf-biosynthetic pathway in protozoan parasites.

1. Galactofuranose

B-Galactofuranose (B-Galf) is the five-member ring isomer
of galactose (Figure 1). This rare sugar was initially found in
several human bacterial pathogens including Mycobacterium
tuberculosis, Escherichia coli, Salmonella typhimurium, and
Klebsiella pneumoniae [1-4]. In M. tuberculosis, S-Galf is
found in the arabinogalactan layer where it links the peptido-
glycan and mycolic acid layers [1]. In E. coli and K. pneumo-
niae, it is present in the O antigen, while in S. typhimurium
it is found in the T antigen [2—4]. In all of these organisms,
the enzyme UDP-galactopyranose mutase (UGM) serves as
the sole biosynthetic source of 3-Galf as it is responsible for
converting UDP-Galp to UDP-Galf (Figures 2 and 3) [5-10].
UDP-Galf serves as the precursor molecule of -Galf, which
is attached to the various components of the cell surface
by galactofuranosyl transferases (GalfTs) (Figure 2) [11, 12].
UGMs and GalfTs are not found in humans, therefore, they
have been examined as potential drug targets.

Deletion of the genes coding for UGM or GalfTs has
shown that these proteins are essential in M. tuberculosis,

highlighting the importance for Galf in bacteria [13].
Studies have also been conducted to identify inhibitors
for M. tuberculosis UGM [14-17]. These studies showed
that specific inhibitors of M. tuberculosis UGM were able
to prevent mycobacterium growth and, therefore, validated
Galf biosynthesis as a drug target against mycobacteria
[14].

p-Galf has also been shown to be present in fungi
[18-21]. In the human pathogen Aspergillus fumigatus, it
is found in four components of the cell wall: galactoman-
nan, glycoprotein oligosaccharides, glycophosphoinositol
(GPI) anchored lipophosphogalactomannan (LPGM), and
sphingolipids [18, 22]. Deletion of the UGM and the
Galf transporter genes in Aspergillus resulted in attenuated
virulence, increased temperature sensitivity, and thinner cell
walls [23, 24]. Galf is also present in protozoan parasites and
is a virulence factor [25]. In Leishmania spp., it is present in
the lipophosphoglycan (LPG) and in glycoinositolphospho-
lipids (GIPLs). In T. cruzi, Galf is found in the GIPLs and
glycoprotein oligosaccharides [26, 27]. This paper focuses
on current knowledge on the biosynthetic pathway of 3-Galf



and its role in the pathogenesis of T. cruzi and Leishmania
Spp-

L.1. Overview of T. cruzi and Leishmania spp. T. cruzi is
the causative agent of Chagas’ disease, which often develops
severe cardiac complications in patients with the chronic
form of the disease [28]. In the T. cruzi life cycle, the parasite
undergoes three developmental stages as it is transmitted
from the insect vector (triatomine bug) to mammals:
trypomastigote (vector feces and mammalian bloodstream),
epimastigote (vector midgut), and amastigote (mammalian
smooth muscle) [29]. Leishmania spp. are the causative
agents of leishmaniasis, which can manifest in three forms—
visceral, cutaneous, or mucocutaneous—depending on the
species [30]. In the Leishmania spp. lifecycle, there are two
stages: the amastigote (mammalian host macrophages) and
the promastigote stage (vector (sand fly) midgut) [30].

Current treatments are limited due to toxic side effects
and cost, therefore new drugs are needed [31-33]. Lifecycle
progression of both T. cruzi and Leishmania spp. is associated
with changes in the carbohydrate composition on the
cell surface. These changes are important for mediating
host-pathogen interactions Galf levels and Galf-containing
glycans are shown to be modulated throughout the parasite
life cycles and are important for pathogenesis [26, 34-36].
As Galf biosynthesis has been shown to be an attractive drug
target for other pathogens, enzymes involved in this pathway
may also prove to be ideal drug targets for the treatment of
Chagas’ disease and leishmaniasis.

2. Biosynthesis of Galf in Kinetoplastids

The biosynthesis of Galf begins with the uptake and
metabolism of galactose (Gal). Gal is an epimer of glucose
that differs only by the orientation of the hydroxyl group
at the carbon 4 position. Gal is a component of lactose in
milk, is present in grains and beets, and can be utilized
for energy after conversion to glucose (Glc). Gal is also a
major component of glycans, present in proteins and lipids
in most organisms, ranging from bacteria to mammals.
The metabolism of Gal occurs via the Isselbacher or Leloir
pathways (Figure 2). In the Leloir pathway, Gal is con-
verted to glucose-6-phosphate (Glc-6-P), an intermediate
in glycolysis (Figure 2(a)). After Gal is transported into the
cytoplasm by hexose transporters it is phosphorylated by
galactokinase (GalK). Phosphorylation of Gal prevents its
transport out of the cell. Gal-1-phosphate (Gal-1-P) is then
coupled to uridyl diphosphate by galactose-1-phosphate
uridyltransferase (GalPUT) yielding two products, UDP-
Gal and Glc-1-phosphate (Glc-1-P). UDP-Gal is converted
to UDP-glucose (UDP-Glc) by UDP-glucose-4-epimerase
(GalE). Glc-1-P is isomerized to Glc-6-P by phosphogluco-
mutase (PGM) [37, 38]. In the Isselbacher pathway, Gal-1-P
can be directly converted to UDP-Gal by the enzyme UDP-
sugar-pyrophosphorylase (USP) (Figure 2(b)) [39]. These
pathways contribute to the pool of UDP-Gal required for the
biosynthesis of the glycocalyx.

In Leishmania spp., galactose has been shown to be
obtained from the environment by hexose transporters
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FIGURE 1: Structures of f-Galactopyranose and f-Galactofuranose.

through radioactive labeling assays, and both the Leloir and
Isselbacher pathways function to maintain proper levels of
UDP-Gal [40]. The Isselbacher pathway is present in L.
major due to the wide substrate specificity of USP, which
can convert many sugars to the corresponding UDP-sugar
including glucose, galactose, galacturonic acid, and arabinose
[41]. The wide range of substrate specificity has been
explored by crystallographic studies and has been attributed
to a larger active site that can alter conformations of residues
involved with sugar binding and the flexibility of the sugar-
binding loop [42]. Deletion of the USP gene in L. major
showed that the protein is nonessential and demonstrates
that since the Leloir and Isselbacher pathways are redundant,
proteins involved with the formation of UDP-Gal are not
essential for Leishmania spp. survival [41, 43]. In T. cruzi
and Trypanosoma brucei, galactose cannot be obtained from
the environment because it is not recognized by the hexose
transporters; therefore, these parasites rely on the action of
GalE from the Leloir pathway for the direct conversion of
UDP-Glc to UDP-Gal for galactose [37, 44, 45]. In both T.
cruzi and L. major, UDP-Gal is converted to UDP-Galf by
UGM (Figures 2(c) and 3) [7]. UDP-Galf is the substrate for
several UDP-galactofuranosyl transferases, which decorate
many glycoproteins and glycolipids on the cell surface of T.
cruzi and L. major.

2.1. Galactofuranose-Containing Proteins and Lipids. Galf
is found in many major components of the glycocalyx
of Leishmania spp. and T. cruzi. In Leishmania spp., and
Galf is found in the lipophosphoglycan (LPG) and in
glycoinositolphospholipids (GIPLs), while in T. cruzi, Galf
is found in the GIPLs and glycoprotein oligosaccharides
(Figure 4) [26, 27]. In this section, we will describe the
structure and role in pathogenesis of known Galf-containing
glycoconjugates.

2.1.1. Lipophosphoglycan (LPG) from Leishmania. LPG from
Leishmania spp. has four components: a phosphoinositol
lipid, a core oligosaccharide, phosphoglycan (PG) repeat
units, and a cap (Figure 4(a)). f-Galf is found in the core
structure where it plays a role in connecting the PG repeat
units to the phospholipid [35, 46]. LPG has been found to
be important for adhesion to the sandfly midgut, resistance
to the human complement C3b, protection from oxidative
stress, and prevention from phagosomal transient fusion
[47-50].
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FIGURE 2: Biosynthetic pathways of Galf. (a) In the Leloir pathway, Gal is transported to the cytoplasm where it is converted to galactose-1-
phosphate by galactokinase (GK). Galactose-1-phosphate uridyl transferase (GalPUT) and UDP-Glc 4’ epimerase (GalE) are involved in the
synthesis of UDP-galactose. (b) Alternatively, galactose can be directly converted to UDP-galactose by the Isselbacher pathway by UDP-sugar
pyrophosphorylase (USP). (c) UDP-Galactose is then converted to UDP-Galf by UDP-galactopyranose mutase (UGM), and UDP-Galf is
subsequently added to the glycocalyx by Galactofuranosyl transferases (GalfT).
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FIGURE 3: Reaction catalyzed by UDP-Galactopyranose mutase (UGM).

2.1.2. Glycoinositolphospholipids (GIPLs). GIPLs are free
glycosylated phospholipids found in many kinetoplastids.
Those found in Leishmania spp. and T. cruzi are considered
unique due to the presence of f-Galf (Figures 4(b) and 4(c))
[26, 51-54]. GIPL structure is species and strain dependent
and varies in expression levels throughout the life stages
of the parasite [55-58]. GIPLs from Leishmania spp. are
thought to be precursor molecules for the synthesis of the
LPG core structure [59]. L. major GIPL-1 has been shown
to be involved in parasite-host interactions and is thought to
play an important role in establishing infection [57, 60].
GIPLs from T. cruzi include a class of phospholipids
previously identified as lipopeptidophosphoglycans (LPPGs)
[61-63]. The LPPGs were originally considered a separate

class from the GIPLs due to the presence of contaminating
amino acids during their purification; these amino acids have
since been identified as part of the NETNES [27, 64]. The
importance of GIPLs in T. cruzi is revealed by studies that
show that it plays a role in antigenicity, both with rabbit
and human sera [36, 53]. The antigenicity is thought to be
primarily due to the terminal 5-Galf residues either from the
GIPLs or the O-linked mucins, as removal of 5-Galf results
in decreased levels of antigenicity [36, 53, 65]. It has also been
shown that GIPLs play a role in attachment of the parasite to
the luminal midgut of the vector Rhodnius prolixus [55]. T.
cruzi modulates this interaction by altering GIPL expression
levels during its life cycle, as epimastigotes have much higher
expression of GIPLs than trypomastigotes [55, 65, 66].
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FIGURE 4: Structures of Galf -containing glycans of Leishmania spp. and T. cruzi. (a) Structure of LPG from Leishmania spp. (b) Structures of
GIPLs from T. cruzi, including the previously annotated LPPG and GIPL-A (c) Structures of GIPL-1-3, (A) from L. major and L. mexicana.
(d) Selected subset of structures of O-linked glycans found in both T. cruzi strains G and Tuhulan.

2.1.3. N-Linked Glycans. -Galf is found in mannose N-
linked oligosaccharides in several species of trypanosomatid
flagellates including T. cruzi, Leptomonas samueli, Her-
petomonas samuelpessoai, Crithidia fasciculate, and Crithidia
harmosa [36, 67-70]. The glycan structures have been solved

for L. samueli, C. fasciculate, and C. harmosa and are shown
to be species dependent [67, 69]. f-Galf units are found as
terminal sugars linked to mannose residues in high mannose
type N-linked glycans [67, 69]. The role of N-linked glycans
has currently not been significantly explored for T. cruzi.
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2.1.4. T. cruzi O-Linked Glycans and Mucins. T. cruzi mucins
are a family of GPI-linked glycoproteins with high levels
of O-linked glycosylation [71]. Several studies have been
conducted to determine the composition of the oligosaccha-
rides bound to Thr and Ser residues in these glycoproteins
[72-76]. In T. cruzi, the O-glycans are not linked to N-
acetylgalactosamine as in mammals and other organisms;
instead, they are linked to N-acetylglucosamine [77]. It has
been demonstrated that these glycans vary highly among
T. cruzi strains, and B-Galf is a component of the glycan
structures of T. cruzi strains G, Tulahuen, and Dm28c;
however, f-Galf is not found in T. cruzi strains CL-Brener
and Y (Figure 4(e)) [72-74, 78, 79]. These mucins play
an important role in parasite-host interaction by both
protecting against host defense mechanisms and ensuring
targeting of specific cells and tissues [71, 77].

3. Galactofuranose Is a Virulence
Factor in Kinetoplastids

It has been shown that incubation of L. major or T. cruzi
with Galf-specific antibodies blocks parasite binding to
macrophages or mammalian cells, resulting in a 50-80%
decrease in infection rates [60, 66, 80, 81]. It was further
shown that the antibody specifically bound to the -Galf
present in GIPLs of T. cruzi and GIPL-1 of L. major [60, 66].
This suggests that f-Galf and the GIPLs of T. cruzi and
GIPL-1 of L. major play a role in cell adhesion and infection.
Furthermore, it was shown that macrophages incubated with
p-nitrophenol-B-Galf were infected 80% less by L. major,
while macrophages incubated with p-nitrophenol-f-Galp
saw no decrease in infectivity [60]. Together, these results
confirm that 3-Galf plays an important role in parasite-host
interaction and suggest that -Galf biosynthetic enzymes are
potential drug targets.

3.1. UDP-Glucose 4'-Epimerase (GalE). In T. cruzi, GalE is
the first protein required for Galf biosynthesis [82]. GalE
is classified as a short-chain dehydrogenase/reductase (SDR)
with a conserved Tyr-X-X-X-Lys motif and a characteristic
Rossmann fold structure for NAD(P)* binding [38, 83]. GalE
is a homodimer that consists of two domains, an N-terminal
domain with the Rossmann fold and a C-terminal domain
that binds the substrate, UDP-Glc [84, 85]. The catalytic site
is located in the cleft between the two domains [84, 85].
The mechanism is shown to be conserved across species
and involves the deprotonation of the Glc O4" hydroxyl
and hydride transfer from the C4 carbon of Gal to NAD*
[84, 85]. The intermediate 4-keto sugar rotates in the active
site and NADH transfers back the hydride to the opposite
face forming UDP-Gal [84, 85].

Mutant strains of T. brucei and T. cruzi with deletion
of the galE gene have not been obtained suggesting that
Gal metabolism is essential for parasite survival [45, 82,
86, 87]. Conditional null mutants were created in T. brucei
using tetracycline-regulated expression [45, 86]. Studies with
this strain showed that removal of tetracycline from the
trypomastigote parasite led to cell death and decreased Gal
surface-expression levels by 30% [45, 86]. These studies

showed that, upon Gal starvation, Gal was eliminated from
T. brucei variant surface glycoprotein (VSG) and from poly-
N-acetyllactosamine-containing glycoproteins causing cell
growth to cease and differentiation to a stumpy-like form,
ultimately leading to cell death [87].

Single galE knockout mutants of T. cruzi epimastigotes
were also constructed [82]. These cell strains showed several
phenotypic differences including shortened flagella and
agglutination, which is thought to be the result of a lack
of surface mucins [82]. Interestingly, these cell strains show
a preference for expressing high levels of Galf-containing
GIPLs over Galp mucins, whose expression levels were
reduced 6-9-fold, suggesting levels of Galf is preferentially
maintained in the glycocalyx over Galp [82]. In Leishmania
spp., Gal can be obtained from extracellular sources, presum-
ably by a family of hexose transporters [40, 88]. Thus, GalE
is not essential in these parasites.

Studies have been undertaken to identify novel inhibitors
that specifically target the GalE of T. brucei [89, 90].
Using high-throughput screens and computer modeling
experiments, inhibitors that showed preference to T. brucei
GalE over human GalE were identified [89, 90]. However,
when these compounds were tested in vitro with T. brucei
and either mammalian CHO cells or liver (MRC5) cells, these
compounds either were cytotoxic to both the parasite and
mammalian cells or the compound was ineffective against
T. brucei [89, 90]. These studies suggest that, while GalE
remains a potential drug target, there will be many difficulties
in designing specific inhibitors for the treatment of these
diseases without unwanted side effects.

3.2. UDP-Galactopyranose Mutase (UGM). UGM is a flavo-
dependent enzyme that catalyzes the conversion of UDP-
Galp to UDP-Galf. UGM was first identified in Escherichia
coli K-12 in 1996, and since then it has been identified
in several other pathogenic microorganisms including M.
tuberculosis, L. major, T. cruzi, and A. fumigatus [5-8].
Interestingly, while T. cruzi produces UGM the related T.
brucei does not, and as a result, T. brucei does not produce
Galf [70]. UGM has been found to be the sole biosynthetic
source of Galf and since it is not found in mammals is
considered an ideal drug target.

Deletion of the UGM gene in L. major shows that this
enzyme plays an important role in pathogenesis [25]. In the
absence of UGM, L. major mutants were completely depleted
of Galf, lacked LPG PG repeats, and contained truncated
forms of GIPLs [25]. Furthermore, mice infection by L. major
lacking Galf was significantly attenuated [25]. As previously
mentioned, deletion of UGM also showed that Galf is a
virulence factor in A. fumigatus and Aspergillus nidulans
[23, 95]. These studies show the importance of UGM and
validate this enzyme as a drug target in protozoan and other
eukaryotic human pathogens.

Although the reaction catalyzed by UGM does not
involve a net redox change for the conversion of UDP-Galp
to UDP-Galf, the reaction requires the flavin cofactor to be
in the reduced form [96, 97]. Structural and mechanistic
studies of the prokaryotic UGM have led to two proposals for
the ring contraction mechanism (Figure 5). One mechanism
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TaBLE 1: UDP-galactopyranose mutases.
Species Amino acids % identity® Oligomeric state Reference
E. coli 367 100 Dimer [91]
M. tuberculosis 399 44 Dimer [92]
L. major 491 15 Monomer b
T cruzi 480 15 Monomer b
A. fumigatus 510 14 Tetramer (93]
“Identity to the E. coli enzyme.
bOppenheimer and Sobrado unpublished results.
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FIGURE 5: Proposed chemical mechanism for UGMs. Nucleophilic attack by the reduced flavin (1) leads to a flavin-galactose adduct (2). This
step can either occur via an Snl or Sn2 reaction. Alternatively, the flavin can transfer one electron to a galactose oxocarbenium ion, forming
a sugar and flavin radical that can also form the flavin-galactose adduct. Formation of a flavin iminium ion leads to sugar ring opening (4).
Sugar ring contraction occurs by attack of the C4 hydroxyl to the Cl-carbon (5). The final step is the bond formation to UDP (6).

depicts the reduced flavin acting as a nucleophile, attacking
the anomeric carbon (C1) of Gal to form a flavin N5-C1 Gal
adduct [98]. This adduct has been isolated and characterized
in the prokaryotic UGM from K. pneumoniae [98, 99].
The other proposed mechanism involves a single-electron
transfer from the reduced flavin to Gal, which then forms
the sugar-flavin adduct [100].

Several structures have been solved for prokaryotic
UGMs, in both oxidized and reduced states with and
without substrate bound, providing excellent groundwork
for the development of specific inhibitors [92, 99, 101]. The
structure of prokaryotic UGMs show that it is a homodimer
and a mixed o/f class protein with 3 domains: an FAD-
binding domain with a typical Rossmann fold, a 5-helix
bundle, and a 6-stranded antiparallel 3-sheet [91, 101]. The
structures of the reduced protein with substrate bound show
that Gal is properly positioned for interaction with the flavin
(99, 101].

Much less is known about the mechanism and structure
of eukaryotic UGMs. These enzymes share low sequence
identity, and the presence of inserts in the primary structure
predicts significant structural differences (Figure 6). In fact,
comparison of the oligomeric states between prokaryotic
and eukaryotic UGMs indicates that quaternary structures
vary among species (Table 1) [93]. Furthermore, our group,

as well as others, has demonstrated that known inhibitors of
eukaryotic UGM are not effective or have decreased potency
against L. major, A. fumigatus, and T. cruzi UGMs [7] (Qi
and Sobrado unpublished results). Therefore, mechanistic
and structural work is urgently needed on the eukaryotic
enzymes.

3.3. UDP-Galactofuranose Transferases. UDP-a-Galf is syn-
thesized in the cytosol by UGM and is transported into
the Golgi where it is attached to the LPG and GIPLs by
galactofuranosyl transferases (GalfTs) [102]. Currently, all
known linkages of Galf in T. cruzi and Leishmania spp.
are in the 8 anomer conformation. The most extensively
studied GalfT is LPG-1 from L. major and L. donovani.
Studies on LPG-1 have revealed that it is localized to the
Golgi apparatus, where it adds the 5-Galf to the core LPG
structure [102, 103]. LPG-1 is a metal glycosyltranferase
with typical conserved motifs including a cytoplasmic tail,
a transmembrane domain, and a DXD metal-binding motif
[104]. LPG-1 has been shown to only be responsible for the
addition of Galf to LPG and to not play a role in the addition
of Galf in the GIPLs [103, 105]. Mutants with the deletion
of Ipg-1 gene in both L. major and L. donovani show LPG-1
to be important for LPG formation. Due to the lack of LPG,
the mutant strains with Ipg-1 gene deleted in L. major display
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F1GURE 6: Multiple sequence alignment of UDP-galactopyranose mutases. Conserved amino acids found in the active site of bacterial UGM
are marked with a star, and those involved in flavin binding are marked with arrowheads. Mt: M. tuberculosis, Ec: E. coli; Kp, K. pneumoniae;
Tc: T. cruzi; Lm: L. major; Af: A. fumigatus. The program ClustalW was used to generate the alignment and Espript 2.2 to create the figure
[94].
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FiGure 7: Alignment of L. major LPG-1 (XP001683753), L. donovani LPG-1 (ADG26596), L. mexicana LPG-1 (CAB6682), and ten putative
T. cruzi GalfTs. Putative T. cruzi GalfTs were identified by BLAST search using L. major LPG-1 as the probe. The active site residues are shown
in brackets, and the metal binding motif is represented with asterisks. The alignment was created as indicated in Figure 6.
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attenuated virulence [103, 105]. These studies showed that
LPG-1 could serve as a drug target in L. major.

There are no published studies on the GalfT from T.
cruzi. In order to identify GalfTs in T. cruzi, a BLAST
search was conducted using LPG-1 from L. major as a
template, and more than 30 putative proteins annotated
as -GalfTs in the T. cruzi genome were identified [106,
107]. The top 10 putative GalfT sequences from the T.
cruzi BLAST search were aligned with the L. major and L.
donovani LPG-1 showing high sequence identity between
these sequences (Figure 7). These sequences all contain the
proposed catalytic site and demonstrate redundancy of the
genes [104]. Redundancy of GalfTs is common in many
different species, as often different transferases are used for
each linkage type based on anomericity, bond linkage, and
the substrate acceptors for Galf [108]. Due to the high
number of GalfTs within T. cruzi, targeting GalfTs for drug
design most likely would not be effective.

4. Concluding Remarks

To cause infection, protozoan parasites must recognize the
mammalian host environment, bind and infect the target
cells, and evade the immune system. Undoubtedly, the cell
surface of these pathogens plays important roles in these
processes. Current drugs are able to kill most of the parasites
during treatment; however, these treatments do not elimi-
nate all the parasites, presumably because they can “hide” in
the intracellular forms. Modification of the cell surface sugar
composition will alter the mechanism of infection. Enzymes
involved in the biosynthesis of Galf have been shown to play
a role in parasite growth and pathogenesis. GalE is essential
for growth in T. cruzi and T. brucei, while UGM, and LPG-1
are important virulence factors in L. major [25, 82, 103]. Due
to the presence of a GalE homolog in humans, compounds
that inhibit this enzyme have toxic side effects. Furthermore,
this enzyme is not important for virulence in Leishmania
spp- UGM plays a central role in Galf biosynthesis and is
the only source of UDP-Galf, which is the substrate for
all the GalfT that attach Galf to the final sugar-acceptor
molecules. Consequently, UGM emerges as an attractive
drug candidate, as no homolog is found in humans [109].
The unique chemical structure of UGM suggests that specific
inhibitors can be identified. Targeting UGM in T. cruzi and
L. major will affect their virulence in humans and perhaps
allow the immune system to effectively clear the parasite.
Alternatively, inhibition of UGM will enhance the activity of
other antiparasitic drugs. Such combination therapy might
be necessary to combat these complex eukaryotic human
pathogens.
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