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Abstract

Background: Serotonin (5-HT) is a neurotransmitter with important roles in the regulation of neurobehavioral processes,
particularly those regulating affect in humans. Drugs that potentiate serotonergic neurotransmission by selectively
inhibiting the reuptake of serotonin (SSRIs) are widely used for the treatment of psychiatric disorders. Although the
regulation of serotonin synthesis may be an factor in SSRI efficacy, the effect of chronic SSRI administration on 5-HT
synthesis is not well understood. Here, we describe effects of chronic administration of the SSRI citalopram (CIT) on 5-HT
synthesis and content in the mouse forebrain.

Methodology/Principal Findings: Citalopram was administered continuously to adult male C57BL/6J mice via osmotic
minipump for 2 days, 14 days or 28 days. Plasma citalopram levels were found to be within the clinical range. 5-HT synthesis
was assessed using the decarboxylase inhibition method. Citalopram administration caused a suppression of 5-HT synthesis
at all time points. CIT treatment also caused a reduction in forebrain 5-HIAA content. Following chronic CIT treatment,
forebrain 5-HT stores were more sensitive to the depleting effects of acute decarboxylase inhibition.

Conclusions/Significance: Taken together, these results demonstrate that chronic citalopram administration causes a
sustained suppression of serotonin synthesis in the mouse forebrain. Furthermore, our results indicate that chronic 5-HT
reuptake inhibition renders 5-HT brain stores more sensitive to alterations in serotonin synthesis. These results suggest that
the regulation of 5-HT synthesis warrants consideration in efforts to develop novel antidepressant strategies.
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Introduction

Depression is a devastating illness and one of the major causes of

disability in the world, affecting over 120 million people [1,2].

Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed

as a first-line treatment for depression and many other psychiatric

disorders [3–5]. The primary pharmacological activity of SSRIs is

inhibition of the serotonin transporter (SERT) (P31645.1, Uni-

ProtKB/Swiss-Prot), which is responsible for the reuptake of serotonin

(5-HT) from the extracellular space back into the nerve terminals

that release it [6,7]. Inhibition of this transport alters the

spatiotemporal dynamics of serotonin signaling such that activity in

the serotonergic neuron causes greater and more prolonged increases

in extracellular serotonin than would normally occur [8–12].

SSRIs are generally administered continuously for months or

years, often indefinitely; however, the precise effects of chronic

reuptake inhibition on serotonin and serotonergic neurotransmission

are not completely understood [13–20]. Although the primary

pharmacological targets of SSRIs have been well characterized for

decades, several issues regarding their use remain unresolved.

Clinical evidence suggests that while SSRIs are generally effective

for the treatment of many psychiatric disorders, a substantial number

of patients will not respond to the SSRI initially prescribed or even

to any SSRI, and other patients will attain only a partial remission of

symptoms [5,21,22]. Another possible limitation of SSRI treatment is

a latency of several weeks for therapeutic effects to occur [6,14,23,24]

(but see [25]). The mechanisms downstream of SERT blockade that

are responsible for the therapeutic effects of SSRIs remain unknown,

despite recent advances [6]. Given the high affinity of SSRIs for

SERT [26], it is generally believed that these downstream events are

initiated and sustained by effects on serotonergic neurotransmission

[27]. Altogether, efforts to develop novel antidepressant strategies are

hampered by a lack of fundamental understanding of how SSRIs

affect multiple aspects of brain function.

SSRIs affect, secondarily to reuptake inhibition, many aspects of

serotonergic neurotransmission, including autoreceptor function

and serotonergic neuron activity [14,28]. Some of these effects

have been proposed to influence therapeutic response [14,29]. In

particular, 5-HT synthesis warrants consideration as a factor in

SSRI efficacy. In the brain, serotonin is synthesized from the
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dietary precursor tryptophan through the action of the tryptophan

hydroxylase enzyme (TPH2; accession Q8IWU9, UniProtKB/

Swiss-Prot), which is expressed, in the brain, exclusively in

serotonergic neurons. In vitro, the rate of neurotransmitter

synthesis is an important factor in monoaminergic physiology

[30]. In vivo, 5-HT synthesis rate is regulated by many factors,

such as stress [31–33] and the availability of tryptophan [34–36].

Pharmacological inhibition of 5-HT synthesis can induce a rapid

relapse of depression symptoms in SSRI-treated patients with

remitted depression, an effect which is not readily observed in

subjects with no history of SSRI administration [27,37–44] (also

see [45]). Tryptophan itself is considered to be ineffective as an

antidepressant [46]; however, tryptophan co-administered with a

5-HT reuptake inhibitor may be more effective as an antidepres-

sant than the reuptake inhibitor administered alone [47–50].

These findings raise the question of how chronic SSRI

administration itself might affect 5-HT synthesis. There is substantial

evidence that acute administration of SSRIs suppresses serotonin

synthesis throughout the brain [51–57]. SSRI administration can

rapidly trigger physiological responses, such as suppression of

serotonergic neuronal activity, which gradually dissipate upon

chronic treatment [14,28,58]. These adaptations may be required

for the beneficial effects of antidepressants to emerge [14,24]. In

patients, SSRIs are generally administered continuously for months

or years. It is not clear how chronic, continuous administraton of

SSRIs affects 5-HT synthesis rate. Prior studies addressing this issue

have reported contradictory results, perhaps due to methodological

issues [55,59–62]. For several of these studies [59–61], the SSRI was

administered by repeated injection, which can lead to large daily

fluctuations in plasma drug levels [63]. In addition, 5-HT synthesis

was assessed some time after the final SSRI injection, to allow the

drug to ‘wash out’ of circulation. Drug washout may induce

physiological changes which are opposite to the effect of the drug

continuously administered [64,65]. For the other studies addressing

this issue, 5-HT synthesis was estimated using an assay whose

validity is not universally accepted [55,62,66–68]. (For a review of

these studies, see Discussion.)

Although SSRI treatment produces robust increases in extracel-

lular 5-HT, there is evidence that SSRI administration can actually

deplete brain stores of 5-HT and of its major metabolite, 5-

hydroxyindoleacetic acid (5-HIAA) [64,69–77], as would be

predicted if 5-HT synthesis were suppressed and serotonergic

neurons were unable to effectively recapture released 5-HT.

In this study, we explored how chronic reuptake blockade

affects forebrain 5-HT synthesis rate and forebrain 5-HT and 5-

HIAA content over the course of chronic treatment in mice. We

chose to administer citalopram; although many SSRIs such as

fluoxetine and paroxetine have significant pharmacological

interactions with targets other than SERT [78–80], citalopram

(CIT) is extremely selective for SERT [26]. To address limitations

of previous studies, we used osmotic minipumps, which deliver

drug at a constant rate, to generate steady-state blood concentra-

tions of citalopram; we omitted drug washout; and we quantified

plasma citalopram levels in order to determine whether they

approximated clinically relevant concentrations. In order to

address whether CIT administration renders 5-HT stores more

sensitive to the suppression of 5-HT synthesis, we also examined

forebrain 5-HT and 5-HIAA content in CIT- and vehicle-treated

mice following acute inhibition of amino acid decarboxylase.

Results

Male adult C57BL6/J mice were treated using osmotic

minipumps to deliver a 10% citalopram or saline vehicle solution

at a constant low rate (0.25 mL/hour) for 2, 14 or 28 days. The

dose and route of administration were chosen to approximate

typical pharmacokinetics in patients, in whom CIT rapidly reaches

a steady-state plasma concentration with relatively little variation

throughout the day [81–83]. We used high performance liquid

chromatography coupled with mass spectroscopy (HPLC-MS) to

quantify CIT concentrations in plasma collected at the time of

sacrifice. Plasma levels in CIT-treated mice ranged from 176 to

661 nM, with a mean of 383 nM (Fig. 1A). These levels are

comparable to steady-state CIT concentrations found in the blood

of patients receiving a typical dose of citalopram. Fredricson

Overo et al [84] and Pederson et al [85] observed a mean CIT

concentration of approximately 245 nM in patients receiving

40 mg per day, whereas Dufour et al observed blood levels

between 157 and 616 nM with 40–60 mg/day dosage [86]. In

CIT-treated mice, plasma levels were not significantly affected by

Figure 1. Chronic citalopram treatment: Plasma drug concen-
trations and inhibitory effect on 5-HT synthesis. A. Plasma levels
of CIT were assessed by HPLC-MS in C57BL6/J adult male mice following
2 days, 2 weeks or 4 weeks of citalopram (CIT) (10% solution) or saline
(SAL) administration by osmotic minipump (0.25 mL/hour). As no
significant amount of citalopram was found in mice implanted with
vehicle-filled minipumps for 2, 14 or 28 days, these groups were
combined. Numbers of mice: 2-day CIT, n = 5; 2-week CIT, n = 10; 4-week
CIT, n = 4; SAL, n = 19. B. 5-HTP accumulation, an index of 5-HT
synthesis, in the forebrains of mice following chronic administration of
CIT or vehicle by osmotic minipump. NSD-1015 (100 mg/kg IP) was
injected 30 minutes before sacrifice. 5-HTP accumulation was signifi-
cantly suppressed at all time points (*p,0.001, **p,0.01, ***p,0.05,
Bonferroni post-ANOVA test). Numbers of mice: 2-day CIT-treated, n = 6;
2-day SAL-treated, n = 6; 2-week CIT-treated, n = 8; 2-week SAL-treated,
n = 7; 4-week CIT-treated, n = 7; 4-week SAL-treated, n = 10.
doi:10.1371/journal.pone.0006797.g001
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treatment duration (one-way ANOVA test for effect of treatment

duration, p = 0.48).

5-HT synthesis rate was assessed using the decarboxylase

inhibition method. 3-hydroxybenzylhydrazine dihydrochloride

(NSD-1015) was injected intraperitoneally (IP) 30 minutes prior

to sacrifice (100 mg/kg). Under normal circumstances, the amino

acid decarboxylase enzyme (AADC, accession P20711, Uni-

ProtKB/Swiss-Prot) catalyzes the decarboxylation into 5-HT of

5-hydroxytryptophan (5-HTP), the product of tryptophan hydrox-

ylation. NSD-1015 inhibits AADC, leading to the accumulation of

5-hydroxytryptophan (5-HTP), which is normally present only in

minute concentrations due to its rapid decarboxylation. 5-HTP

can be precisely identified and quantified by HPLC coupled to

electrochemical detection (HPLC-ED) [35,56,87–90]. Since tryp-

tophan hydroxylation is the rate-limiting reaction in 5-HT

synthesis, the amount of 5-HTP that accumulates over a specific

period of time is considered an index of the rate of 5-HT synthesis

[35,51,53,56,87–91]. The dose of NSD-1015 that we chose is the

lowest dose which produces near-maximal inhibition of amino

acid decarboxylation in mice [87]. We did not observe any

fatalities with this dose of NSD-1015.

For each time point, CIT- and vehicle-treated mice and samples

were handled in parallel by an experimenter blinded to treatment

group. To determine whether the duration of minipump

implantation had an effect on forebrain 5-HTP accumulation in

vehicle-treated mice, we performed a one-way ANOVA analysis of

the effect of treatment duration on 5-HTP accumulation in SAL-

treated mice. In order to evaluate differences between pairs of

groups while adjusting for multiple comparisons, we also

performed Bonferroni post tests. We observed a significant effect

of treatment duration on 5-HTP accumulation in vehicle-treated

mice (p = 0.0004, ANOVA) (Fig. 1B). Post tests confirmed that

there was significant difference in 5-HTP accumulation between

2-day and 2-week SAL-treated groups (p,0.01) and between 2-

day and 4-week SAL-treated groups (p,0.001) but not between 2-

week and 4-week SAL-treated groups (p.0.05). We performed

identical ANOVA analyses to test for the effect of treatment

duration on other neurochemical parameters in SAL-treatment

mice. Treatment duration had a significant effect on forebrain 5-

HT and 5-HIAA in mice treated with NSD-1015 (p = 0.009 and

p = 0.005, respectively) and not treated with NSD-1015 (p = 0.002

and p = 0.0005) (Figs. 2 and 3).

Citalopram treatment resulted in a sustained suppression of 5-

HT synthesis rate in the forebrain (Fig. 1B). We performed a two-

way ANOVA analysis to test for the effects of drug administration

and treatment duration on 5-HT synthesis in mice treated with

SAL or CIT for 2, 14 or 28 days. We also performed a Bonferroni

post test to evaluate the effect of treatment at each individual time

point. CIT treatment had a significant overall effect on 5-HT

synthesis (p,0.0001, ANOVA). Treatment duration also had a

significant effect and there was an interaction between treatment

and treatment duration (p = 0.0015 and p = 0.026, respectively,

ANOVA). 5-HTP accumulation was significantly lower in CIT-

treated mice than in control mice at all time points. The effect of

CIT appeared to be greatest following 2 days of treatment (36%

decrease in mean 5-HTP accumulation, p,0.001, Bonferroni post

test) and was comparable at 2 weeks (24% decrease, p,0.01) and 4

weeks (20% decrease, p,0.05). These results indicate that 5-HT

synthesis remains significantly inhibited following a prolonged

treatment with a highly selective SSRI at a clinically relevant dose.

To determine whether SSRI-induced reduction in 5-HT

synthesis would lead to decreased brain 5-HT content, we

examined 5-HT content in the forebrains of mice treated for 2,

14 and 28 days with CIT or vehicle (Fig. 2A). For this experiment,

no NSD-1015 was administered prior to sacrifice. Data were

analyzed as for 5-HTP (above). A significant overall effect of

treatment on 5-HT was observed (p = 0.04, ANOVA); however,

Bonferroni post tests did not demonstrate a significant effect of

CIT treatment at any single time point (p.0.05, all time points).

These data therefore do not allow us to draw an unequivocal

conclusion; however, they suggest that CIT treatment with a

clinically relevant dose may have the potential to cause a modest

reduction in forebrain 5-HT content.

Multiple mechanisms may exist to buffer brain 5-HT content

and stabilize neurotransmission in the face of reduced 5-HT

synthesis. One potential mechanism for buffering brain 5-HT

content is reduced intracellular degradation of 5-HT into 5-HIAA.

To test whether SSRI administration affects 5-HT degradation,

we quantified brain 5-HIAA content using HPLC-ED (Fig. 3A &

B). Brain 5-HIAA content was reduced in CIT-treated mice, both

with and without NSD-1015 administration (p,0.0001, ANOVA)

(Fig. 3). In the absence of NSD-1015 treatment, the magnitude of

the CIT effect was comparable after 2 days (36% decrease,

p,0.001, Bonferroni post test) and 2 weeks of treatment (39%

decrease, p,0.01) and was not significant at 28 days of treatment

(p.0.05). The ratio of 5-HT to 5-HIAA has been considered to be

an index of 5-HT turnover. We observed a significant effect of

CIT administration on this ratio (p,0.0001, ANOVA), with a

Figure 2. Effect of chronic citalopram treatment on forebrain 5-
HT content. A. 5-HT forebrain content in mice treated chronically with
CIT or vehicle. 5-HT content was not significantly affected by CIT
treatment at any single time point (p.0.05, Bonferroni post-ANOVA
test). However, CIT treatment caused a significant overall reduction in 5-
HT as determined by ANOVA (p,0.05). Numbers of mice: 2-day CIT-
treated, n = 8; 2-day SAL-treated, n = 8; 2-week CIT-treated, n = 8; 2-week
SAL-treated, n = 9; 4-week CIT-treated, n = 7; 4-week SAL-treated, n = 7.
B. 5-HT forebrain content in mice treated chronically with CIT or vehicle
and acutely with NSD-1015 (100 mg/kg IP) 30 minutes before sacrifice.
Forebrain 5-HT content was reduced in mice treated with CIT for 2
weeks (*p,0.01, Bonferroni post test) and 4 weeks (*p,0.01) but not 2
days (p.0.05). Numbers of mice: 2-day CIT-treated, n = 6; 2-day SAL-
treated, n = 6; 2-week CIT-treated, n = 8; 2-week SAL-treated, n = 7; 4-
week CIT-treated, n = 7; 4-week SAL-treated, n = 10.
doi:10.1371/journal.pone.0006797.g002
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significant reduction following 2 days (p,0.001, Bonferroni post

test) and 2 weeks (p = 0.01) but not 4 weeks (p.0.05) of treatment

(Fig. S1).

To test the hypothesis that 5-HT reuptake inhibition renders

brain 5-HT stores more sensitive to the suppression of 5-HT

synthesis, we examined forebrain 5-HT content in CIT- and

vehicle-treated mice following acute injection of NSD-1015

(100 mg/kg IP 30 minutes before sacrifice). This NSD-1015

treatment is thought to cause a near-complete inhibition of

monoamine synthesis in mice [87]. In this condition, chronic CIT

administration caused a significant reduction in brain 5-HT

content (p,0.0001, ANOVA) (Fig. 2B). This effect was compa-

rable after 2 weeks (18% decrease; p,0.01, Bonferroni post test)

and after 4 weeks of treatment (20% decrease; p,0.01) and was

not significant after 2 days (p.0.05).

Discussion

In this study, we demonstrate that chronic treatment with

citalopram, a widely prescribed and highly selective SERT

inhibitor [3,26], causes a suppression of 5-HT synthesis in the

mouse brain. This effect is most pronounced following 2 days of

CIT administration and persists with prolonged treatment. This

effect was observed using a clinically relevant dosing regimen;

osmotic minipumps were used to deliver CIT at a constant rate,

producing stable plasma concentrations in the clinical range [81–

84]. This effect was observed using a dissection of the entire right

hemi-forebrain, suggesting that this effect is occurring in many,

perhaps all, regions of the forebrain. Nevertheless, we cannot infer,

based on our results, what effect CIT may have on 5-HT synthesis

in specific forebrain nuclei or in brain regions not analyzed, such

as the raphe nuclei.

Numerous investigators have reported that acute treatment with

SSRIs produces a suppression of 5-HT synthesis [51,53,54,56,57].

Although several previous studies have addressed the issue of how

chronic SSRI administration affects 5-HT synthesis, methodolog-

ical considerations limit the interpretation of these results. Moret

et al [59] and Stenfors et al [60] reported increased 5-HT synthesis

rate with chronic treatment with citalopram and fluoxetine,

respectively, whereas Esteban et al [61] reported no effect of

chronic fluoxetine. For these studies, SSRIs were administered by

repeated injection and administration was withheld following the

chronic treatment and prior to determination of 5-HT synthesis

rate in order to allow the SSRI to ‘wash out’. It is notable,

however, that SSRI washout can induce rapid changes in

serotonergic physiology which are opposite to the effect of the

same drug administered continuously [65,92]. Notably, Trouvin et

al reported reduced brain 5-HT and 5-HIAA content following

chronic fluoxetine administration; this effect reversed rapidly with

washout [64]. As patients typically take SSRIs for months or years

without interruption, the clinically relevant physiological effects of

SSRIs occur while the drug is at steady-state levels. Therefore, we

did not include a washout period in our study design.

In previous studies of chronic SSRIs and 5-HT synthesis, SSRIs

were administered by repeated injection [59–61]. This treatment

regimen can lead to large daily fluctuations in plasma citalopram

in rodents [63] which complicate the interpretation of resulting

effects. Yamane et al used osmotic minipumps to administer

chronic paroxetine without washout and reported reduced brain

trapping of the radiotracer a-[14C]-methyl-tryptophan, which is

consistent with reduced 5-HT synthesis [55]. However, these

authors reported no effect of chronic citalopram in wild-type rats

[62]. There is disagreement as to whether or not a-[14C]-methyl-

tryptophan trapping is a reliable measure of 5-HT synthesis [66–

68]. The decarboxylase inhibition assay used in the present study

has the advantage that 5-HTP can be unambiguously identified

and quantified by HPLC-ED; however, as a caveat, 5-HT

synthesis is assessed while monoamine systems are significantly

disrupted by inhibition of synthesis of multiple active neurotrans-

mitters [93].

In vehicle-treated mice, we also observed a significant effect of

time on 5-HT synthesis such that 5-HT synthesis was elevated

following 2 days of treatment as compared to following 14 or 28

days. Although the design of our study does not allow us to

interpret the specific causes for this effect, we may speculate that

peri-operative stress could have affected serotonergic function in

the 2-day treatment group. Stress influences serotonergic function,

particularly 5-HT synthesis [31,33]; moreover, interactions

between neurochemical responses to stress and to SSRI admin-

istration have also been reported [94]. Thus, stress and CIT

administration may interact to influence our results regarding 5-

HT synthesis and other neurochemical measures. As all mice were

of the same age at the time of minipump implantation, aging over

the course of the experiment could also have affected our results.

How might our data regarding 5-HT synthesis inhibition be

explained in terms of monoamine neurophysiology? As SSRI

administration causes a rapid increase in extracellular 5-HT [95],

Figure 3. Reduced forebrain 5-HIAA in mice treated with CIT. A.
5-HIAA forebrain content in mice treated chronically with CIT or vehicle.
5-HIAA content was significantly lower in mice treated with CIT for 2
days (*p,0.001, Bonferroni post-ANOVA test) or 2 weeks (**p,0.01)
but not 4 weeks (p.0.05). Numbers of mice: 2-day CIT-treated, n = 8; 2-
day SAL-treated, n = 8; 2-week CIT-treated, n = 8; 2-week SAL-treated,
n = 9; 4-week CIT-treated, n = 7; 4-week SAL-treated, n = 7. B. 5-HIAA
forebrain content in mice treated chronically with CIT or vehicle and
acutely with NSD-1015 (100 mg/kg IP) 30 minutes before sacrifice. 5-
HIAA content was lower in CIT-treated mice at all time points
(*p,0.001, Bonferroni post-ANOVA test). Numbers of mice: 2-day CIT-
treated, n = 6; 2-day SAL-treated, n = 6; 2-week CIT-treated, n = 8; 2-week
SAL-treated, n = 7; 4-week CIT-treated, n = 7; 4-week SAL-treated, n = 10.
doi:10.1371/journal.pone.0006797.g003
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Carlsson and colleagues proposed that high extracellular 5-HT

exerts a negative feedback control of 5-HT synthesis in

serotonergic neurons [96]. The mechanism whereby this might

occur remains unknown. Serotonergic autoreceptors could provide

a simple and plausible mechanism; in fact, 5-HT autoreceptor

activation can suppress 5-HT synthesis in vivo [54,61,97].

However, activation of the known 5-HT autoreceptors does not

appear to be required for acute suppression of 5-HT synthesis by

citalopram [54]. Furthermore, the functional activation of

autoreceptors is thought to dissipate over the course of SSRI

treatment [14,29] whereas the effect on synthesis persists.

Citalopram might also affect 5-HT synthesis by reducing brain

availability of tryptophan; however, this is unlikely as many

antidepressants have been reported to increase brain tryptophan

by inhibiting metabolism of tryptophan in the liver [98–101].

Studies of tryptophan hydroxylase enzyme function in CIT-treated

mice could elucidate the as-yet unknown mechanisms underlying

the effect we observed.

Our results provide an interesting contrast to previous genetic

studies of the relationship between 5-HT synthesis and SERT

function [102,103]. Unlike SSRI treatment, reported null

mutations in SLC24A4, the gene encoding SERT, result in a

complete inactivation of SERT function from embryogenesis

through adulthood [102,104,105]. Also unlike SSRI treatment,

these manipulations have initial effects which are completely

SERT-specific. In mice, an engineered null mutation in mice

causes an increase in 5-HTP accumulation in vivo [103]. In

SLC24A4 null mutant rats generated by forward mutagenesis

[102], in vivo 5-HTP accumulation has not been reported. In brain

tissue from both mice and rats, no increase was observed in the in

vitro maximal enzymatic activity of tryptophan hydroxylase

[102,103], suggesting that the effect of the mouse mutation on

5-HT synthesis is related to a feature of in vivo serotonergic

circuitry [103]. The difference in the effects of genetic inactivation

and pharmacological blockade of SERT may be related to the

magnitude and timing of the physiological effects of these

manipulations. Although both manipulations cause a large

increase in extracellular 5-HT, null mutations also cause a

dramatic depletion of tissue 5-HT [102,103] and may disrupt

serotonergic neuron development, as suggested by the reported

decrease in serotonin cell number in null mutant mice [105] (but

not rats [106]). The mouse null mutation has behavioral effects

which are very different from those SSRI administration [105], as

does neonatal treatment with SSRIs [78,107,108], which also may

impair the development of serotonergic neurons [78,108]. Null

mutations in SLC24A4 may therefore cause a profound disruption

in serotonin physiology and may, as a result, trigger homeostatic

adaptations in serotonin synthesis which are not engaged with

SSRI treatment.

What might be the functional consequences of chronic

suppression of 5-HT synthesis? Neurotransmitter synthesis and

its regulation are fundamental features of neurophysiology;

however, the functional significance of regulation of 5-HT

synthesis [31,109,110] is not well understood. Prolonged suppres-

sion of 5-HT synthesis by SSRI treatment might deplete 5-HT

brain stores, which could limit or otherwise affect SSRI response.

We did not observe a clear effect of CIT treatment on forebrain 5-

HT content. Trouvin et al reported 20–50% decreases in total 5-

HT tissue content in several brain regions following a 21-day

treatment with fluoxetine [64,74]. Dygalo et al [71] and Caccia et

al [69,111] reported comparable results, although this effect was

not observed in all brain regions examined. Marsteller also

observed reduced tissue 5-HT following chronic treatment with

CIT [73]. This effect was, however, not observed in two studies of

chronic fluoxetine administration [72,75]. Taken together, these

reports suggest that SSRI treatment may produce a modest

reduction in brain 5-HT content, with unknown functional

consequences.

Multiple mechanisms may exist to buffer neurotransmitter

stores and stabilize neurotransmission in the face of reduced

synthesis. For example, glutamatergic synaptic transmission is

remarkably resistant to manipulation of glutamate synthesis [112].

Under conditions of reuptake blockade, intracellular 5-HT might

be buffered by a suppression of 5-HT degradation. In accord with

this hypothesis, we observed a reduction of brain 5-HIAA content

with CIT treatment, as has been observed previously

[64,69,71,72,74–76,111] (but see [73,76,77]). 5-HT degradation

may be suppressed due to a direct SSRI-induced inhibition of

monoamine oxidases, as has been reported [75,76] (but see [113]).

Reduced 5-HT reuptake could also shift the cellular compart-

mentalization of 5-HT, increasing the extracellular concentration

at the expense of intracellular stores by effectively trapping 5-HT

outside cells. This could in principle lead to a reduction in 5-HIAA

production, as the monoamine oxidases, which reside in the

mitochondrial membrane, can only metabolize intracellular 5-HT.

However, available data suggest that less than 1% of total 5-HT is

extracellular under normal conditions [114,115]. Given that

extracellular 5-HT increases only several fold with SSRI

administration, this mechanism is unlikely to be sufficient to

account for the reduction in 5-HIAA we observed.

Although CIT-induced reductions of forebrain 5-HT synthesis

were not accompanied by substantial reductions in forebrain 5-HT

stores, we hypothesized that chronic reuptake blockade might

render 5-HT stores more vulnerable to decarboxylase inhibition.

This hypothesis is supported by the fact that serotonergic neurons

have two sources of 5-HT: synthesis from tryptophan and reuptake

from the extracellular space. When reuptake is inhibited, brain 5-

HT content should be more dependent on 5-HT synthesis and

might be depleted more rapidly in response to synthesis inhibition.

Accordingly, when we challenged mice by administering NSD-

1015 acutely prior to sacrifice, brain 5-HT was reduced in mice

treated chronically with CIT. In accord with this finding, SERT

null mutant animals have much more pronounced depletion of

brain 5-HT content than wild-type animals in response to

tryptophan depletion [36] and in response to inhibition of AADC

[103]; SERT inactivation also leads to exaggerated neurochemical

and behavioral responses to drugs that enhance 5-HT synthesis

[116,117]; and tryptophan depletion has marked effects on

extracellular 5-HT in SSRI-treated rats but not in control rats

[92,118]. It is not clear why this depletion effect would be observed

with 14 or 28 days but not 2 days of treatment. It is possible that

after a relatively brief CIT treatment, serotonergic neurons might

have a greater reservoir of intracellular 5-HT, or a heightened

tendency to retain intracellular 5-HT due to the reduction in

neuronal activity which dissipates with extended treatment.

These results suggest that SSRI administration might cause a

form of ‘‘serotonergic vulnerability’’ [119] whereby serotonergic

neurotransmission becomes more sensitive to environmental or

genetic factors that would inhibit 5-HT synthesis, such as an

unbalanced diet [120,121]. In fact, tryptophan depletion has

pronounced depressive effects on patients taking SSRIs [27,37–

44]. Conversely, genetic deficits in 5-HT synthesis could limit

SSRI efficacy. For example, a putative genetic deficiency in 5-HT

synthesis in mice [122–124] may be associated with blunted

responses to citalopram [56,125]. Genetic influences on trypto-

phan hydroxylase function have been proposed to affect SSRI

response in humans, although present evidence is not conclusive

[126–131].
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Taken together, these data suggest that pharmacological

augmentation of 5-HT synthesis might be beneficial for the

treatment of depression if administered in conjunction with a 5-

HT reuptake inhibitor. In patients, tryptophan augmentation of 5-

HT reuptake therapy is supported by a limited number of clinical

trials [47,48]. These data are, however, not definitive [46,50] and

large follow-up clinical trials have not been reported. In an animal

model, behavioral and physiological relevance of the suppression

of 5-HT synthesis by SSRIs could be assessed by augmenting 5-

HT synthesis in SSRI-treated animals using tryptophan loading

[92]. Altogether, our results suggest that the regulation of 5-HT

synthesis warrants consideration in efforts to develop novel

antidepressant strategies.

Materials and Methods

Animals & Surgery
All procedures involving mice were approved by the UCSF

Institutional Animal Care and Use Committee. 6-week-old male

C57BL/6J mice were obtained from Jackson Laboratories and

housed under standard conditions (7 AM to 7 PM light; PicoLab

5053 diet ad libitum; individually aerated cages; Specific Pathogen

Free facility; 3 mice per cage). 2–3 weeks following shipment, mice

underwent surgery between 1 and 4 PM. Mice were anesthetized

with 2–4% isoflurane and osmotic minipumps (Alzet) were

implanted as per manufacturer’s instructions. Minipumps (Model

1002 for 2-day and 2-week treatment groups; Model 2004 for 4-

week treatment groups) were filled with sterile 0.9% NaCl vehicle

(Hospira) or 10% citalopram hydrobromide (provided by

Lundbeck A/S) dissolved in vehicle. Citalopram solution was

briefly warmed to 37uC to facilitate dissolution and was sterile

filtered. Citalopram-filled pumps produced a dose of approxi-

mately 24 mg/kg/day.

Groups & Treatments
Mice were divided into 12 groups. 6 groups of mice were

implanted with CIT-filled minipumps and 6 with SAL-filled

minipumps. For 6 groups of mice (CIT- and SAL-treated mice

sacrificed following 2, 14 or 28 days of treatment), dissections were

performed without additional treatment (other than minipump

implantation) prior to sacrifice. For the remaining 6 groups of mice

(CIT- and SAL-treated mice sacrificed following 2, 14 or 28 days

of treatment), all mice received 2 injections prior to sacrifice: saline

1 hour prior and NSD-1015 (3-hydroxybenzylhydrazine dihydro-

chloride, Sigma, 54880) (100 mg/kg IP) 30 minutes prior. All

treatments, dissections and analyses were performed in parallel for

groups corresponding to the same time point (e.g., mice treated for

2 weeks with CIT and injected with NSD-1015 prior to sacrifice

were dissected and analyzed in parallel with mice treated with

SAL for 2 weeks and injected with NSD-1015 prior to sacrifice).

Numbers of mice for NSD-1015-treated groups were as follows: 2-

day CIT-treated, n = 6; 2-day SAL-treated, n = 6; 2-week CIT-

treated, n = 8; 2-week SAL-treated, n = 7; 4-week CIT-treated,

n = 7; 4-week SAL-treated, n = 10.. Numbers of mice for non-

NSD-1015-treated groups were as follows: 2-day CIT-treated,

n = 8; 2-day SAL-treated, n = 8; 2-week CIT-treated, n = 8; 2-

week SAL-treated, n = 9; 4-week CIT-treated, n = 7; 4-week SAL-

treated, n = 7.

Sample collection and preparation
All sample preparation and analysis was performed by an

experimenter blinded to treatment group. Following the appro-

priate treatment period, mice were sacrificed by decapitation

under brief isoflurane anesthesia between 1 and 4 PM. Trunk

blood was collected in K2EDTA tubes (365974, BD) and spun at

1000 g for 10 minutes. Plasma supernatant was stored at 280uC.

Brains were rapidly dissected by removing the pineal gland,

olfactory bulb and cerebellum and sectioning coronally immedi-

ately caudal to the hypothalamus. Forebrains were hemisected

saggitally. Brain samples were frozen immediately over powdered

dry ice and stored at 280uC. Right forebrain samples were then

homogenized using a glass mortar and pestle in 600 mL cold 0.1 M

perchloric acid (Sigma) and spun at 16000 g for 15 minutes at 4uC.

Supernatant was stored at 280uC and analyzed without further

dilution.

Analysis of plasma citalopram
Plasma citalopram was analyzed by HPLC-MS. Separation was

performed on a reverse phase 15064.6 mm Zorbax Eclipse XDB-

C8 column (Agilent Technologies) with a Zorbax Eclipse XDB C8

guard column (Agilent). The mobile phase consisted of 50% water

and 50% acetonitrile supplemented with 0.1% formic acid and its

flow rate was 0.5 mL/min. A post-column make-up flow of

acetonitrile with 0.1 % formic acid was added to assist spray

formation. For analysis, each 10 ml plasma sample was thoroughly

mixed with 90 ml acetonitrile. After 5 min, samples were spun and

30 mL of the supernatant was injected using an autosampler

(Shimadzu SIL-10, Kyoto, Japan). Citalopram was detected using

an API4000 mass spectrometer consisting of a turbospray interface

(Applied Biosystems). Acquisition was performed in positive

ionization mode with ion spray voltage set at 5.5 kV and probe

temperature of 400uC. The instrument was operated in multi-

reaction-monitoring (MRM) mode for detection of citalopram

(precursor 325, product ion 262) and a standard, Lu-10-202

(precursor 341, product ion 278). Quantification was performed by

the external standard method using the Analyst 1.4.2 data system

(Applied Biosystems). Citalopram peak heights were normalized to

peak heights of Lu-10-202 internal standard.

Analysis of brain 5-HT, 5-HIAA and 5-HTP
5-HT, 5-HIAA and 5-HTP were analyzed by HPLC-ED as

follows: Mobile phase consisted of 50 mM sodium acetate, 0.51

mM EDTA, 0.9 mM 1-octanesulfonic acid sodium salt, and 14%

methanol (pH 4.4) and was delivered at a flow rate of 1 mL/min

using a Shimadzu Prominence pump. Analytes were separated

using a reversed phase SupelcoSil LC-18-DB 58993

15cm64.6mm63um column (Supelco) heated to 30uC. 50 mL

samples were cooled to 12uC in a refrigerated tray and injected

using a Gilson 231 autosampler. The external standard method

was used for quantification. Dihydroxybenzylamine hydrobromide

(Sigma, 858781) was added to each sample and used as an internal

standard. Fresh standards (Sigma) were prepared in acetic acid

and run at beginning of run. Samples were interspersed with

quality control brain sample replicates to monitor sensitivity,

chromatography and sample degradation. Analytes were detected

using a two-electrode electrochemical cell (model 5011, ESA) the

first electrode was set at 50 mV for preoxidation. The second

electrode was set 250 mV for quantification. A Coulochem II

detector (ESA) was used to control the cell. Peak height was

measured using EZChrom Elite software (Scientific Software).

Protein assays
A BCA microplate assay (Pierce 23225) was used for the

determination of protein content in perchloric acid homogenates.

Homogenates were allowed to equilibrate at room temperature.

12 mL of each sample was added to 200 mL BCA working reagent,

prepared as per the manufacturer’s instructions, in quadruplicate

in a flat-bottomed 96-well plate (Nunc). BSA standards were
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prepared in 0.1 M perchloric acid. Plates were sealed with

adhesive plate covers (ABI) and well vortexed immediately, then

incubated at 37uC for 40 min. Plate covers were removed and

absorbance at 562 nm was read on a SpectroMax 190 plate reader

(Molecular Devices).

Statistical analysis
For all peaks, peak height was normalized to the height of the

internal standard peak and converted to molarity using the

appropriate standard. For single factor comparisons of two groups,

two-tailed Student’s t-test with Welch’s correction was applied. For

multiple-factor comparison, multi-factor ANOVA with Bonferroni

post-test was applied.

Supporting Information

Figure S1 Reduced forebrain 5-HIAA / 5-HT ratio in mice

treated with CIT. 5-HIAA / 5-HT ratio in the forebrains of mice

treated chronically with CIT or vehicle. 5-HIAA / 5-HT ratio

content was significantly lower in mice treated with CIT for 2 days

(*p,0.001, Bonferroni post-ANOVA test) or 2 weeks (**p,0.01)

but not 4 weeks (p.0.05). Numbers of mice : 2-day CIT-treated,

n = 8; 2-day SAL-treated, n = 8; 2-week CIT-treated, n = 8; 2-

week SAL-treated, n = 9; 4-week CIT-treated, n = 7; 4-week SAL-

treated, n = 7.

Found at: doi:10.1371/journal.pone.0006797.s001 (0.30 MB EPS)
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