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Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body’s natural ways of keeping
itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and
melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-
causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in
preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals
possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they
influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The
present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling
pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.

Keywords: antioxidant, basal cell carcinoma, dietary phytochemicals, melanoma skin cancer, squamous cell carcinoma

Introduction

Skin structure

The skin is the largest organ in the human body and serves as a
barrier between the internal and external environment. It plays a

crucial role in protecting the body from physical, chemical, and
biological damage, as well as in regulating body temperature,
maintaining hydration, and providing sensory input[1]. The skin
is composed of three main layers: the epidermis, dermis, and
hypodermis (subcutaneous tissue) (Fig. 1)[2]. Each layer has its
own unique structure and function, which work together to
provide a protective and functional barrier. The epidermis is the
outermost layer of the skin and is composed of several layers of
keratinized epithelial cells. The thickness of the epidermis varies
depending on the location on the body, with the thickest epi-
dermis found on the soles of the feet and the thinnest on the
eyelids. The epidermis is responsible for protecting the body from
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physical damage, UV radiation, and infection[3]. The dermis is the
second layer of the skin and is located beneath the epidermis. The
dermis is composed of connective tissue and is responsible for
providing support and elasticity to the skin. The dermis also
contains blood vessels, nerves, and sensory receptors. The
hypodermis, also known as the subcutaneous tissue, is the deepest
layer of the skin. The hypodermis is composed of adipose tissue
and connective tissue and serves as a cushion for the underlying
muscles and bones[4].

There are several types of cells present in the skin, each with its
own unique function. Some of the main cell types in the skin
include Keratinocytes, Melanocytes, Langerhans cells, Merkel
cells, and Fibroblasts[5]. Skin cancer is the most common type of
cancer in the United States and is caused by the uncontrolled
growth of abnormal cells in the skin. The different cell types in the
skin play a critical role in protecting against skin cancer. For
example, melanocytes produce melanin, which helps to protect
against UV radiation and reduces the risk of skin cancer.
Langerhans cells are involved in the immune response and can
help to identify and destroy abnormal cells before they can
develop into skin cancer. Additionally, fibroblasts produce the
extracellular matrix, which helps to prevent the uncontrolled
growth and spread of abnormal cells. Overall, the different types
of cells in the skin work together to maintain the integrity of the
skin and protect against the development of skin cancer. Regular
skin checks and sun protection can also help to reduce the risk of
skin cancer[6,7].

Molecular mechanism of skin cancer

Skin cancer is a type of cancer that arises from the uncontrolled
growth of cells in the skin. There are three main types of skin
cancer: basal cell carcinoma (BCC), squamous cell carcinoma
(SCC), and melanoma[8–10]. The molecular mechanisms under-
lying skin cancer development involve mutations in several

genes and pathways that regulate cell growth, division, and
apoptosis[11,12]. BCC is the most common type of skin cancer,
accounting for ~80%of all cases. It typically develops in the basal
cells, which are located in the deepest layer of the epidermis. The
molecular mechanisms underlying BCC development involve
mutations in the sonic hedgehog (SHH) signaling pathway. The
SHH signaling pathway plays an important role in embryonic
development, and its activation is necessary for the development
of the skin, hair, and nails. In adults, the SHH pathway is nor-
mally inactive in the skin. However, mutations in genes that
regulate the SHH pathway can lead to its activation and the
development of BCC[13,14]. The most common mutation in BCC
is in the Patched-1 (PTCH1) gene, which normally acts as a tumor
suppressor by inhibiting the SHHpathway.Mutations in PTCH1
lead to the activation of the SHH pathway, which results in the
uncontrolled growth of basal cells and the development of
tumors[15,16]. Other genetic and environmental factors can also
contribute to the development of BCC. Mutations in the Tumor
Protein 53 (TP53) gene, which is another tumor suppressor gene,
can also lead to BCC development. Environmental factors, such
as exposure to arsenic and ionizing radiation, can also increase
the risk of developing BCC[17,18]. SCC is the second most com-
mon type of skin cancer, accounting for ~16% of all cases. It
typically develops in the squamous cells, which are located in the
upper layers of the epidermis[19]. The molecular mechanisms
underlying SCC development involve mutations in several
genes, including TP53, Cyclin-dependent kinase inhibitor 2A
(CDKN2A), and Harvey rat sarcoma viral oncogene homolog
(HRAS). Like BCC, mutations in TP53 and CDKN2A are com-
monly found in SCC. TP53 mutations can lead to the uncon-
trolled growth of squamous cells and the development of
tumors[20,21]. CDKN2A mutations can also contribute to SCC
development by preventing cells from undergoing apoptosis,
which is a process that helps to eliminate damaged cells from the
body[22,23]. Mutations in the HRAS gene, which is a member of

Figure 1. Skin anatomy (created with BioRender).
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the Rat Sarcoma (RAS) family of genes, are also found in SCC.
The RAS genes normally regulate cell growth and division, but
mutations in these genes can lead to the development of tumors.
In SCC, mutations in HRAS lead to the uncontrolled growth of
squamous cells and the development of tumors[24,25]. Melanoma
is a type of skin cancer that arises from the uncontrolled growth
of melanocytes, which are the cells that produce the pigment
melanin. Melanoma is the most dangerous type of skin cancer, as
it can metastasize and spread to other parts of the body. The
molecular mechanisms underlying melanoma development also
involve mutations in several genes and pathways that regulate cell
growth, division, and apoptosis[26–29].

B-Raf proto-oncogene, serine/threonine kinase (BRAF), and
neuroblastoma RAS viral oncogene homolog (NRAS)
mutations

The BRAF and NRAS genes are members of the RAS family of
genes, which regulate cell growth and division. Mutations in
BRAF andNRAS are commonly found inmelanoma and can lead
to the uncontrolled growth of melanocytes and the development
of tumors[27]. The BRAF gene is mutated in ~50% of all mela-
nomas. The most commonmutation is a substitution of valine for
glutamic acid at position 600 (BRAFV600E). This mutation leads
to the activation of the mitogen-activated protein kinase/extra-
cellular signal-regulated kinase (MAPK/ERK) signaling pathway,
which promotes cell growth and division. The NRAS gene is
mutated in ~15% of all melanomas. The most common mutation
is a substitution of glutamine for arginine at position 61
(NRASQ61R). This mutation also leads to the activation of the
MAPK/ERK signaling pathway and promotes cell growth and
division[30,31].

CDKN2A mutations

The CDKN2A gene encodes two proteins, p16INK4a and
p14ARF, which act as tumor suppressors by regulating cell
growth and division. Mutations in CDKN2A are commonly
found in melanoma and can lead to the uncontrolled growth of
melanocytes and the development of tumors. Loss of p16INK4a
function is found in ~50% of all melanomas. This loss can occur
through mutations in the CDKN2A gene or through epigenetic
silencing of the gene. Loss of p16INK4a function leads to the
activation of the cyclin-dependent kinase (CDK) 4/6 pathway,
which promotes cell growth and division. Loss of p14ARF
function is found in ~20% of all melanomas. This loss can occur
through mutations in the CDKN2A gene or through epigenetic
silencing of the gene. Loss of p14ARF function leads to the sta-
bilization of the oncoprotein mouse double minute 2 (MDM2)
homolog, which promotes the degradation of the tumor sup-
pressor protein p53[32,33].

TP53 mutations

The TP53 gene encodes the tumor suppressor protein p53, which
regulates cell growth, division, and apoptosis. Mutations in TP53
are found in ~25% of all melanomas and can lead to the
uncontrolled growth of melanocytes and the development of
tumors[34–36]. Loss of p53 function can occur through mutations
in the TP53 gene or through the stabilization of the oncoprotein
MDM2, which promotes the degradation of p53. Loss of p53

function leads to the inhibition of apoptosis and the promotion of
cell growth and division[37,38].

Skin cancer therapy via diet-based phytochemicals

Dietary phytochemicals are naturally occurring compounds found
in plant-based foods, including fruits, vegetables, whole grains,
nuts, seeds, and herbs. Phytochemicals are not considered essential
nutrients, but they have been shown to have a wide range of health
benefits, including antioxidant, anti-inflammatory, anticancer, and
neuroprotective properties[39–42]. There are thousands of different
phytochemicals, each with its unique chemical structure and bio-
logical activity. Some of the most well-known and studied phyto-
chemicals include flavonoids, carotenoids, phenolic acids, and
lignans[43–46]. Flavonoids, such as quercetin and kaempferol, are
potent antioxidants that have been shown to have anti-inflamma-
tory and anticancer effects[47,48]. Carotenoids, such as β-carotene,
are responsible for the red, orange, and yellow colors in fruits and
vegetables and have been shown to have potent antioxidant and
anticancer properties[49,50]. Phenolic acids, such as caffeic acid and
ferulic acid, are found in a wide range of plant-based foods and
have been shown to have antioxidant and anti-inflammatory
effects[43]. Lignans are phytoestrogens found in flaxseeds, sesame
seeds, and whole grains and have been shown to have anticancer
effects[51,52]. The health benefits of dietary phytochemicals are
believed to come from their ability to interact with cellular signaling
pathways, enzymes, and other molecules in the body, thereby
modulating various biological processes (Table 1A–N)[127–129].

Overall, skin cancer therapy via diet-based phytochemicals is a
promising approach for the prevention and treatment of skin
cancer. Further research is needed to identify the optimal dosage,
duration, and combination of phytochemicals for maximum
therapeutic efficacy. However, the evidence to date supports the
inclusion of phytochemical-rich foods in the diet as an important
strategy for skin cancer prevention and therapy. The goal of this
review article is to give a basic understanding of phytochemicals
in the context of diet by describing their most important sources,
chemical classes, and ability to prevent skin cancer.

Rosmarinic acid

Rosmarinic acid is a naturally occurring polyphenol found in
various plant species, particularly in the Lamiaceae
family[130,131]. Some of the most common botanical sources of
rosmarinic acid include Rosemary (Rosmarinus officinalis),
Sage (Salvia officinalis), Lemon balm (Melissa officinalis),
Oregano (Origanum vulgare), Thyme (Thymus vulgaris), Mint
(Mentha spp.), Basil (Ocimum basilicum), Perilla (Perilla fru-
tescens), Lavender (Lavandula angustifolia), and Peppermint
(Mentha piperita)[132–134].

Rosmarinic acid has been shown to have potential chemopre-
ventive effects against skin cancer through multiple molecular
mechanisms[135]. Rosmarinic acid has potent antioxidant prop-
erties, which can protect skin cells from oxidative stress caused by
environmental factors such as UV radiation. This can prevent
DNA damage and mutations that can lead to the development of
skin cancer[136–141]. One mechanism through which rosmarinic
acid may prevent skin cancer is by inhibiting the activity of
enzymes called matrix metalloproteinases (MMPs). MMPs play a
crucial role in the breakdown of collagen and other extracellular
matrix components. OveractiveMMPs can lead to the destruction
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Table 1
Some important dietary phytochemicals effective in preventing skin cancer.

S. no.
Dietary

phytochemical Structure IUPAC name Signaling pathway References

A
1. Rosmarinic acid (2S)-2-[(3-(3,4-

dihydroxyphenyl)-l-alanyl)oxy]-
3-(4-hydroxyphenl)propanoic

acid

(1) Inhibition of PI3K/AKT/mTOR pathway. [53]

(2) Inhibition of MAPK/ERK pathway. [54]

(3) Inhibit the activation of NF-κB. [55]

(4) Inhibit the Wnt/β-catenin pathway by decreasing the expression
of β-catenin and its downstream target genes, leading to
decreased cell proliferation and invasion.

[56,57]

B
2. Allicin 2-propene-1-sulfinothioic acid

S-2-propen-1-yl ester
(1) Inhibit the activation of NF-κB, potentially reducing the risk of

various types of cancer development, including skin cancer.

[58]

(2) Inhibit the activation of the Wnt/β-catenin pathway, potentially
reducing the risk of various types of cancer development,
including skin cancer.

[59]

C
3. Sulforaphane (RS)-1-isothiocyanato-4-

(methylsulfinyl)butane
(1) Activate the Nrf2–Keap1 pathway, leading to increased production
of antioxidant and detoxification enzymes that help protect against the

damaging effects of environmental toxins and UV radiation.

[60]

(2) Inhibit the activation of these PI3K/Akt and MAPK pathways
potentially reducing the risk of cancer development, including
skin cancer.

[61,62]

D
4. Ellagic acid 2,3,7,8-tetrahydroxychromeno

[5,4,3-cde]chromene-5,10-
dione

(1) Inhibit the activation of NF-κB signaling pathway to prevent the
proliferation of skin cancer cells and induce apoptosis.

[63–65]

(2) Activate the p53 signaling pathway, which can induce cell cycle
arrest and apoptosis in skin cancer cells.

[66]

(3) Modulation of MAPK signaling pathway. [63]

(4) Inhibition of PI3K/Akt signaling pathway. [67]

E
5. Betulinic acid (1R,3aS,5aR,5bR,7aR,9S,

11aR,11bR,13aR,13bR)-
9-hydroxy-5a,5b,8,8,11a-
pentamethyl-1-prop-

1-en-2-yl-1,2,3,4,5,6,7,7a,9,
10,11,11b,12,13,13a,13b-
hexadecahydrocyclopenta[a]

chrysene-
3a-carboxylic acid

(1) Inhibit the activation of NF-κB signaling pathway. [68]

(2) Activation of p53 signaling pathway. [69,70]

(3) Modulation of MAPK signaling pathway. [71]

(4) Inhibition of PI3K/Akt signaling pathway. [72]

(5) Inhibition of Notch signaling pathway. [73]

F
6. Apigenin 4′,5,7-trihydroxyflavone (1) Inhibition of PI3K/Akt signaling pathway. [74]

(2) Inhibition of MAPK signaling pathway. [75]

(3) By inhibiting the activation of signal transducer and activator of
transcription 3 (STAT3).

[76]

(4) Apigenin can activate the p53 signaling pathway, which can
induce cell cycle arrest and apoptosis in skin cancer cells.

[77]

(5) By inhibiting NF-κB signaling pathway. [78,79]

G
7. Gingerol (S)-5-hydroxy-1-(4-hydroxy-3-

methoxyphenyl)-3-decanone
(1) Inhibition of PI3K/Akt/mTOR signaling pathway. [80]

(2) Inhibition of NF-κB signaling pathway. [81]

(3) Activation of nuclear factor erythroid 2-related factor 2 (Nrf2)
signaling pathway.

[82]

(4) Inhibition of MAPK signaling pathway. [83]

(5) Induction of apoptosis. [80]
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Table 1

(Continued)

S. no.
Dietary

phytochemical Structure IUPAC name Signaling pathway References

H
8. Quercetin 3,3′,4′,5,7-

pentahydroxyflavone
(1) Inhibition of oxidative stress. [84]

(2) Inhibit the production of pro-inflammatory cytokines such as
interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis
factor-α (TNF-α).

[85,86]

(3) Inhibition of cell proliferation. [58]

(4) Inhibition of angiogenesis. [87]

I
9. Kaempferol 3,5,7-trihydroxy-2-(4-

hydroxyphenyl)-4H-1-
benzopyran-4-one

(1) Inhibition of oxidative stress. [88,89]

(2) Inhibition of inflammation. [90]

(3) Inhibition of cell proliferation. [88]

(4) Inhibition of angiogenesis. [91,92]

10. Resveratrol 3,5,4′-trihydroxy-trans-stilbene (1) Inhibition of oxidative stress. [93]

(2) Inhibition of inflammation. [94,95]

(3) Inhibition of cell proliferation. [96]

(4) Inhibition of angiogenesis. [97,98]

J
11. Curcumin (1E,6E)-1,7-bis(4-hydroxy-3-

methoxyphenyl)hepta-1,6-
diene-3,5-dione

(1) Inhibition of oxidative stress. [99,100]

(2) Inhibition of inflammation. [101]

(3) Inhibition of cell proliferation. [102,103]

(4) Inhibition of angiogenesis. [104,105]

K
12. Epigallocatechin

gallate
[(2R,3R)-5,7-dihydroxy-2-

(3,4,5-trihydroxyphenyl)-3,4-
dihydro-2H-1-benzopyran-3-yl]

3,4,5-trihydroxybenzoate

(1) Inhibition of oxidative stress. [106,107]

(2) Inhibition of inflammation. [108,109]

(3) Inhibition of cell proliferation. [110,111]

(4) Inhibition of angiogenesis. [112,113]

L
13. β-Carotene 1,3,3-trimethyl-2-[3,7,12,16-

tetramethyl-18-(2,6,6-
trimethyl-1-cyclohexenyl)

octadeca-
1,3,5,7,9,11,13,15,17-
nonaenyl]cyclohexene

(1) Inhibition of oxidative stress. [114,115]

(2) Modulation of immune function. [116,117]

(3) Inhibition of inflammation. [118,119]

(4) Regulation of cell cycle and apoptosis. [115]

(5) Inhibition of angiogenesis. [120]

M
14. Caffeic acid 3-(3,4-dihydroxyphenyl)prop-2-

enoic acid
(1) Inhibit the activation of NF-κB by preventing the degradation of

its inhibitor protein, IκBα.

[121,122]

(2) Regulates the expression of mitogen-activated protein kinases
(MAPKs), which regulate cell proliferation and survival, and
cyclooxygenase-2 (COX-2), which promotes inflammation and
cell proliferation.

[123,124]
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of the extracellular matrix, which can promote the development
of skin cancer. Rosmarinic acid has been shown to inhibit the
activity of MMPs, which may help prevent skin cancer[142,143].
Chronic inflammation is a key contributor to skin cancer devel-
opment. Rosmarinic acid has been shown to have anti-inflam-
matory effects by inhibiting the production of pro-inflammatory
cytokines and enzymes such as cyclooxygenase-2 (COX-2) and
inducible nitric oxide synthase (iNOS). By reducing inflammation,
rosmarinic acid can prevent the progression of precancerous
lesions to skin cancer[144,145]. Rosmarinic acid has been shown to
induce apoptosis (programmed cell death) in skin cancer cells,
which can inhibit their growth and proliferation[146–150].
Rosmarinic acid has been shown to arrest the cell cycle of
skin cancer cells, preventing them from dividing and
proliferating[151,152]. Angiogenesis, the formation of new blood
vessels, is necessary for tumor growth and progression.
Rosmarinic acid has been shown to inhibit angiogenesis in skin
cancer cells, preventing their growth and spread[153].

In recent years, researchers have investigated the molecular
mechanisms underlying the effects of rosmarinic acid on skin
cancer cells, including its ability to induce apoptosis, inhibit
inflammation, and regulate cell cycle progression. For exam-
ple, Gupta et al. investigated the toxic effects of UVB radiation
on the skin and the potential therapeutic effects of plant-based
natural agents. The study found that UVB exposure induced
endoplasmic reticulum (ER) stress and inhibited mitophagy,
leading to intracellular damage and apoptosis. Treatment with
the natural agent rosmarinic acid prevented intracellular
damage by alleviating ER stress and promoting mitophagy.
The study highlights the potential of rosmarinic acid as a
therapeutic agent for photodamage and provides mechanistic
insights into the toxic effects of UVB radiation on skin[154].
Another study, conducted by Huang et al., investigated the
anticancer effects of rosmarinic acid in melanoma cells by
downregulating (a disintegrin and metalloproteinase 17)
ADAM17. Results showed that rosmarinic acid treatment
reduced cell viability, proliferation, migration, and invasion
abilities while increasing apoptosis and reducing melanin
content. Rosmarinic acid also inhibited the expression of
ADAM17/epidermal growth factor receptor (EGFR)/protein
kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β),
which was further suppressed by TPD, an ADAM17 inhibitor.
The study concludes that rosmarinic acid exerts an inhibitory
effect on melanoma cell growth and promotes apoptosis,
potentially through the inhibition of the ADAM17/EGFR/
AKT/GSK3β axis[155]. A study by Sharmila et al. investigated
the mechanisms by which rosmarinic acid affects the expres-
sion of MAPK signaling proteins and their downstream targets
in mice with dermal cancer, as well as to analyze the docking

interaction of rosmarinic acid with the extracellular signal-
regulated kinase 2 (ERK2) protein. Dermal cancer was induced
in mice by applying 7,12-dimethylbenz[a]anthracene (DMBA),
and various analyses were performed to observe the expression
of proteins related to MAPK signaling, as well as histopatho-
logical changes. The study found that rosmarinic acid sig-
nificantly reduced the expression of various proteins related to
MAPK signaling in dermal tissues and inhibited the activation
of ERK2 protein, which may contribute to the inhibitory effect
of rosmarinic acid on dermal cancer in mice[156]. The study
conducted by Lukmanul Hakkim et al. aimed to investigate
whether natural antioxidants including caffeic acid, rosmarinic
acid, trans-cinnamic acid, p-coumaric acid, and hydro-
xyphenyllactic acid could offer radiation protection for skin
cells. Non-toxic concentrations of these compounds were tes-
ted for radiation protection in human keratinocytes. Results
showed that pretreatment with caffeic acid, rosmarinic acid,
and trans-cinnamic acid could protect skin cells by scavenging
γ-radiation-induced reactive oxygen species and decreasing the
number of post-irradiation DNA double-strand break foci.
The inclusion of these compounds in chemo-radiotherapy
could potentially facilitate achieving multiple target protec-
tion, including anticancer and skin radio protection[157].

Rosmarinic acid has been shown to regulate several major
signaling pathways in the human body including:

The phosphatidylinositol 3-kinase/protein kinase B/
mammalian target of rapamycin (PI3K/AKT/mTOR) pathway

The PI3K/AKT/mTOR pathway is frequently activated in various
types of cancer, including skin cancer. Rosmarinic acid has been
shown to inhibit this pathway by decreasing the phosphorylation
of AKT and mTOR, leading to decreased cell proliferation and
survival[53].

The MAPK/ERK pathway

The MAPK/ERK pathway is another important signaling path-
way involved in skin cancer development. Rosmarinic acid has
been shown to inhibit this pathway by decreasing the phos-
phorylation of ERK, leading to decreased cell proliferation and
invasion[54].

The nuclear factor-κB (NF-κB) pathway

The NF-κB pathway is a transcription factor that plays a critical
role in inflammation and cancer development. Rosmarinic acid
has been shown to inhibit the activation of NF-κB by preventing
the degradation of the inhibitor of kappa B alpha (IκBα), leading
to decreased inflammation and cell proliferation[55].

Table 1

(Continued)

S. no.
Dietary

phytochemical Structure IUPAC name Signaling pathway References

N
15. Ferulic acid (E)-3-(4-hydroxy-3-

methoxyphenyl)prop-2-enoic
acid

(1) Inhibit the activation of NF-κB by preventing the degradation of
its inhibitor protein, IκBα.

[125]

(2) Regulates the expression of MAPKs, which regulate cell
proliferation and survival, and COX-2, which promotes
inflammation and cell proliferation.

[126]

Singh et al. Annals of Medicine & Surgery (2024) Annals of Medicine & Surgery

5882



The Wnt/β-catenin pathway

The Wnt/β-catenin pathway is involved in the regulation of cell
proliferation, differentiation, and apoptosis. Dysregulation of
this pathway has been linked to various types of cancer, including
skin cancer. Rosmarinic acid has been shown to inhibit this
pathway by decreasing the expression of β-catenin and its
downstream target genes, leading to decreased cell proliferation
and invasion[56,57].

The ability of rosmarinic acid to regulate major signaling
pathways in the human body suggests that it may have ther-
apeutic potential for the prevention and treatment of various
diseases, including cancer[158]. While rosmarinic acid has
shown promising anticancer properties in vitro and in animal
studies, there are several potential drawbacks and limitations
to its use in treating skin cancer[131,159]. While rosmarinic acid
is generally considered safe, there are some potential side
effects, including nausea, vomiting, and allergic reactions[160].
Rosmarinic acid has poor bioavailability, which means that it
may not be absorbed well by the body when taken orally or
applied topically[161]. The amount of rosmarinic acid in herbal
supplements or preparations can vary widely, which makes it
difficult to establish a standardized dose or formulation for
treating skin cancer. This may limit its effectiveness in treating
skin cancer[162,163]. More research is needed to determine its
safety and efficacy and to optimize the dosage and delivery of
rosmarinic acid for maximum efficacy.

Allicin

Allicin is a natural compound found in garlic (Allium sati-
vum)[164]. Allicin belongs to the class of secondary metabolites
called organosulfur compounds. These compounds are char-
acterized by the presence of sulfur atoms in their chemical struc-
ture and are often produced by plants as a defense mechanism
against pests and pathogens[165–167]. When garlic is crushed or
chopped, an enzyme called alliinase is activated, which converts
alliin, a sulfur-containing amino acid derivative, into allicin[168].
Allicin is responsible for the characteristic odor and flavor of fresh
garlic, and it is also believed to be responsible for many of the
health benefits associated with garlic consumption[169,170]. The
molecular mechanism of allicin’s action against skin cancer is not
completely understood, but several studies have suggested that it
targets multiple pathways involved in cancer development and
progression[171]. A study investigated the effect of allicin on the
migration and invasion of human melanoma cells (A375 and SK-
MEL-28). Allicin was found to inhibit the migration and invasion
of melanoma cells by downregulating the expression of genes
involved in epithelial–mesenchymal transition (EMT), a process
that allows cancer cells to acquire invasive and metastatic prop-
erties. Allicin was also found to downregulate the expression of
the COX-2 gene, which is involved in inflammation and cell
proliferation. Furthermore, allicin was found to inhibit the acti-
vation of the NF-κB pathway and the expression of its down-
stream target genes, which are involved in cell survival,
inflammation, and tumor progression[58]. In a study conducted by
Wang et al., it was observed that several compounds, including
allicin, allyl sulfides, ajoene, diallyl trisulfide (DATS), and S-allyl
cysteine (SAC), have shown anticancer activity against various
types of cancer, including skin cancer. DATS is more potent than
mono- and disulfides against skin cancer. DATS inhibits cell
growth of human melanoma A375 cells and basal cell carcinoma

(BCC) cells by increasing the levels of intracellular reactive oxygen
species (ROS) and DNA damage, inducing G2/M arrest, endo-
plasmic reticulum (ER) stress, and mitochondria-mediated apop-
tosis, including the caspase-dependent and caspase-independent
pathways[171]. In one of the studies, Jobani et al. aimed to inves-
tigate the potential of allicin to sensitize malignant melanoma cells
to all-trans retinoic acid (ATRA) therapy. The CD44+ and
CD117+ melanoma cell subpopulations were sorted, and the
effects of ATRA, allicin, and allicin/ATRA on cell proliferation
and cell cycle arrest were examined. The results showed that
CD44+ melanoma cells were more resistant to ATRA and allicin
than CD117+ cells. However, allicin was found to sensitize
melanoma cells to ATRA-induced cell death, and the combination
treatment significantly reduced the IC50 value obtained for ATRA
alone in CD44+ melanoma cells. Furthermore, allicin and ATRA
combination treatment showed inhibitory effects on CD44+ and
CD117+ melanoma cells, and allicin alone reduced matrix
metalloproteinase-9 (MMP-9) mRNA expression in both cell
subpopulations. The findings suggest that allicin may reinforce the
ATRA-mediated inhibitory effects on melanoma cells, providing a
new approach for the treatment of malignant melanoma[172].

In another study conducted by Omar and Al-Wabel, it was
observed that garlic contains chemical compounds that have been
shown to protect against several diseases, including cancer, par-
ticularly in the stomach, colorectal, breast, and skin. The pro-
tective effects are related to the presence of organosulfur
compounds (like allicin, etc.), which inhibit carcinogenesis in
various experimental animals. The compounds modulate the
activity of several metabolizing enzymes and inhibit the forma-
tion of DNAadducts. Antiproliferative activity has been observed
in tumor cell lines, possibly mediated by induction of apoptosis
and alterations of the cell cycle. Garlic’s organosulfur compounds
are potential cancer-preventive agents, but clinical trials are
necessary to define the effective dose with no toxicity in
humans[173].

Allicin has been shown to scavenge free radicals and protect
against oxidative damage induced by UV radiation, which can
contribute to the development of skin cancer[174]. Allicin has been
shown to suppress the production of inflammatory cytokines,
such as interleukin-1 beta (IL-1β) and tumor necrosis factor-
alpha (TNF-α), which can promote the development and pro-
gression of skin cancer[175]. Allicin has been shown to induce
apoptosis (programmed cell death) in cancer cells, including skin
cancer cells, by activating caspases and other apoptosis-related
proteins[176]. Allicin has been shown to arrest the cell cycle of
cancer cells, preventing them from dividing and multiplying,
which can help to prevent the growth and spread of skin
cancer[177]. Allicin has been shown to inhibit the formation of
new blood vessels, which is a critical step in the growth and
spread of cancer[178].

The major signaling pathways that have been reported to be
regulated by allicin are as follows:

NF-κB pathway

Allicin has been shown to inhibit the activation of NF-κB, a
transcription factor that plays a key role in inflammation and
cancer development[58].
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PI3K)/Akt/mTOR pathway

Allicin has been shown to inhibit the activation of this pathway,
which is frequently dysregulated in cancer cells and promotes cell
survival, growth, and proliferation[179].

Wnt/β-catenin pathway

Allicin has been shown to inhibit the activation of this pathway,
which is frequently dysregulated in cancer cells and promotes cell
proliferation and survival[59].

MAPK pathway

Allicin has been shown to inhibit the activation of the MAPK
pathway, which plays a critical role in cell proliferation, differ-
entiation, and survival[180].

STAT3 pathway

Allicin has been shown to inhibit the activation of STAT3, a
transcription factor that plays a critical role in inflammation and
cancer development[181].

Overall, these pathways play important roles in regulating cell
growth, survival, and inflammation and dysregulation of these
pathways can contribute to the development and progression of
skin cancer. By regulating these pathways, allicin has the poten-
tial to prevent or slow down the progression of skin
cancer[178–180]. While allicin may have some benefits, there are
also potential drawbacks when it comes to using it against skin
cancer. Allicin can be a skin irritant and may cause redness,
itching, or burning when applied topically. This can be especially
problematic for people with sensitive skin or those who are
already experiencing skin irritation due to cancer treatments[182].
Allicin is not widely available in a standardized form for medical
use, which can make it difficult to obtain and ensure quality[183].
It can be concluded that while allicin may have potential benefits
for skin cancer, there are also potential drawbacks and limita-
tions to its use.

Sulforaphane

Sulforaphane is a naturally occurring compound found in cruci-
ferous vegetables, such as broccoli, cauliflower, Brussels sprouts,
and kale[184]. Sulforaphane belongs to the family of iso-
thiocyanates. It is formed when the enzyme myrosinase comes
into contact with glucoraphanin, a glucosinolate compound
present in these vegetables[185]. Broccoli is the richest dietary
source of sulforaphane, with broccoli sprouts containing even
higher concentrations of the compound[186]. Sulforaphane is also
available as a dietary supplement, which is typically derived from
broccoli sprouts or broccoli seed extract[187]. It is important to
note that the content of sulforaphane in cruciferous vegetables
can vary widely depending on factors such as plant variety,
growing conditions, and preparation methods. For example,
chopping, chewing, or blending cruciferous vegetables can acti-
vate myrosinase and increase the formation of sulforaphane,
whereas cooking or boiling can reduce the amount of the
compound[188,189].

Sulforaphane has been shown to exhibit chemopreventive and
therapeutic effects against various types of cancer, including skin
cancer[190,191]. Its mechanism of action against skin cancer
involves several pathways and cellular processes:

Induction of phase II detoxification enzymes

Sulforaphane activates the nuclear factor erythroid 2-related
factor 2–antioxidant response element (Nrf2–ARE) signaling
pathway, leading to the induction of phase II detoxification
enzymes, such as glutathione S-transferases (GSTs), which are
involved in the elimination of carcinogens and other toxic com-
pounds from the body[192].

Inhibition of inflammation

Sulforaphane can modulate the expression of genes involved in
inflammation and immune responses, such as NF-κB and COX-2,
leading to a reduction in pro-inflammatory cytokines and
chemokines[193]. Chronic inflammation is known to contribute to
the development and progression of skin cancer.

Induction of apoptosis

Sulforaphane can induce apoptosis (programmed cell death) in
cancer cells by activating caspases and other apoptotic
pathways[194].

Inhibition of angiogenesis

Sulforaphane can suppress the formation of new blood vessels
(angiogenesis) that supply nutrients to cancer cells, thereby
inhibiting their growth and proliferation[195].

Modulation of epigenetic mechanisms

Sulforaphane canmodulate epigenetic mechanisms, such as DNA
methylation and histone acetylation, leading to changes in gene
expression that can affect various cellular processes, including
those involved in the development and progression of
cancer[196–198].

Several studies have been conducted by researchers to inves-
tigate the molecular mechanism of action of sulforaphane against
skin cancer. For instance, Eom et al. investigated the effects of
sulforaphane treatment on B16F10 melanoma cells and zebrafish
models. The results showed that sulforaphane treatment reduced
cell proliferation, increased tyrosinase production, and induced
cytoskeletal reorganization, leading to an elongated appearance
of melanoma cells. Sulforaphane treatment also regulated the
protein expression of microphthalmia-associated transcription
factor (MITF), protein kinase C beta 1 (PKCβ1), and tyrosinase.
The study further demonstrated that sulforaphane-induced bio-
synthesis of melanin in melanoma cells occurs through changes in
actin, as shown by co-treatment of sulforaphane with cytocha-
lasin D (CD) and jasplakinolide (JAS). The same results were
obtained in zebrafish models, where sulforaphane upregulated
melanin levels despite the presence of the melanin inhibitor phe-
nylthiourea (PTU)[199]. A study performed by Balasubramanian
et al. investigated the impact of sulforaphane (SFN), a potential
cancer-preventative agent found in cruciferous vegetables, on the
expression and function of PcG proteins, which are known to
promote cell survival and suppress gene expression in cancer
cells. The study found that SFN treatment resulted in a con-
centration-dependent reduction of PcG protein expression in skin
cancer cells, leading to a decrease in histone H3 trimethylation
and an accumulation of cells in the G2/M phase. The treatment
also increased apoptosis, as evidenced by enhanced cleavage of
caspase and PARP proteins. The results suggest that SFN may
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inhibit PcG-dependent pro-survival epigenetic events via
proteasome-dependent degradation, thus suppressing cancer
progression[196]. In another study, Dickinson et al. investigated
the chemopreventive properties of sulforaphane, an iso-
thiocyanate found in cruciferous vegetables, against UVB-
induced squamous cell carcinoma in mice. The study found that
sulforaphane treatment reduced the multiplicity and tumor bur-
den of squamous cell carcinoma in mice co-treated with the car-
cinogen and sulforaphane. The study also showed that
sulforaphane was able to reduce the activity of the transcription
factor activator protein-1 (AP-1) in the skin of transgenic mice
after UVB. Chromatin immunoprecipitation analysis revealed
that sulforaphane inhibited c-Fos, a constituent of the AP-1
dimer, from binding to the AP-1 DNA-binding site. The study
also found that sulforaphane and diamide, both known to react
with cysteine amino acids, effectively inhibited AP-1 from binding
to its response element.Mutation of critical cysteines in the DNA-
binding domain of c-Fos and c-Jun resulted in loss of sensitivity to
sulforaphane and diamide. These findings suggest that inhibition
of AP-1 activity by sulforaphanemay be an important mechanism
for the chemoprevention of squamous cell carcinoma[200].

While sulforaphane may have some benefits, there are also
potential drawbacks when it comes to using it against skin cancer.
The potency of sulforaphane can vary depending on how it is
prepared and stored. This can make it difficult to determine the
appropriate dosage and ensure consistent results[201]. Sulforaphane
may interact with certain medications, including blood thinners
and medications used to treat HIV. Overall, the multiple
mechanisms of action of sulforaphane suggest its potential as a
promising chemopreventive and therapeutic agent against skin
cancer. However, more research is needed to fully understand its
effects, safer dose, drug interaction studies and to develop effective
treatment strategies.

Ellagic acid

Ellagic acid is a naturally occurring polyphenolic compound
found in several fruits and vegetables, including strawberries,
raspberries, blackberries, pomegranates, and walnuts[202]. It is
formed from the hydrolysis of ellagitannins, which are water-
soluble compounds present in these foods[203]. Ellagic acid has
been shown to exhibit chemopreventive and therapeutic effects
against various types of cancer[204], including skin cancer. Its
mechanism of action against skin cancer involves several path-
ways and cellular processes:

Antioxidant activity

Ellagic acid is a potent antioxidant that can scavenge free radicals
and protect cells from oxidative stress-induced damage, which is
implicated in the development of skin cancer[205].

Inhibition of inflammation

Ellagic acid can modulate the expression of genes involved in
inflammation and immune responses, such as NF-κB and COX-2,
leading to a reduction in pro-inflammatory cytokines and
chemokines[206]. Chronic inflammation is known to contribute to
the development and progression of skin cancer.

Induction of apoptosis

Ellagic acid can induce apoptosis (programmed cell death) in
cancer cells by activating caspases and other apoptotic pathways.
This mechanism can help eliminate cancer cells and prevent their
proliferation[207–209].

Inhibition of angiogenesis

Ellagic acid can suppress the formation of new blood vessels
(angiogenesis) that supply nutrients to cancer cells, thereby
inhibiting their growth and proliferation[123].

Modulation of cellular signaling pathways

Ellagic acid can modulate various signaling pathways involved in
the regulation of cell growth, proliferation, and survival,
including the MAPK/ERK, PI3K/AKT, and Wnt/β-catenin path-
ways. Dysregulation of these pathways is implicated in the
development of skin cancer[67,104].

Researchers have extensively studied themolecular mechanism
of action of ellagic acid against skin cancer. Hseu et al. investi-
gated the protective effects of ellagic acid against UVA-induced
oxidative stress and apoptosis in human keratinocyte cells.
Ellagic acid was found to increase cell viability, suppress ROS
generation, prevent DNA damage, and inhibit UVA-induced
apoptosis. The antioxidant potential of ellagic acid was linked to
the increased expression of HO-1 and SOD, downregulation of
Keap1, and the activation of Nrf2. Nrf2 knockdown diminished
the protective effects of ellagic acid, indicating its potential use for
the treatment of UVA-induced skin damage and skin cancer
prevention[204]. In addition, the effects of ellagic acid, a poly-
phenolic compound from pomegranate fruit extracts, on mela-
noma cells were investigated. The results showed that ellagic acid
significantly inhibited the proliferation, migration, and invasion
of WM115 and A375 melanoma cells. Ellagic acid treatment
decreased the expression of p-EGFR and vimentin, while it
increased the expression of E-cadherin in both cell lines. EGFR
activation abolished the effect of ellagic acid on melanoma cells.
Additionally, ellagic acid treatment impaired in vivo tumorigen-
esis of A375 cells, and elevated phosphorylated epidermal growth
factor receptor (p-EGFR) expression was an independent detri-
mental factor for melanoma patients. The study suggests that
ellagic acid may be useful for the development of new therapeutic
strategies for melanoma via the EGFR signaling pathway by
Wang et al.[210]. Moreover, Bia et al. investigated the stress-
resistant action of ellagic acid in Caenorhabditis elegans (C. ele-
gans) and found that 50 μM ellagic acid significantly prolonged
the lifespan of C. elegans under ultraviolet radiation stress, heat
stress, oxidative stress, and Pseudomonas aeruginosa infection
stress. Ellagic acid was also found to reduce damage caused by
ultraviolet radiation by inducing the nucleus translocation of
Dauer formation 16 (DAF-16) and activating a series of target
genes to resist ultraviolet radiation stress. Ellagic acid increased
the expression of superoxide dismutase 3 (SOD3) to clean out
harmful reactive oxygen species in C. elegans exposed to ultra-
violet radiation stress. The results suggest that ellagic acid plays
an important role in resisting ultraviolet radiation stress in C.
elegans, probably in an insulin/insulin-like growth factor-1(IGF-
1) signaling pathway-dependent way, and its effects are depen-
dent on the DAF-16 gene, thus helps in preventing skin cancer
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and other diseases including diabetes, arteriosclerosis, neurode-
generative diseases, stroke, and cataracts[211].

While ellagic acid has shown promising health benefits, there
are also some potential drawbacks that should be considered.
Ellagic acid is poorly absorbed in the body and has low bioa-
vailability. It is rapidly metabolized and eliminated, limiting its
potential therapeutic efficacy. Strategies to improve its bioavail-
ability, such as combining it with other compounds or using
nanoformulations, are being explored[212]. Ellagic acid may
interact with certain drugs and supplements, including antic-
oagulants and antiplatelet agents, and may increase the risk of
bleeding or bruising. It may also interact with certain che-
motherapy drugs and affect their efficacy[213]. Ellagic acid may
cause allergic reactions in some individuals, particularly those
who are allergic to berries or other foods that contain the
compound[214]. There is no standardized dosage for ellagic acid,
and the optimal dose may vary depending on the specific health
condition being targeted[215]. Additionally, the amount of ellagic
acid in foods and supplements can vary widely, making it difficult
to determine the actual dose being consumed[216]. While ellagic
acid has shown promising results in preclinical studies, there is
limited clinical evidence to support its use in humans. Overall, the
multiple mechanisms of action of ellagic acid suggest its potential
as a promising chemopreventive and therapeutic agent against
skin cancer. However, more research is needed to fully under-
stand its effects, safer dose, drug interaction studies, allergic
reaction studies and to develop effective treatment strategies.

Betulinic acid

Betulinic acid is a naturally occurring triterpenoid compound that
is found in the bark of several tree species, including white birch
(Betula pubescens), which is its primary botanical source[217].
Betulinic acid can also be found in other plants, such as the
Chinese herb Zizyphus jujubaMill var. spinosa[218], and in some
fruits and vegetables, such as apples[219] and strawberries[220],
although in lower concentrations. The compound can be
extracted from the bark of the white birch tree[221] using various
methods, including maceration and solvent extraction. Betulinic
acid has shown a range of biological activities, including anti-
inflammatory, antiviral, and anticancer effects[222,223].

Betulinic acid has been shown to regulate several signaling
pathways involved in the development and progression of skin
cancer. These pathways include:

PI3K/Akt/mTOR pathway

Betulinic acid can inhibit the PI3K/Akt/mTOR pathway, which is
involved in cell growth and survival. This pathway is commonly
activated in cancer cells, including skin cancer cells, and con-
tributes to their proliferation and survival[224].

MAPK/ERK pathway

Betulinic acid can alsomodulate theMAPK/ERK pathway, which
regulates cell proliferation and differentiation. This pathway is
often dysregulated in skin cancer and contributes to its develop-
ment and progression[225,226].

Wnt/β-catenin pathway

Betulinic acid has been shown to inhibit the Wnt/β-catenin
pathway, which plays a key role in cell proliferation and stem cell

self-renewal[227]. Aberrant activation of this pathway has been
implicated in the development of various types of cancer,
including skin cancer.

NF-κB pathway

Betulinic acid can also inhibit the NF-κB pathway, which is
involved in inflammation, cell survival, and proliferation. This
pathway is commonly activated in cancer cells and contributes to
their survival and resistance to chemotherapy[68].

Several studies have been conducted to investigate the mole-
cular mechanism of action of betulinic acid against skin cancer.
For instance, Wróblewska-Łuczka et al. investigated the effects of
betulinic acid, alone and in combination with taxanes, on the
growth of melanoma cell lines. Betulinic acid had no cytotoxic
effect on normal cells but significantly inhibited the growth of
melanoma cells in vitro, with IC50 values ranging from 2.21 to
15.94 µM. Co-treatment with betulinic acid and taxanes showed
desirable drug interactions, with additive and additive with a
tendency to synergy interactions observed. These findings suggest
that betulinic acid may be a potential therapeutic agent for mel-
anoma, either alone or in combination with taxanes[228]. One of
the studies performed by Liao et al. examined the biological
effects of betulinic acid (BA)-functionalized GNP in human ker-
atinocytes and melanoma cells. Betulinic acid was grafted onto
citrate-capped GNP (BA-GNP) using cysteamine as a linker. The
results showed that the BA-GNP formulation had selective
cytotoxic and antiproliferative effects on melanoma cells com-
pared to free betulinic acid. Further analysis revealed a pro-
apoptotic effect, as evidenced by morphological changes and
western blot data showing downregulation of anti-apoptotic Bcl-
2 expression and upregulation of pro-apoptotic Bax. GNP also
significantly inhibited mitochondrial respiration, demonstrating
its mitochondrial-targeted activity. These findings suggest that
BA-functionalized GNP could be a potential therapeutic option
for melanoma[229].

The study performed by Kallimanis et al. aimed to identify
natural compounds that could inhibit aryl hydrocarbon receptor
(AhR) activation by these ligands. The methanolic Rosmarinus
officinalis L. extracts (ROE) were assayed for their activities as
antagonists of AhR ligand binding with guinea pig cytosol. The
isolated metabolites (viz. carnosic acid, carnosol, 7-O-methyl-
epi-rosmanol, 4′,7-O-dimethylapigenin, and betulinic acid) were
assayed for their agonist and antagonist activity in the presence
and absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
using the gel retardation assay. All assayed extracts showed
almost complete inhibition of AhR activation by TCDD at 100
ppm. Themethanol ROE at 10 ppm showed significant inhibition
against TCDD, 6-formylindolo[3,2-b]carbazole (FICZ), indir-
ubin (IND), and pyrazolo[1,5-a]pyrimidine (PZ), respectively, in
human keratinocytes. Most assayed metabolites exhibited dose-
dependent antagonist activity. The results suggest that ROE
could be useful for the prevention or treatment of skin diseases
mediated by the activation of AhR[230].

Betulinic acid is generally considered safe and non-toxic at
therapeutic doses, and it has shown promising anticancer activity
in preclinical studies. However, there are some potential draw-
backs associated with its use. Betulinic acid has poor water
solubility and low bioavailability, which can limit its effectiveness
in vivo. Various delivery systems and formulations have been
developed to enhance its bioavailability and effectiveness[231–235].
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Although betulinic acid has shown promising activity against
skin cancer in preclinical studies, there is limited clinical data on
its safety and efficacy in humans. Further clinical studies are
needed to determine its potential as a therapeutic agent for skin
cancer[236].

Overall, while betulinic acid has shown promise as a potential
therapeutic agent against skin cancer, more research is needed to
fully understand its bioavailability, safety, efficacy, and optimal
use in clinical settings.

Apigenin

Apigenin is a naturally occurring flavone that can be found in
various plants, including parsley, chamomile, celery, thyme, and red
pepper[237]. It is also present in many fruits and vegetables, such as
oranges, grapefruit, onions, and broccoli. Apigenin can be extracted
from these sources using various methods, including microwave-
assisted extraction[238], ultrasound-assisted extraction[239], super-
critical carbon dioxide extraction, enzyme-assisted extraction[240],
high-speed counter-current chromatography[241], etc. The
mechanism of action of apigenin against skin cancer involves
multiple pathways, including:

Induction of apoptosis

Apigenin can induce programmed cell death or apoptosis in
cancer cells. It does so by activating caspase enzymes, which are
responsible for cleaving and degrading proteins that are essential
for cell survival. By inducing apoptosis, apigenin can reduce the
number of cancer cells in the skin and prevent the formation of
tumors[242].

Inhibition of cell proliferation

Apigenin can inhibit the proliferation of cancer cells by regulating
cell cycle progression. It does so by suppressing the expression of
cyclin-dependent kinases and upregulating the expression of cell
cycle inhibitors. This results in the inhibition of cell division and
reduced growth of skin cancer cells[243].

Regulation of signaling pathways

Apigenin can regulate several signaling pathways that are
involved in the development and progression of skin cancer. It
can inhibit the activation of the PI3K/Akt[75,243], MAPK[112,243],
and Wnt/β-catenin pathways[244], which promote cell survival,
proliferation, and migration. It can also activate the Nrf2/ARE
pathway, which is involved in cellular antioxidant and detox-
ification responses[245]. By regulating these pathways, apigenin
can prevent the growth and spread of skin cancer cells.

Anti-inflammatory effects

Apigenin has been shown to have anti-inflammatory effects that
can protect the skin from UV radiation-induced damage. It can
reduce the production of pro-inflammatory cytokines and inhibit
the activity of enzymes that promote inflammation. By reducing
inflammation, apigenin can prevent the formation of skin cancer
cells[246].

Several studies have investigated the molecular mechanism of
action of apigenin against skin cancer. In one study conducted by
Bridgeman et al., it was found that apigenin inhibited UVB-
induced mTOR activation, cell proliferation, and cell cycle

progression in mouse skin and keratinocytes. The inhibition of
UVB-induced mTOR signaling by apigenin was not Akt-depen-
dent but instead was driven by adenosine monophosphate-acti-
vated protein kinase (AMPK) activation. Additionally, mTOR
inhibition by apigenin enhanced autophagy and decreased pro-
liferation in keratinocytes, providing a new target and strategy
for better prevention of UV-induced skin cancer[247]. Another
study by Das et al. aimed to evaluate the antiproliferative effects
of apigenin-loaded poly (lactic-co-glycolide) nanoparticles (NAp)
on A375 skin cancer cells in vitro. NAp was characterized for
particle size, morphology, zeta potential, drug release, and
encapsulation. The cellular entry and intracellular localization of
NAp were evaluated, along with the stability of dsDNA and
relevant markers of mitochondrial functioning, such as ATPase
activity, cytochrome-c release, and caspase-3 activity. NAp
showed better efficacy due to their smaller size and faster mobility
with site-specific action. The study revealed that NAp could
intercalate with dsDNA, leading to ROS accumulation and
depletion of antioxidant enzyme activities, resulting in DNA
damage and apoptosis through mitochondrial dysfunction. The
study suggests that NAp could be a potential therapeutic option
for combating skin melanoma[248]. A study was performed by
Jangdey et al. to optimize transfersomes, which are vesicular
carriers for drug delivery, using a modified rotary evaporation
sonication technique and surfactant Tween 80. The Box-Behnken
design with three factors and three levels was applied using
response surface methodology. The formulations were char-
acterized for size, shape, entrapment efficiency, stability, and
in-vitro permeation. The optimized formulation had an entrap-
ment efficiency of 84.24%, a vesicle size of 35.41 nm, and a drug
loading of 8.042%, with good stability. This approach shows
promise for the sustained release of apigenin for an extended
period of time[249]. Waheed et al. performed a study to develop
and optimize lyotropic liquid crystalline nanoparticles (LLCNPs)
loaded with apigenin (API) for effective dermal delivery using a
quality-by-design (QbD) approach. The optimized API-LLC NPs
showed particle size, polydispersity index (PDI), and entrapment
efficiency of 287.7 ± 9.53 nm, 0.152 ± 0.051 and 80 ± 2.2 %,
respectively. In-vitro and ex-vivo studies showed sustained
release and a better permeation profile. The developed API-LLC
NPs exhibited better penetration of deeper skin layers, with
cytotoxic efficacy assessed on B16F10 cell lines showing a dose-
dependent efficacy of API-LLC NPs with an IC50 of 45.74 ± 0.05,
making it a promising topical drug delivery nanocarrier for the
treatment and management of skin cancer[250].

Overall, the mechanism of action of apigenin against skin
cancer is multifaceted and involves the modulation of several
cellular processes. Apigenin is generally considered safe and well-
tolerated, and side effects are rare. However, high doses of api-
genin supplements or extracts may cause some adverse effects.
High doses of apigenin may cause digestive issues such as diar-
rhea, nausea, and stomach upset[251]. In some individuals, api-
genin may cause an allergic reaction, especially if they have an
allergy to other flavonoids or plants in the same family as
apigenin[252]. Apigenin may interact with certain medications,
including blood thinners, chemotherapy drugs, and medications
that are metabolized by the liver[253,254]. Although preclinical
studies have shown promising results, there is currently a lack of
clinical evidence to support the efficacy and safety of apigenin as a
treatment for skin cancer. More research is needed to determine
its potential benefits and risks.
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Gingerol

Gingerol is a bioactive compound found in ginger (Zingiber
officinale), a spice and medicinal plant that has been used for
centuries for its health benefits[255]. Gingerol belongs to the class
of secondary metabolites known as phenolic compounds[256].
Gingerol is a member of the gingerols, a group of compounds that
are responsible for the pungent flavor and aroma of ginger[257].
Gingerol is known for its anti-inflammatory, antioxidant, and
anticancer properties[258–260]. It has been studied for its potential
to help manage a variety of health conditions, including nausea,
vomiting, pain, and inflammation[261,262].

Gingerol has been shown to regulate several signaling path-
ways involved in the development and progression of skin cancer,
including the MAPK/ERK[83] and PI3K/Akt[80] pathways. The
MAPK/ERK pathway is a signaling pathway that regulates cell
growth, division, and survival. Dysregulation of this pathway can
contribute to the development of skin cancer. Gingerol has been
shown to inhibit the activation of the MAPK/ERK pathway in
skin cancer cells, which can help prevent the growth and pro-
liferation of cancer cells[83]. The PI3K/Akt pathway is another
signaling pathway that plays an important role in regulating cell
growth, division, and survival. Dysregulation of this pathway has
also been implicated in the development of skin cancer. Gingerol
has been shown to inhibit the activation of the PI3K/Akt pathway
in cancer cells, which can help prevent the growth and pro-
liferation of cancer cells[80]. In addition to regulating these sig-
naling pathways, gingerol has also been shown to modulate the
expression of several genes involved in skin cancer development
and progression. For example, gingerol has been shown to
upregulate the expression of tumor suppressor genes such as p53
and phosphatase and tensin (PTEN) homolog, which can help
prevent the development of skin cancer[263].

Several studies have been conducted to investigate the mole-
cular mechanism of action of gingerol against skin cancer. A
study performed by Praveena et al. aimed to investigate the
anticancer activity of [6]-gingerol, a bioactive compound found
in the rhizome of Zingiber officinale and its structural analogs
against skin cancer. The ethanolic crude extract of the plant was
subjected to phytochemical and gas chromatography–mass
spectrometry (GC–MS) analysis to confirm the presence of [6]-
gingerol. The anticancer activity was evaluated using the A431
human skin adenocarcinoma cell line, and the 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
showed promising cytotoxicity with an IC50 of 81.46 μg/ml. In
silico studies were conducted using [6]-gingerol and 21 structural
analogs to investigate their anticancer potential and drug-like-
liness properties. The study targeted the skin cancer protein,
DEAD-box helicase 3 X-linked (DDX3X), which regulates all
stages of ribonucleic acid (RNA)metabolism, and the compounds
were docked to identify the most potent lead molecule based on
the lowest binding energy value. The study suggests that [6]-
gingerol and its structural analogs could be used as leadmolecules
for future drug development against skin cancer[264]. One of the
studies conducted by Nigam et al. investigated the chemopre-
ventive potential of [6]-gingerol, a pungent ingredient found in
ginger rhizome, against benzo[a]pyrene (B[a]P)-induced mouse
skin tumorigenesis. Topical treatment of [6]-gingerol was given
to animals prior to and after B[a]P treatment. Results showed a
delay in tumorigenesis onset, reduced tumor numbers and
volume, and elevated apoptotic propensity in tumor tissues.

Western blot analysis showed [6]-gingerol treatment increased
p53 levels, Bcl-2-associated X protein (Bax), and apoptotic pro-
tease-activating factor-1 (Apaf-1) while decreasing B-cell lym-
phoma 2 (Bcl-2) and Survivin expression. The study suggests that
[6]-gingerol has apoptotic potential as a mechanism of chemo-
prevention andwarrants further investigation[265]. Another study
by Park et al. reported the potential cancer chemopreventive
properties of [6]-gingerol, a phenolic compound found in ginger,
using a two-stage mouse skin carcinogenesis model. The results
showed that topical application of [6]-gingerol prior to each dose
of 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly
inhibited the development of skin papillomagenesis induced by
7,12-dimethylbenz[a]anthracene. The compound also suppressed
TPA-induced epidermal inflammation and ornithine decarbox-
ylase activity. These findings suggest that [6]-gingerol may have
potential as an antitumor promotional agent[266].

Gingerol has been associated with several potential health
benefits. However, there are also some drawbacks and potential
side effects of gingerol. Gingerol may have blood-thinning effects,
which can increase the risk of bleeding or interfere with the
effectiveness of blood-thinning medications[267]. Gingerol may
interact with certain medications, including anticoagulants,
antiplatelets[267], and blood pressure medications[268]. Gingerol
may not be suitable for pregnant women[269]. Overall, gingerol
appears to regulate multiple signaling pathways involved in the
development and progression of skin cancer, which may con-
tribute to its anticancer effects[270]. However, more research is
needed to fully understand the drug interaction studies and safer
doses for use in humans.

Quercetin

Quercetin is a natural flavonoid compound found in many fruits,
vegetables, and grains[271]. Some of the food sources of quercetin
include onions (Allium cepa), apples (Malus spp.), berries such as
blueberries (Vaccinium spp.) and cranberries (Vaccinium mac-
rocarpon), citrus fruits such as grapefruit (Citrus paradisi),
oranges (Citrus sinensis), leafy green vegetables such as kale
(Brassica oleracea) and spinach (Spinacia oleracea), and grains
such as buckwheat (Fagopyrum esculentum)[272–277]. Flavonoids
are responsible for giving plants their vibrant colors[47].
Quercetin is known for its antioxidant and anti-inflammatory
properties and has been studied for its potential health
benefits[278]. The molecular mechanism of action of quercetin
against skin cancer involves several pathways and cellular pro-
cesses. Here are some of the molecular mechanisms by which
quercetin acts against skin cancer:

Inhibiting cell proliferation

Quercetin can inhibit cell proliferation by inducing cell cycle
arrest at the G1/S phase, which prevents cancer cells from
dividing and growing[58].

Inducing apoptosis

Quercetin can induce apoptosis, or programmed cell death, in
cancer cells. This can help eliminate cancer cells and prevent the
spread of cancer[279].
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Inhibiting angiogenesis

Quercetin can inhibit the formation of new blood vessels, which is
necessary for cancer cells to grow and spread[87].

Reducing oxidative stress

Quercetin has antioxidant properties and can reduce oxidative
stress and damage to skin cells, which can lead to the develop-
ment of skin cancer[84].

Regulating signaling pathways

Quercetin can regulate several signaling pathways involved in
skin cancer development and progression, including the PI3K/
Akt[279], MAPK[280], Wnt/β-catenin[281], NF-κB[282] and JAK/
STAT pathways[270].

Enhancing the immune system

Quercetin can enhance the immune system’s ability to recognize
and destroy cancer cells, reducing the risk of skin cancer[84].

In recent years, several studies have investigated the molecular
mechanism of action of quercetin against skin cancer. Imran et al.
developed a nanostructured lipid carrier (NLC) gel loaded with
two drugs, quercetin and resveratrol, to enhance their delivery to
the dermal and epidermal layers of the skin. The NLC formula-
tion was optimized using a central composite rotatable design
(CCRD) and contained a lipid binary mixture, Cremophor RH40
as a surfactant, and had good particle size, polydispersity index,
zeta potential, and entrapment efficiency. Dermatokinetic studies
showed that the NLC gel significantly increased the disposition of
the drugs in the skin compared to a conventional gel, and this was
confirmed by confocal microscopic studies. The cytotoxic effect
of the NLC gel was assessed in a human epidermoid carcinoma
cell line and found to be lower than that of the conventional gel.
These results suggest that the NLC gel could be a promising
carrier for the delivery of quercetin and resveratrol into deeper
layers of the skin for the treatment of skin cancer[283].

Another study by Caddeo et al., focuses on developing lipo-
somes for delivering two natural polyphenols, quercetin and
resveratrol. The liposomes were found to be small, spherical, and
uni/bilamellar in nature. The incorporation of polyphenols did
not affect their antioxidant activity. Liposomal delivery of poly-
phenols showed higher cellular uptake and better scavenging
ability of ROS in fibroblasts. The in-vivo study in a mouse model
of skin lesions demonstrated that topical administration of lipo-
somes reduced tissue damage, edema, and leukocyte infiltration.
The study suggests that liposomal delivery of polyphenols may be
a promising approach for treating inflammation/oxidative stress
associated with precancerous/cancerous skin lesions[284].

Paliwal et al. used ultrasound to enhance the potency of
quercetin as a chemotherapeutic drug for the treatment of pros-
tate and skin cancer. The short application of low-frequency
ultrasound selectively induced cytotoxicity in cancer cells, while
having minimal effect on normal cell lines. The treatment resulted
in a significant reduction of viable skin cancer cell population
within 48 h. Ultrasound reduced the LC50 of quercetin for skin
cancer cells by almost 80-fold, while showing no effect on LC50
for nonmalignant skin cells. The study suggests that ultrasound
can be used as a selective sensitizing agent to enhance the efficacy
of bioflavonoids for cancer treatment[285]. Furthermore, Jung
et al. focus on identifying the molecular targets of quercetin and

its effect on the inhibition of IGF-1 signaling in skin carcino-
genesis. The results show that a quercetin diet remarkably
delayed the incidence of skin tumor and reduced tumor multi-
plicity in a mouse skin carcinogenesis protocol. Moreover, skin
hyperplasia was significantly inhibited by quercetin supple-
mentation. Further analysis of the skin papilloma cell line showed
that quercetin treatment suppressed IGF-1-induced phosphor-
ylation of insulin-like growth factor 1 receptor (IGF-1R), insulin
receptor substrate 1 (IRS-1), Akt and ribosomal protein S6 kinase
(S6K) and inhibited IGF-1 stimulated cell proliferation. The study
suggests that quercetin has potent anticancer activity through the
inhibition of IGF-1 signaling and can be considered as a potential
therapeutic agent for cancer treatment[286].

While quercetin has many potential benefits for preventing and
treating skin cancer, there are some drawbacks to its use.
Quercetin has low bioavailability, which means that much of the
compound may be broken down and excreted before it can exert
its therapeutic effects[287]. This can limit its effectiveness against
skin cancer. Quercetin may interact with certain medications,
such as blood thinners[288], chemotherapy drugs[289], and
antibiotics[290]. This can affect their effectiveness and increase the
risk of side effects. While preclinical studies have shown pro-
mising results for the use of quercetin against skin cancer, there is
limited clinical evidence to support its use in humans[291].

Overall, the molecular mechanisms of action of quercetin
against skin cancer are complex and involve multiple cellular
processes and pathways. These mechanisms work together to
prevent the growth and spread of cancer cells, making quercetin a
promising natural compound for skin cancer prevention and
treatment. More research is needed to determine its optimal
dosage, effectiveness, and safety for preventing and treating skin
cancer.

Kaempferol

Kaempferol is a natural flavonoid compound that is found in a
variety of plant-based foods such as fruits, vegetables, and
herbs[91]. It is a yellow crystalline solid that belongs to the fla-
vonol subclass of flavonoids[292]. Kaempferol can be found in
plant species like Ginkgo Folium[293]. The molecular mechanism
of kaempferol against skin cancer involves several pathways. One
of the primary mechanisms is its ability to induce cell cycle arrest
and apoptosis in cancer cells. Kaempferol activates the tumor
suppressor protein p53, which leads to cell cycle arrest and
apoptosis[294]. Additionally, kaempferol can inhibit the activity
of anti-apoptotic proteins such as Bcl-2, which further promotes
cell death in cancer cells[295]. Kaempferol can suppress the pro-
duction of inflammatory cytokines and chemokines, which can
lead to chronic inflammation that promotes the growth of cancer
cells[296]. It can also reduce the generation of reactive oxygen
species and enhance the activity of antioxidant enzymes, which
helps to protect cells from oxidative damage that can contribute
to the development of cancer[297]. Moreover, kaempferol has
been shown to inhibit the activity of several enzymes that are
involved in the progression of skin cancer, including
tyrosinase[298], matrix metalloproteinases[299], and cycloox-
ygenase-2[300]. By inhibiting these enzymes, kaempferol can
prevent the proliferation and invasion of cancer cells.

Several studies have been performed to elucidate the molecular
mechanism of action of kaempferol against skin cancer. In one of
the studies, Yang et al. evaluated the anticancer activity of
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kaempferol against the human malignant melanoma A375 cell
line and its effects on apoptosis, cell cycle, cell migration, and
mTOR/PI3K/AKT pathway. The results showed that kaempferol
exhibited significant anticancer activity against A375 cells with
an IC50 of 20 µM. It reduced colony formation in a dose-depen-
dent manner and initiated apoptosis in human malignant mela-
noma A375 cells. Additionally, kaempferol triggered G2/M cell
cycle arrest, inhibited cell migration, and downregulated mTOR,
pm-TOR, PI3K, p-PI3K, and Akt protein levels in A375 cells. The
findings suggest that kaempferol exerts potent anticancer effects
by targeting multiple pathways in melanoma cells[301]. Yao et al.
performed a study that investigates the role of the 90 kDa ribo-
somal S6 kinase (RSK) and mitogen and stress-activated protein
kinase (MSK) in solar ultraviolet (SUV) irradiation-induced skin
carcinogenesis. The study shows that phosphorylation of RSK
and MSK1 is upregulated in human squamous cell carcinoma
(SCC) and SUV-treated mouse skin. The study also examines the
potential of kaempferol, a natural flavonol found in tea, broccoli,
grapes, apples, and other plant sources, as a chemopreventive
agent against SUV-induced skin carcinogenesis. The study reveals
that kaempferol inhibits RSK2 and MSK1 kinase activities and,
by doing so, attenuates solar UV-induced phosphorylation of
cAMP response element-binding protein (CREB) and histone H3
in mouse skin cells. The study further shows that kaempferol is a
potent inhibitor of SUV-induced mouse skin carcinogenesis and
acts by targeting RSK2 and MSK1. Overall, the study identifies
kaempferol as a safe and novel chemopreventive agent against
solar UV-induced skin carcinogenesis[302]. Furthermore, a study
by Lee et al. investigates the effects of kaempferol, a flavonoid
with anti-inflammatory and anti-oxidative properties, on UVB-
induced skin inflammation and photocarcinogenesis. The study
shows that kaempferol suppresses UVB-induced COX-2 protein
expression in mouse skin epidermal JB6 P + cells and attenuates
the UVB-induced transcriptional activities of COX-2 and AP-1.
The study further demonstrates that kaempferol attenuates the
UVB-induced phosphorylation of several MAPKs, including
ERKs, p38, and c-JunN-terminal kinases (JNKs), by blocking Src
kinase activity. The study also shows that kaempferol competes
with adenosine triphosphate (ATP) for direct binding to Src and
docks easily into the ATP-binding site of Src. The study suggests
that kaempferol is a potent chemopreventive agent against skin
cancer through its inhibitory interaction with Src. Overall, the
study provides insights into the potential of kaempferol as a
chemopreventive agent against UVB-induced skin inflammation
and photocarcinogenesis[303].

Overall, the molecular mechanism of kaempferol against skin
cancer involves inducing cell cycle arrest and apoptosis, mod-
ulating the signaling pathways involved in inflammation and
oxidative stress, and inhibiting the activity of enzymes that pro-
mote the growth and invasion of cancer cells[304].

While kaempferol has shown promise in preventing and
treating skin cancer, there are some potential drawbacks to its
use. Kaempferol has relatively low bioavailability[305], which
means that the body may not absorb it efficiently. Like many
natural compounds, kaempferol can have toxic effects at high
doses. While it is generally considered safe, some studies have
suggested that it can be toxic to certain cells and tissues at high
concentrations[306]. Kaempferol can interact with some medica-
tions, particularly those that are metabolized by the liver[307].
While there have been some promising studies on the use of
kaempferol in skin cancer, more research is needed to determine

its safety and effectiveness. It is important to note that most of the
research on kaempferol has been done in cell cultures and animal
models, and more clinical studies are needed to confirm its effects
in humans.

Resveratrol

Resveratrol is a naturally occurring polyphenolic compound
found in many plant-based foods, including grapes and red
wine[308]. The botanical name for the grapevine is Vitis vinifera,
and themost commonly cultivated variety of grapes used for wine
production is Vitis vinifera subsp. vinifera[309]. Resveratrol is
found in the skin of grapes, and its concentration is highest in
red grapes compared to white grapes[310]. Resveratrol is
also found in other plants, including peanuts[311], berries[312], and
knotweed[313]. The botanical name for the peanut plant isArachis
hypogaea, while the most commonly consumed berries that
contain resveratrol are blueberries (Vaccinium spp.), cranberries
(Vaccinium macrocarpon), and bilberries (Vaccinium myrtil-
lus)[314]. The Japanese knotweed (Fallopia japonica), a plant
native to Asia, is also a rich source of resveratrol[313]. It is clas-
sified as a phytoalexin, which means it is produced by plants in
response to stress, injury, or infection[315]. Resveratrol has been
extensively studied for its potential health benefits, including its
antioxidant[316], anti-inflammatory[317], and anticancer[318]

properties. Resveratrol has been shown to have potential antic-
ancer effects against skin cancer through several molecular
mechanisms. Here are some of the key ways in which resveratrol
may act against skin cancer:

Inhibition of inflammation

Chronic inflammation is a risk factor for the development of
many cancers, including skin cancer. Resveratrol has been shown
to inhibit the expression of pro-inflammatory cytokines, such as
interleukin-1β and tumor necrosis factor-α, which may help to
reduce inflammation and the risk of cancer development[319,320].

Induction of apoptosis

Resveratrol has been shown to induce apoptosis, or programmed
cell death, in skin cancer cells. This is thought to be due in part to
its ability to activate certain signaling pathways, such as the p53
pathway, which can trigger cell death[321,322].

Inhibition of cell proliferation

Resveratrol can also inhibit the proliferation of skin cancer cells,
which may help to slow the growth and spread of cancer cells[96].

Protection against DNA damage

Resveratrol has been shown to have DNA-protective effects,
which may help to prevent mutations and other DNA damage
that can lead to cancer[323].

Regulation of cell cycle

Resveratrol can regulate the cell cycle, which is the process by
which cells divide and grow. By modulating the activity of certain
proteins involved in cell cycle regulation, resveratrol may help to
prevent uncontrolled cell growth that can lead to cancer
development[324].
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Several studies have investigated the molecular mechanisms
underlying the anticancer effects of resveratrol against skin can-
cer. One study conducted by Osmond et al. evaluated the
potential of resveratrol as an adjunct to chemotherapy in mela-
noma treatment. In vitro, resveratrol significantly decreased
melanoma cell viability in all lines tested and selectively spared
nonmalignant fibroblast cell lines. Treatment of malignant cells
with resveratrol and temozolomide (TMZ) enhanced cytotoxicity
compared to TMZ alone. However, in vivo, there was no sig-
nificant difference. The study suggests that resveratrol has selec-
tive antitumor activity in vitro, but barriers to translating these
results to in vivomodels need to be overcome[325]. Another study
by Aziz et al. discusses the protective role of resveratrol against
skin cancer induced by UVR. Resveratrol modulates various
molecular mechanisms involved in cell cycle regulation, ROS
production, apoptosis, autophagy, cell proliferation, tumor pro-
motion, and cancer-related gene expression. The evidence sug-
gests that resveratrol has effective chemopreventive activity and
could potentially be used as a preventive and therapeutic agent in
managing UVR-induced skin carcinogenesis[326]. In addition,
resveratrol has been found to modulate the expression of several
genes and proteins involved in cell cycle regulation, such as
cyclins, cyclin-dependent kinases (CDKs), and checkpoint
proteins[327]. Kundu et al. investigate the effects of resveratrol, a
compound found in grapes, on COX-2 expression induced by the
tumor promoter (TPA) in mouse skin. Results showed that
resveratrol significantly inhibited COX-2 expression by sup-
pressing activation of NF-κB, ERK, and p38 mitogen-activated
protein (MAP) kinase. Resveratrol blunted TPA-induced phos-
phorylation of p65 and its interaction with CBP/p300, rendering
NF-κB transcriptionally inactive. The study also found that
resveratrol targets IκB kinase (IKK) in blocking TPA-induced NF-
κB activation and COX-2 expression in mouse skin in vivo[328].
Furthermore, a study performed by Reagan-Shaw et al. investi-
gated the role of cell cycle regulatory molecules in resveratrol-
mediated protection against multiple exposures to UVB radiation
in hairless mice skin. Resveratrol was topically applied before
each UVB exposure, resulting in a decrease in skin thickness,
hyperplasia, and leukocyte infiltration. Resveratrol down-
regulated the upregulation of critical cell cycle regulatory proteins
induced by UVB, including proliferating cell nuclear antigen
(PCNA), cyclin-dependent kinases, and cyclins. Resveratrol also
upregulated cyclin kinase inhibitor WAF1/p21 and tumor sup-
pressor p53, and decreased the upregulation of MAPK, suggest-
ing that the antiproliferative effects of resveratrol may be
mediated via modulation of the expression and function of cell
cycle regulatory proteins and inhibition of the MAPK pathway.
Resveratrol may be useful for preventing UVB-mediated cuta-
neous damage, including skin cancer[329]. A study performed by
Wu et al., aimed to investigate the effects of resveratrol, a natural
polyphenol, on the proliferation and expression of aquaporin 3
(AQP3) in normal human epidermal keratinocytes (NHEKs),
which are involved in hyperplastic skin disorders. The results
showed that resveratrol inhibited NHEK proliferation in a con-
centration-dependent manner, and this was associated with
downregulation of AQP3 expression and ERK phosphorylation,
as well as upregulation of aryl hydrocarbon receptor nuclear
translocator (ARNT) expression. The study suggests that the
inhibitory effects of resveratrol on AQP3 expression were medi-
ated by Sirtuin 1 (SIRT1)/ARNT/ERK signaling pathway. This

finding may provide insights into the development of new drugs
for hyperplastic skin disorders[330].

Resveratrol’s anticancer effects are likely due to its ability to
modulate multiple cellular pathways and processes involved in
cancer development and progression. While resveratrol has many
potential health benefits, including anticancer effects[318] against
skin cancer, there are also some drawbacks and potential risks
associated with its use. Resveratrol can interact with certain
medications, such as blood thinners[331], nonsteroidal anti-
inflammatory drugs (NSAIDs)[332], and some antidepressants[333].
It may also interfere with the effectiveness of chemotherapy
drugs[334]. Resveratrol can cause side effects, including gastro-
intestinal symptoms (such as nausea, vomiting, and diarrhea)[335],
headaches[335] and allergic reactions[336]. Resveratrol supplements
are not regulated by the U.S. Food and Drug Administration
(FDA), and there is no standardized dosage or quality control. This
can make it difficult to ensure the safety and effectiveness of
resveratrol supplements[337]. Overall, while resveratrol has many
potential health benefits, it is important to use caution when using
it as a supplement, particularly in high doses or in combination
with other medications.

Curcumin

Curcumin is a natural compound found in the root of the turmeric
plant (Curcuma longa), which is amember of the ginger family[338].
It is a bright yellow pigment and has been used for thousands of
years in traditional medicine systems, such as Ayurveda and tra-
ditional Chinese medicine, to treat a wide range of conditions[339].
Curcumin is a polyphenol and is considered to be the most active
constituent in turmeric[340]. It has antioxidant[341], anti-inflamma-
tory[342], and anticancer properties[343] and has been studied
extensively for its potential health benefits. It is also a common
ingredient in many foods and supplements, including curry powder
and turmeric supplements[338]. In terms of its molecular mechanism
against skin cancer, curcumin has been found to inhibit various
signaling pathways involved in cancer development and progres-
sion. One of the key pathways that curcumin targets is the nuclear
factor-kappa B (NF-κB) signaling pathway[101]. NF-κB is a tran-
scription factor that regulates genes involved in inflammation, cell
proliferation, and apoptosis, and its activation is commonly found
in various types of cancer, including skin cancer. Curcumin has
been shown to inhibit NF-κB activation by suppressing the activity
of IKK, which is the kinase that phosphorylates IκBα and leads to
its degradation and subsequent release of NF-κB from the cyto-
plasm to the nucleus. Curcumin has also been shown to inhibit the
expression of various NF-κB-regulated genes involved in cell sur-
vival, proliferation, and inflammation[344]. Additionally, curcumin
has been found to induce apoptosis (programmed cell death) in
skin cancer cells by activating the caspase pathway and inhibiting
the anti-apoptotic protein Bcl-2[345]. Curcumin has also been
shown to inhibit angiogenesis (the formation of new blood vessels),
which is critical for tumor growth and metastasis[105].

Multiple investigations have been conducted to explore the
molecular mechanisms responsible for the anticancer properties
of curcumin against skin cancer. In one of the studies, Zhao et al.
investigated the effects of curcumin on melanoma cells and found
that it effectively inhibited cell proliferation and invasion poten-
tial and induced autophagy. Curcumin also arrested the cells at
the G2/M phase of the cell cycle and suppressed the activation of
AKT, mTOR, and P70S6K proteins, which are part of the AKT/

Singh et al. Annals of Medicine & Surgery (2024)

5891



mTOR signaling pathway. These findings suggest that curcumin
could be a potential therapeutic candidate for managing mela-
noma, which is a highly malignant and resistant cancer[346].
Another study by Wu et al. aimed to investigate the effects of
curcumin on the expression of signal transducer and activator of
transcription 3 (STAT3) in skin squamous cell carcinoma tissues
and the possible mechanisms of curcumin in preventing and
treating skin squamous cell carcinoma. Results showed that
curcumin treatment inhibited the growth of A431 cells in a time-
dependent and dose-dependent manner, with doses above 15
μmol/l for more than 24 h showing significant cytotoxic effects.
Curcumin treatment also decreased the invasion and adhesive
abilities of A431 cells and inhibited the transcription level of
STAT3 mRNA in a dose-dependent manner. The study suggests
that curcumin may reduce the invasive ability of A431 cells by
inhibiting the activation of the STAT3 signaling pathway and
expression of STAT3 as a target gene in the pathway, which may
provide insights into the development of new therapies for skin
squamous cell carcinoma[347]. In a study by Kunnumakkara
et al., the authors investigated the role of curcumin in the reg-
ulation of signaling pathways involved in skin cancer develop-
ment and progression. The authors demonstrated that curcumin
inhibited the expression and activity of various pro-inflammatory
cytokines, growth factors, and enzymes involved in skin carci-
nogenesis, including COX-2, MMP-9, and EGFR. They also
showed that curcumin inhibited the activation of the PI3K/Akt/
mTOR signaling pathway and the upregulation of its down-
stream target genes involved in cell survival and proliferation.
Furthermore, the authors showed that curcumin enhanced the
expression and activity of various tumor suppressor genes,
including p53 and p21, which are involved in the regulation of
cell cycle progression and apoptosis[348].

While curcumin has shown promising results in preclinical
studies as a potential therapeutic agent against skin cancer, its
clinical application has some limitations and challenges. One of
the major challenges is its low bioavailability, which refers to the
fraction of the administered dose that reaches the systemic cir-
culation in an unchanged form and is available to exert its
pharmacological effects. Curcumin is rapidly metabolized in the
liver and intestines and has poor solubility in water, which leads
to limited absorption and rapid elimination from the body[349].
Furthermore, curcumin’s potential interactions with other drugs
and its effects on drug metabolism enzymes have also raised
concerns about its safety and efficacy. For instance, curcumin has
been reported to inhibit the activity of cytochrome P450 (CYP)
enzymes, which play a crucial role in the metabolism of
many drugs. This inhibition may result in altered drug efficacy
or toxicity when administered in combination with other
medications[350].

Overall, the molecular mechanisms of curcumin against skin
cancer are complex and involve multiple pathways and targets.
Its ability to modulate inflammation, apoptosis, and angiogenesis
makes it a promising natural compound for the prevention and
treatment of skin cancer. However, more research is needed to
fully understand its bioavailability studies, safer dose, and to
optimize its use in clinical settings.

Epigallocatechin gallate

Epigallocatechin gallate is a type of flavonoid, a class of plant-
derived compounds that are known for their antioxidant[351] and

anti-inflammatory properties[352]. Epigallocatechin gallate is
found primarily in green tea, which is derived from the leaves of
the Camellia sinensis plant[353]. However, it can also be found in
smaller amounts in black tea[354], white tea[355], and oolong
tea[356]. Epigallocatechin gallate has been studied for its potential
health benefits, including its anticancer properties[357]. In addi-
tion to its anticancer properties, Epigallocatechin gallate has also
been studied for its potential role in reducing the risk of cardio-
vascular disease[358], improving cognitive function[359], and
promoting weight loss[358]. It has also been found to have anti-
inflammatory effects, which may make it useful in the prevention
and treatment of chronic inflammatory diseases[360] and inflam-
matory bowel disease[361]. Epigallocatechin gallate has been
shown to have potential chemopreventive and therapeutic effects
against skin cancer through several molecular mechanisms of
action. These mechanisms include:

Antioxidant activity

Epigallocatechin gallate has strong antioxidant activity, which
can protect skin cells from oxidative stress-induced DNA
damage, a key contributor to skin cancer development[106,107].

Anti-inflammatory activity

Epigallocatechin gallate has been found to inhibit the production
of pro-inflammatory cytokines and chemokines, which can pro-
mote tumor growth and progression. In particular,
Epigallocatechin gallate has been shown to inhibit the NF-κB
signaling pathway, which is involved in inflammation and cell
survival[362].

Inhibition of cell proliferation

Epigallocatechin gallate has been found to inhibit the prolifera-
tion of skin cancer cells by blocking the cell cycle and inducing
apoptosis (programmed cell death). Epigallocatechin gallate has
also been found to inhibit the expression of genes involved in cell
cycle regulation and DNA repair[110,111].

Inhibition of angiogenesis

Epigallocatechin gallate has been shown to inhibit angiogenesis,
the process by which new blood vessels are formed, which is
critical for tumor growth and metastasis[149,150].

Inhibition of MMPs

Epigallocatechin gallate has been found to inhibit the activity of
MMPs, which are enzymes that degrade the extracellular matrix
and promote tumor invasion and metastasis[363].

Numerous studies have been carried out to investigate the
molecular mechanisms underlying the anticancer effects of
Epigallocatechin gallate in the context of skin cancer. In one of
the studies, El-Kayal et al. investigated the potential use of ultra-
deformable colloidal vesicular systems, including penetration
enhancer-containing vesicles, ethosomes, and transethosomes,
for the topical delivery of (–)-epigallocatechin-3-gallate as a
nutraceutical for skin cancer treatment. The prepared vesicles
showed good physical stability and preservation of the anti-
oxidant properties of (–)-epigallocatechin-3-gallate. (–)-epigallo-
catechin-3-gallate-loaded PEVs and TEs demonstrated an
inhibitory effect on epidermoid carcinoma cells and reduced
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tumor sizes in mice, with decreased skin oxidative stress bio-
markers and lipid peroxidation. These findings suggest that
(-)-epigallocatechin-3-gallate PEVs could be an effective topical
delivery system for skin cancer treatment[364]. Zhang et al.
investigated the interaction between Epigallocatechin-3-gallate
and TRAF6 and its effects on the E3 ubiquitin ligase activity of
TRAF6, as well as its role in the NF-κB pathway and melanoma
cell growth, migration, and invasion. The results demonstrated
that Epigallocatechin-3-gallate binds to TRAF6 and inhibits its
E3 ubiquitin ligase activity, leading to the inactivation of the NF-
κB pathway and suppression of melanoma cell growth, migra-
tion, and invasion. These findings suggest that Epigallocatechin-
3-gallate may be a promising agent for the prevention and
treatment of melanoma by targeting TRAF6[365]. Moreover, Ellis
et al. describe a study that investigated themechanism of action of
Epigallocatechin-3-gallate, a polyphenolic component of green
tea, in inhibiting melanoma cell growth. The study found that
Epigallocatechin-3-gallate inhibited melanoma cell growth at
physiological doses and that this inhibition was associated with
reduced activity of the NF-κB pathway and decreased secretion of
the inflammatory cytokine IL-1β. The study further demonstrated
that Epigallocatechin-3-gallate downregulated the inflamma-
some componentNOD-like receptor (NLR) family pyrin domain-
containing 1 (NLRP1). NLRP1 and reduced caspase-1 activation,
and silencing NLRP1 expression abolished Epigallocatechin-3-
gallate induced inhibition of tumor cell proliferation both in vitro
and in vivo. These findings suggest that inflammasomes and
Interleukin-1 beta (IL-1β) could be potential targets for future
melanoma therapeutics[366].

While Epigallocatechin gallate has shown promise as a
potential treatment for skin cancer, there are some drawbacks
and limitations to its use. The optimal dose of Epigallocatechin
gallate for skin cancer treatment is unclear, and the effective dose
may vary depending on the type and stage of the cancer. High
doses of Epigallocatechin gallate may also cause adverse effects,
such as liver toxicity[367]. The content of Epigallocatechin gallate
in green tea and other natural sources can vary widely, depending
on factors such as the plant species, growing conditions, and
processing methods. This makes it difficult to standardize the
dose and quality of Epigallocatechin gallate in natural
sources[368]. Epigallocatechin gallate has low bioavailability,
meaning that it is not well absorbed by the body and has a short
half-life. This can limit its effectiveness in vivo and make it dif-
ficult to achieve therapeutic concentrations in target tissues[369].

Overall, Epigallocatechin gallate’s molecular mechanisms of
action against skin cancer involve multiple pathways, including
antioxidant[351], anti-inflammatory[352], antiproliferative[370],
antiangiogenic[371], and antimetastatic effects[371]. These
mechanisms suggest that Epigallocatechin gallate may be a pro-
mising natural compound for the prevention and treatment of
skin cancer, althoughmore research is needed to fully understand
its safer dose and potential clinical applications.

β-Carotene

β-Carotene is a red-orange pigment and a type of carotenoid,
which is a group of plant pigments responsible for the bright
colors of fruits and vegetables[372]. It is a precursor of vitamin A,
meaning that the body can convert it into vitamin A when
needed[373]. β-Carotene is found in high amounts in fruits and
vegetables such as carrots, sweet potatoes, pumpkin, spinach, and

apricots[374]. β-Carotene has antioxidant properties and is
believed to have various health benefits, such as reducing the risk
of certain types of cancer[375] and improving immune
function[376].

β-Carotene is obtained from a variety of plants, like carrots
(Daucus carota), sweet potatoes (Ipomoea batatas), pumpkins
(Cucurbita spp.), etc.[377]. The molecular mechanism of action of
β-carotene against skin cancer involves its ability to neutralize
reactive oxygen species (ROS) and reduce oxidative stress, which
is a key factor in the development of cancer. ROS are highly
reactive molecules that are produced in cells as a result of various
physiological and environmental stressors, including exposure to
ultraviolet radiation. When ROS levels exceed the capacity of the
cell’s antioxidant defense system, they can cause oxidative
damage to DNA, lipids, and proteins, which can ultimately lead
to cancer. β-Carotene can scavenge ROS and neutralize them,
thereby reducing the amount of oxidative stress in the cell[114,115].
Additionally, β-carotene can stimulate the body’s natural anti-
oxidant defense system by upregulating the expression of anti-
oxidant enzymes such as superoxide dismutase and catalase. This
further helps to reduce oxidative stress and prevent DNA
damage[378]. Moreover, β-carotene also exhibits anti-inflamma-
tory properties that can help reduce chronic inflammation, which
is also a risk factor for the development of skin cancer. Chronic
inflammation is associated with the production of ROS andDNA
damage, which can ultimately lead to the development of
cancer[379].

β-Carotene’s ability to scavenge ROS, stimulate antioxidant
enzyme expression, and reduce chronic inflammation makes it a
potent antioxidant and a promising candidate for the prevention
and treatment of skin cancer[379].

Several researchers have conducted studies on the effect of β-
carotene against skin cancer. One such study was conducted by
Greenberg et al. aimed to investigate whether β-carotene could
prevent the occurrence of new nonmelanoma skin cancer in
patients who had a recent history of the condition. The study
randomly assigned 1805 patients to receive either 50 mg of β-
carotene or placebo daily and conducted annual skin examina-
tions. After 5 years, there was no significant difference in the rate
of occurrence of new nonmelanoma skin cancer between the
groups. The active treatment also showed no efficacy in patients
with the lowest initial plasma β-carotene level or in those who
currently smoked. The study concludes that β-carotene does not
reduce the occurrence of new skin cancers in patients with a
previous nonmelanoma skin cancer over a 5-year period of
treatment and observation[380].

In a similar study, Kune et al. investigated the relationship
between dietary and serum levels of β-carotene, vitamin A, and
the risk of nonmelanocytic skin cancer in males. The study found
that a high intake of vegetables, including cruciferous vegetables,
β-carotene, and vitamin C-containing foods and fish, was inver-
sely related to the risk of skin cancer. The study also found that
cases had lower serum levels of β-carotene and vitamin A than
controls, and the incidence of skin cancer was inversely related to
serum β-carotene levels. Smoking and alcohol consumption did
not show a significant association with the risk of skin cancer.
The study concludes that further investigation is required to
determine the etiologic relevance of low serum levels of β-car-
otene and vitamin A and the protective effects of a high intake of
vegetables and fish on nonmelanocytic skin cancer[381].
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While β-carotene has potential benefits in preventing skin
cancer, there are also some drawbacks associated with its use.

Pro-oxidant effects

High doses of β-carotene may have pro-oxidant effects, meaning
that they can increase oxidative stress and damage cells. This is
particularly true in smokers, as studies have shown that β-car-
otene supplements can increase the risk of lung cancer in
smokers[382].

Lack of efficacy in some studies

While some studies have suggested that β-carotene can reduce the
risk of skin cancer, other studies have shown no significant effect.
More research is needed to determine the optimal dose, duration,
and form of β-carotene supplementation for skin cancer
prevention[383].

Interactions with other nutrients

β-carotene can interact with other nutrients, such as vitamin E
and selenium, which can affect its efficacy[384]. It is important to
ensure adequate intake of these nutrients when supplementing
with β-carotene.

Not a substitute for sun protection

β-carotene supplements should not be seen as a substitute for sun
protection. While β-carotene may help reduce the risk of skin
cancer, it cannot replace the importance of wearing protective
clothing and using sunscreen when exposed to ultraviolet
radiation[385].

It can be concluded that while β-carotene may have potential
benefits in preventing skin cancer, more research is needed to
understand its interaction with other nutrients, which can affect
its efficacy.

Caffeic acid

Caffeic acid is a naturally occurring polyphenolic compound and
one of the most common hydroxycinnamic acid derivatives[386].
Caffeic acid is found in a wide variety of plants, including coffee
(Coffea arabica, Coffea robusta), apples (Malus domestica),
pears (Pyrus communis), grapes (Vitis vinifera), blueberries
(Vaccinium spp.), kiwi fruits (Actinidia deliciosa), thyme
(Thymus vulgaris), basil (Ocimum basilicum), rosemary
(Rosmarinus officinalis), sage (Salvia officinalis), etc.[387]. Caffeic
acid has been studied for its antioxidant[388], anti-inflamma-
tory[389], and anticancer properties[390]. Caffeic acid has been
shown to have potential chemopreventive effects against skin
cancer[390].

The molecular mechanism of action of caffeic acid against skin
cancer involves its ability to modulate multiple cellular pathways
involved in cell growth, differentiation, and apoptosis. One of the
key mechanisms by which caffeic acid exerts its anticancer effects
is through the regulation of signaling pathways that control cell
proliferation and survival[126]. Caffeic acid has been shown to
inhibit the activity of various enzymes and transcription factors,
such as Akt, ERK, NF-κB[121,122], and AP-1, which are involved
in cell survival and proliferation. By inhibiting these pathways,
caffeic acid can induce cell cycle arrest and promote apoptosis,
leading to the death of cancer cells[391–393]. Caffeic acid has also

been shown to possess potent antioxidant and anti-inflammatory
properties, which can help to protect cells against oxidative stress
and reduce chronic inflammation. Chronic inflammation is a
major risk factor for the development of skin cancer, as it can
cause DNA damage and impair the immune system’s ability to
detect and eliminate cancer cells[394–396]. Additionally, caffeic
acid has been shown to enhance the activity of the body’s natural
defense mechanisms against cancer, such as the activation of the
Nrf2 pathway. This pathway is involved in the regulation of
antioxidant enzymes and can help to protect cells against oxi-
dative damage[397–399].

Studies have investigated the molecular mechanisms of action
of caffeic acid against skin cancer. One such study was conducted
by Yang et al., which investigated the molecular mechanism
underlying the anticancer activity of caffeic acid, a phenolic
phytochemical found in coffee. The study found that caffeic acid
inhibited the colony formation of human skin cancer cells and the
neoplastic transformation of HaCaT cells. Topical application of
caffeic acid to mouse skin also significantly suppressed tumor
incidence and volume in a solar UV-induced skin carcinogenesis
model. The study further demonstrated that caffeic acid directly
interacted with and inhibited the activity of ERK1 and 2, two
proteins involved in mitogen-activated protein kinase signaling.
The co-crystal structure of ERK2 complexedwith caffeic acidwas
also resolved, revealing the amino acid residues at which caffeic
acid interacts with ERK2. Finally, the study showed that the
knockdown of ERK2 in skin cancer cells reduced their sensitivity
to caffeic acid in a xenograft mouse model. These findings suggest
that caffeic acid exerts its chemopreventive activity against skin
carcinogenesis by targeting ERK1 and 2[400]. Another study by
Kudugunti et al. investigated the anti-melanoma effects of phe-
nethyl ester of caffeic acid in vitro and in vivo. The phenethyl ester
of caffeic acid was found to inhibit the growth of five different
melanoma cell lines, cause intracellular GSH depletion, increase
ROS formation, and induce apoptosis in B16-F0 cells. In an
in vivo study using a B16-F0 melanoma tumor model in mice, it
was found to inhibit tumor growth at doses of 10–30 mg/kg/day
with minimal toxicity. However, higher doses of phenethyl ester
of caffeic acid were associated with increased plasma ALT levels
and lipid peroxidation levels in liver and kidney homogenates.
The study suggests that phenethyl ester of caffeic acid has
potential as an anti-melanoma agent at lower doses[401].
Furthermore, a study by Balupillai et al. investigated the effect of
caffeic acid on acute and chronic UVB-irradiation-induced
inflammation and photocarcinogenesis in Swiss albino mice. The
results showed that caffeic acid administration before UVB
exposure decreased inflammation and oxidative stress, enhanced
antioxidant status, and activated peroxisome proliferator-acti-
vated receptors (PPARγ) in the mice’s skin. PPARγ is considered a
potential target for photo chemoprevention because it inhibits
UVB-mediated inflammatory responses. Moreover, both topical
and intraperitoneal caffeic acid treatment before each UVB
exposure reduced tumor incidence and multiplicity in the mice’s
skin. Therefore, caffeic acid offers protection against UVB-
induced photocarcinogenesis through the activation of the anti-
inflammatory transcription factor PPARγ in mice[402]. Another
study by Balupillai et al. investigated the mechanisms by which
caffeic acid prevents UVB-induced photocarcinogenesis in human
dermal fibroblasts (HDFa) and mouse skin. The results showed
that caffeic acid inhibited the formation of cyclobutane pyr-
imidine dimers (CPDs), oxidative DNAdamage, ROS generation,
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and apoptotic cell death in HDFa. Furthermore, CA prevented
UVB-induced expression of PI3K and AKT kinases through
activation of PTEN and promoted XPC-dependent nucleotide
excision repair (NER) proteins such as XPC, XPE, transcription
factor IIH (TFIIH-p44), and excision repair cross-com-
plementation group 1 (ERCC1) in human dermal fibroblasts
(HDFa) cells andmouse skin tissue. Caffeic acid directly activated
PTEN through hydrogen bonds and hydrophobic interactions.
These findings suggest that caffeic acid prevents UVB-induced
photodamage through the activation of PTEN expression in
human dermal fibroblasts and mouse skin[403]. Another study by
Agilan et al. investigated the role of JAK-STAT3 signaling in
UVB-induced skin carcinogenesis and the protective effect of
caffeic acid against it in mouse skin. Chronic UVB irradiation
increased the expression of IL-10 and JAK1, which activated
STAT3 and led to the transcription of proliferative and anti-
apoptotic markers. Caffeic acid inhibited JAK-STAT3 signaling,
induced apoptotic cell death, and upregulated the expression of
pro-apoptotic markers. Additionally, chronic UVB exposure
decreased the expression of thrombospondin-1 (TSP-1), an anti-
angiogenic protein, and pretreatment with caffeic acid prevented
this loss in UVB-irradiated mouse skin. Thus, caffeic acid offers
protection against UVB-induced photocarcinogenesis by mod-
ulating the JAK-STAT3 signaling pathway in the mouse skin[404].

While caffeic acid has shown promising anticancer properties
against skin cancer, there are also some potential drawbacks to its
use. Some of the possible drawbacks of caffeic acid include:

Dose-dependent toxicity

At high doses, caffeic acid can be toxic to cells and tissues. This
can lead to oxidative stress and inflammation, which can actually
promote the growth and spread of cancer cells[405]. Therefore, it
is important to use caffeic acid at appropriate doses and under
medical supervision.

Bioavailability

Caffeic acid has relatively low bioavailability, which means that a
significant amount of it may be metabolized or excreted before it
can exert its anticancer effects. To overcome this limitation,
researchers are exploring ways to enhance the bioavailability of
caffeic acid, such as by using nanoparticles or liposomes[406].

Lack of clinical trials

While many preclinical studies have shown that caffeic acid has
potential anticancer properties, there is a lack of clinical trials to
determine its efficacy and safety in humans. More research is
needed to establish the optimal dose, route of administration, and
duration of treatment[405].

Interactions with other drugs

Caffeic acid may interact with other drugs or supplements, which
could lead to adverse effects or reduce its efficacy. Therefore, it is
important to consult a healthcare provider before using caffeic
acid as a complementary or alternative therapy for skin
cancer[408].

Overall, the molecular mechanism of action of caffeic acid
against skin cancer involves its ability to modulate multiple cel-
lular pathways involved in cell growth, differentiation, and
apoptosis. Its potent antioxidant[388] and anti-inflammatory

properties[389], along with its ability to enhance the body’s nat-
ural defense mechanisms, may be used for the prevention and
treatment of skin cancer[390]. However, further research is needed
to fully understand its benefits and risks in the prevention and
treatment of skin cancer.

Ferulic acid

Ferulic acid is a type of phenolic acid, which is a group of
compounds that are widely distributed in plants[409]. It is a
natural antioxidant and has been found in many different
plant sources, including fruits, vegetables, grains, and
herbs[410–412]. Ferulic acid is found in many different plant
sources, including rice bran (Oryza sativa), wheat (Triticum
aestivum), barley (Hordeum vulgare), oats (Avena sativa),
corn (Zea mays), coffee (Coffea arabica), pineapple (Ananas
comosus), apples (Malus pumila), oranges (Citrus sinensis),
and artichokes (Cynara scolymus)[413–415].

Ferulic acid has been shown to have various molecular
mechanisms of action against skin cancer. Some of the key
mechanisms are:

Antioxidant properties

Ferulic acid has strong antioxidant properties, which means that
it can scavenge free radicals and protect skin cells from oxidative
stress. This can help to prevent DNA damage and reduce the risk
of skin cancer development[416].

Anti-inflammatory properties

Chronic inflammation is known to contribute to the development
of skin cancer. Ferulic acid has been shown to have anti-inflam-
matory properties, which can help reduce inflammation and
prevent the progression of precancerous cells to cancerous
cells[126].

Inhibition of UV-induced damage

Ferulic acid has been shown to inhibit the DNA damage caused
by UV radiation, which is a major risk factor for skin cancer. It
can also help to repair damaged DNA and prevent the formation
of cancerous cells[417].

Induction of apoptosis

Ferulic acid has been shown to induce apoptosis (programmed
cell death) in skin cancer cells. This can help to prevent the growth
and spread of cancer cells[418].

Inhibition of angiogenesis

Ferulic acid has also been shown to inhibit angiogenesis, which is
the process by which new blood vessels form to supply nutrients
to tumors. By inhibiting angiogenesis, ferulic acid can help to
prevent the growth and spread of skin cancer cells[419].

A study performed by Alias et al. aimed to compare the che-
mopreventive potential of orally administered and topically
applied ferulic acid in 7,12-dimethylbenz[a]anthracene (DMBA)-
induced skin carcinogenesis. The status of phase I and phase II
detoxication agents, lipid peroxidation byproducts, and anti-
oxidants were assessed to determine the mechanistic pathway of
their chemopreventive efficacy. Skin squamous cell carcinoma
was induced in mice by applying DMBA twice weekly for 8
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weeks. Oral administration of ferulic acid completely prevented
the formation of skin tumors, whereas topically applied ferulic
acid did not show significant chemopreventive activity. Ferulic
acid had a modulating effect on the status of lipid peroxidation,
antioxidants, and detoxication agents during DMBA-induced
skin carcinogenesis. The study concludes that orally administered
ferulic acid has a potent suppressing effect on cell proliferation
during DMBA-induced skin carcinogenesis[420]. One study con-
ducted by Choi et al. examined the anticancer activity of ferulic
acid on National Institutes of Health 3T3 (NIH3T3) fibroblasts
and human skin melanoma cells (SK-MEL-3) by measuring the
cytotoxicity of ferulic acid on these cells. Ferulic acid decreased
cell viability in a dose-dependent manner after human skin mel-
anoma cells were treated with various concentrations of ferulic
acid for 48 h. At a concentration of 120 μM, ferulic acid sig-
nificantly decreased cell viability in human skin melanoma cells,
while it did not show a significant decrease in cell viability at
concentrations of 30–120 μM in NIH3T3 fibroblasts. These
results suggest that ferulic acid has anticancer activity in cancer
cells, such as human skin melanoma cells, by significantly
decreasing cell viability[421]. Another study by Murakami et al.
reports the synthesis of a novel ferulic acid analog called FA15,
which was found to suppress phorbol ester-induced Epstein–Barr
virus activation and superoxide anion generation in vitro. The
study also demonstrated that FA15 suppressed inducible nitric
oxide synthase and cyclooxygenase-2 protein expressions,
inhibited the release of tumor necrosis factor-alpha, and sup-
pressed I-kappaB degradation in RAW264.7, a murine macro-
phage cell line. In mouse skin, topical application of FA15
attenuated hydrogen peroxide production and edema formation,
as well as papilloma development, while FA did not. The study
concludes that FA15, derived from natural sources, is a novel
chemopreventive agent, both structurally and functionally[422].

While ferulic acid has many potential benefits for the preven-
tion and treatment of skin cancer, there are also some drawbacks
and potential side effects. Ferulic acid can cause skin irritation,
especially in individuals with sensitive skin. This can manifest as
redness, itching, or burning sensations. Ferulic acid can increase
the skin’s sensitivity to UV radiation, which can increase the risk
of sunburn and skin damage. It is important to use sunscreen and
limit sun exposure when using ferulic acid-containing skincare
products. Ferulic acid can interact with certain medications,
including blood thinners and chemotherapy drugs.

Overall, the molecular mechanisms of action of ferulic acid
against skin cancer involve its antioxidant[416] and anti-inflam-
matory properties[126], as well as its ability to inhibit UV-induced
damage[417], induce apoptosis[418], and inhibit angiogenesis[419].
These properties make ferulic acid a promising natural agent for
the prevention and treatment of skin cancer. While ferulic acid is
generally considered safe when used in appropriate amounts, it is
important to be aware of the potential side effects and to use
caution when using it to prevent or treat skin cancer. It is also
important to use high-quality, pure products to minimize the risk
of skin irritation and other adverse effects.

Importance of a diet rich in fruits and vegetables for
preventing skin cancer

A diet rich in fruits and vegetables has been associated with many
health benefits, including the prevention of skin cancer[423]. The

high nutrient content of fruits and vegetables provides the body
with the necessary vitamins, minerals, and antioxidants to
maintain healthy skin and prevent damage from the sun’s
harmful UV rays[424]. One of the most important benefits of a diet
rich in fruits and vegetables is its high antioxidant content.
Antioxidants are molecules that neutralize free radicals, which
are unstable molecules that damage cells and increase the risk of
cancer[425]. Fruits and vegetables contain antioxidants such as
vitamin C, vitamin E, and β-carotene, which can help protect the
skin from UV radiation and reduce the risk of skin cancer[426].

Vitamin C is necessary for the production of collagen, a protein
that helps to maintain the elasticity of the skin[427]. β-carotene,
which is found in orange and yellow fruits and vegetables, is
converted into vitamin A in the body and is important for skin cell
growth and repair[428]. Other vitamins and minerals found in
fruits and vegetables, such as potassium and folate, are also
essential for maintaining healthy skin[429]. A diet rich in fruits and
vegetables is also high in fiber, which can reduce inflammation in
the body[430]. Chronic inflammation has been linked to an
increased risk of many types of cancer, including skin cancer. By
reducing inflammation in the body, a diet rich in fruits and
vegetables can help prevent the development of skin cancer[431]. A
diet rich in fruits and vegetables can help with weight
management[432]. Being overweight or obese has been linked to
an increased risk of certain types of skin cancer, including mel-
anoma. By maintaining a healthy weight, individuals can reduce
their risk of developing skin cancer[433].

To maximize the benefits, individuals should aim to consume a
variety of fruits and vegetables in their diet and limit their
exposure to UV radiation by wearing protective clothing, seeking
shade during peak hours, and using sunscreen[434].

Fruits and vegetables are rich sources of dietary phytochem-
icals that play a crucial role in the regulation of cell signaling
pathways, which are important in the prevention of skin
cancer[435]. Cell signaling pathways are complex networks of
molecular interactions that govern cellular processes such as
growth, differentiation, and survival. Abnormalities in these
pathways have been linked to the development of skin
cancer[436,437].

Many dietary phytochemicals found in fruits and vegetables
that belong to the class of secondary metabolites, like flavonoids,
carotenoids, polyphenols, etc., have been shown to regulate cell
signaling pathways and prevent the development of skin
cancer[438]. For example, polyphenols found in blueberries have
been shown to inhibit the growth of skin cancer cells by reg-
ulating the Akt/mTOR signaling pathway[439]. Flavonoids found
in citrus fruits, such as hesperidin and naringenin, have been
shown to inhibit the growth of melanoma cells by regulating the
MAPK signaling pathway[440,441].

Fruits and vegetables also have anti-inflammatory properties
that can prevent the development of skin cancer by regulating the
immune response[442]. Inflammation is a key component of the
skin’s response to UV radiation, and chronic inflammation has
been linked to an increased risk of skin cancer[443]. Bioactive
compounds found in fruits and vegetables, such as quercetin
found in apples and onions, have been shown to inhibit the
production of inflammatory cytokines and prevent inflammation
in the skin[444].

It is important to complement dietary changes with other sun
safety measures, such as wearing protective clothing, using
sunscreen, and limiting sun exposure during peak hours[445]. This
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section includes the dietary sources of some important dietary
phytochemicals effective against skin cancer (Table 2A, B).

Blueberries (Vaccinium corymbosum)

Blueberries belong to the class of secondarymetabolites known as
flavonoids[576]. Specifically, blueberries contain high levels of a
type of flavonoid called anthocyanins, which give them their
characteristic deep blue color[577]. Anthocyanins are known for
their antioxidant properties[578], which may have a number of
health benefits, including reducing inflammation[479], improving
cardiovascular health[480], and protecting against certain types of
cancer, including skin cancer[423]. Another phytochemical pre-
sent in blueberries that may help to prevent skin cancer is
pterostilbene[581], which has been shown to have antioxidant and
anti-inflammatory properties and may help to inhibit the growth
of skin cancer cells[582]. Additionally, blueberries are a good
source of vitamin C[583], which has been found to have protective
effects against skin damage caused by UV radiation and may also
help to prevent skin cancer[584]. Various research groups have
examined its impact on skin cancer. A recent study performed by
Alsadi et al. examined the effects of a polyphenol-enriched
blueberry preparation (PEBP) and non-fermented blueberry juice
(NBJ) on the expression of miRNAs and target proteins asso-
ciated with skin cancer. The study found that PEBP was able to

inhibit the proliferation of skin cancer stem cells, reduce the
formation of melanophores, and decrease the expression of the
CD133 + stem cell marker. The study also found that the
expression of tumor suppressormiR-200s was upregulated, and a
protein target of the tumor suppressor miR200b, ZEB1, was
significantly modulated. These findings suggest that PEBP has
potent anticancer and antimetastatic potentials and may repre-
sent a novel chemopreventative agent against skin cancer. Qi
et al. investigated the effects of blueberries on skin cancer pre-
vention in mice. The researchers found that blueberries inhibited
skin tumor growth via the regulation of multiple signaling
pathways, including the PI3K/AKT, MAPK, and NF-κB path-
ways. In one of the studies, Afaq et al. investigated the effects of
green tea and black tea extracts on skin cancer in mice. The
researchers found that both green tea and black tea extracts
inhibited skin cancer via the regulation of multiple signaling
pathways, including the MAPK and PI3K/AKT pathways.
Overall, these studies demonstrate that blueberries protect
against skin cancer.

Raspberries (Rubus idaeus)

Raspberries contain a class of secondary metabolites known as
flavonoids, specifically anthocyanins. These are responsible for
the fruit’s characteristic red color and are also known for their

Table 2
Dietary sources of some important dietary phytochemicals.

S. no. Dietary phytochemical
Group of plant secondary

metabolite Dietary sources Reference

A
1. Rosmarinic acid Phenolic acids Rosemary, sage, thyme, mint, basil, oregano, broccoli, spinach, lemon balm tea, green

tea, and some types of honey, particularly those made from plants such as rosemary
or thyme.

[446–455]

2. Allicin Organosulfur compounds Raw garlic, onions, leeks, shallots, and chives. [456–461]

3. Sulforaphane Organosulfur compounds Broccoli, cauliflower, brussels sprouts, kale, cabbage, bok choy, arugula, radishes, and
turnips.

[462–470]

4. Ellagic acid Polyphenolic compounds Strawberries, raspberries, blackberries, pomegranates, cranberries, walnuts, pecans,
green tea, and black tea.

[471–478]

5. Betulinic acid Pentacyclic triterpenoid compounds Chaga mushrooms, white asparagus, and wild celery. [479–482]

6. Apigenin Flavonoids Parsley, chamomile, cilantro, thyme, oregano, peppermint, rosemary, celery, onions,
artichokes, broccoli, bell peppers, grapefruit, oranges, cherries, chamomile tea, and
peppermint tea.

[254,483–495]

7. Gingerol Gingerols Ginger. [496,497]

8. Quercetin Flavonoids Apples, berries (such as blueberries, cranberries, and elderberries), cherries, grapes,
oranges, pomegranates, onions, shallots, kale, broccoli, red leaf lettuce, tomatoes,
green peppers, spinach, quinoa, buckwheat, thyme, green tea, and red wine.

[444,498–516]

B
9. Kaempferol Flavonoids Kale, spinach, broccoli, brussels sprouts, cabbage, grapes, apples, thyme, green tea,

black tea, chickpeas and kidney beans.

[517–528]

10. Resveratrol Polyphenolic compounds (stilbenes) Grapes, red wine, blueberries, raspberries, mulberries, peanuts, pistachios, cocoa, dark
chocolate, and tomatoes.

[529–533]

11. Curcumin Polyphenolic compounds
(curcuminoids)

Turmeric. [534]

12. Epigallocatechin gallate Polyphenolic compounds (catechins) Black tea, green tea (particularly Japanese green tea varieties such as matcha), white
tea, strawberries, raspberries, blueberries, grapes, hazelnuts, and pecans.

[354,535–541]

13. β-Carotene Terpenoid compounds (carotenoids) Carrots, sweet potatoes, butternut squash, acorn squash, pumpkin, spinach, kale,
honeydew melon, mangoes, and apricots.

[542–550]

14. Caffeic acid Polyphenolic compounds
(hydroxycinnamic acids)

Coffee, apples, pears, blueberries, cherries, tomatoes, carrots, thyme, oregano,
rosemary, sage, almonds, green tea, sunflower seeds, and sesame seeds.

[486,551–562]

15. Ferulic acid Polyphenolic compounds
(hydroxycinnamic acids)

White bran, germ portions of wheat, rice, oats, oranges, apples, pineapples, cherries,
spinach, broccoli, carrots, sweet potatoes, cinnamon, flaxseeds, and sesame seeds.

[386,563–575]
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antioxidant properties[585]. Some studies have suggested that
anthocyanins may have protective effects against skin cancer by
reducing oxidative stress and inflammation in the skin[423].
Raspberries are a rich source of dietary phytochemicals, many
of which have been found to have potential anticancer
properties[586]. Specifically, several of the compounds found in
raspberries have been studied for their ability to prevent or treat
skin cancer[587]. One such compound is ellagic acid, a polyphenol
found in raspberries that has been shown to have anti-inflam-
matory and antioxidant effects[214]. Studies have found that
ellagic acid can inhibit the growth of skin cancer cells and prevent
the formation of skin tumors in animal models[210]. Another
phytochemical found in raspberries with potential anticancer
properties is quercetin, a flavonoid[498] with antioxidant[499] and
anti-inflammatory effects[122]. Quercetin has been shown to
induce cell death in skin cancer cells and inhibit the growth of
tumors in animal models[283].

Numerous research teams have looked at its effect on skin
cancer. A study performed by Duncan et al. investigates the
potential of a black raspberry extract (BRE) in reducing cuta-
neous UVB-induced inflammation and carcinogenesis. Female
hairless mice were exposed to UVB radiation and treated topi-
cally with either BRE or vehicle control. Results showed that mice
treated with BRE had a significant reduction in tumor number
and size, which correlated with a decrease in tumor-infiltrating
regulatory T-cells. In addition, topical BRE treatment sig-
nificantly reduced acute UVB-induced inflammation, as evi-
denced by decreased edema, p53 protein levels, oxidative DNA
damage, and neutrophil activation. These findings suggest that
BRE may have clinical efficacy in preventing human skin
cancers[588]. Oberyszyn describes the increased incidence of skin
cancer due to exposure to sunlight and changes in tanning
practices. Skin tumors are the most common form of cancer in
humans, and current treatments for nonmelanoma skin cancers
can have severe side effects and limited clinical efficacy. The study
proposes natural compounds derived from functional foods as an
alternative strategy for the prevention and treatment of skin
cancer. Specifically, the study discusses the potential of black
raspberry extracts as a chemopreventive/chemotherapeutic agent
against nonmelanoma skin cancers[589]. Mace et al. examine the
potential of black raspberry extracts (BRB) and their phyto-
chemical metabolites in modulating immune processes relevant to
carcinogenesis and immunotherapy. The study found that BRB
extracts and their metabolites inhibited the proliferation
and viability of CD4+ and CD8+ T lymphocytes, as well as the
expansion and suppressive capacity of myeloid-derived sup-
pressor cells (MDSC). Additionally, pretreatment of immune cells
with BRB extracts and metabolites attenuated IL-6-mediated
phosphorylation of STAT3 and IL-2-induced STAT5 phosphor-
ylation. The study concludes that BRB extracts and their meta-
bolites contain phytochemicals that affect immune processes
relevant to carcinogenesis and immunotherapy and could be a
potential source of lead compounds for drug development[590].
Overall, raspberries exhibit promising natural anticancer
properties.

Kiwifruit (Actinidia deliciosa)

Kiwifruit contains a variety of dietary phytochemicals, including
flavonoids, carotenoids, and phenolic acids, that have been stu-
died for their potential benefits in preventing or treating skin

cancer[591]. Flavonoids, such as quercetin and kaempferol,
are particularly abundant in kiwifruit[592] and have been
shown to have antioxidant, anti-inflammatory, and anticancer
properties[593,594]. Studies have suggested that quercetin and
kaempferol may be particularly effective against skin cancer due
to their ability to inhibit the growth and proliferation of cancer
cells, as well as their ability to protect against DNA damage
caused by UV radiation[283,303]. Additionally, the carotenoids
present in kiwifruit, such as β-carotene[595,596], lutein[596,597], and
zeaxanthin[597], have been studied for their potential to protect
against UV-induced skin damage and reduce the risk of skin
cancer[598,599]. Phenolic acids, such as chlorogenic acid, are also
present in kiwifruit and have been shown to have antioxidant and
anti-inflammatory effects[600]. Numerous research groups have
examined its impact on skin cancer. One of the studies performed
by Kou et al. investigated the effects of kiwifruit extract on CRL-
11147 melanoma cancer cells and the possible mechanisms
behind the results. The study found that kiwifruit extract
decreased the percentage of cancer cell colonies and increased
apoptosis, indicating antitumor effects. The antiproliferative
effect of kiwifruit extract was attributed to the downregulation of
Cyclin E and CDK4, while the pro-apoptotic effect was attributed
to the upregulation of TRAILR1. Overall, the study suggests that
kiwifruit extract may have potential for use in the treatment of
melanoma[601]. Another study carried out by Kou et al. investi-
gated the potential of kiwifruit extract as a radiosensitizer for Cell
Repository Line (CRL-11147) melanoma cancer cells and the
underlying mechanisms. Melanoma is a deadly form of skin
cancer that is often resistant to radiation therapy. The study used
various assays to evaluate the effects of kiwifruit extract on cell
proliferation and apoptosis in combination with radiation ther-
apy. The results showed that the combination of kiwifruit extract
and radiation therapy decreased the percentage of colonies,
Proliferating Cell Nuclear Antigen (PCNA) staining intensity, and
optical density value of cancer cells. The study also found that
kiwifruit extract increased relative caspase-3 activity, indicating
increased apoptosis of cancer cells. The antitumor effect of kiwi-
fruit extract was correlated with increased expression of the
antiproliferative molecule p27 and the pro-apoptotic molecule
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand
Receptor 1 (TRAILR1). The study suggests that kiwifruit extract
could be used as a potential radiosensitizer for melanoma treat-
ment by upregulating both p27 and TRAILR1 to inhibit pro-
liferation and increase apoptosis, respectively[602]. Overall, these
studies show that kiwifruit can help prevent skin cancer.

Watermelon (Citrullus lanatus)

Watermelon is a rich source of several dietary phytochemicals
that have been found to be effective against skin cancer[607]. One
such phytochemical is lycopene, a carotenoid that gives water-
melon its red color. Lycopene is a potent antioxidant that has
been shown to protect against UV-induced skin damage, which
can lead to skin cancer[604]. Studies have also found that lycopene
can induce cell death in cancer cells and inhibit their growth[605].
Another phytochemical found in watermelon is citrulline, an
amino acid that has been found to have anti-inflammatory
properties. Inflammation is a key factor in the development and
progression of many types of cancer, including skin cancer.
Citrulline has been shown to reduce inflammation and oxidative
stress in the skin, potentially reducing the risk of skin cancer[606].
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Watermelon also contains β-carotene, another carotenoid with
antioxidant properties. β-Carotene has been shown to protect
against UV-induced skin damage and may help reduce the risk of
skin cancer[607]. Its effect on skin cancer has been studied by a
plethora of research teams. Ascenso et al. focus on the photo-
protective properties of lycopene, one of the most potent anti-
oxidants, and its role in anticarcinogenic action at different levels.
However, the photoprotective properties of lycopene remain
contradictory as some studies show a positive effect while others
show a negative effect in both in vitro and in vivo models. The
study highlights the need for a better understanding of the
molecular mechanisms of UV damage on skin cells and the role of
carotenoids as effective modulators of apoptosis and cell cycle
dynamics. The use of lycopene and other effective phyto-
compounds as preventive and/or corrective agents may be a
potential approach for reducing UVB-induced damage and
developing novel therapeutic strategies for skin disorders[608].
Another study by Fazekas et al. investigated the protective effects
of topical lycopene, a carotenoid found in tomatoes and water-
melon, against acute ultraviolet B (UVB)-induced photodamage.
The results showed that the application of lycopene inhibited
UVB-induced ornithine decarboxylase and myeloperoxidase and
reduced skin thickness. Lycopene also prevented cleavage of
caspase-3, restored normal PCNA staining, and maintained
normal cell proliferation, suggesting that it may act as a pre-
ventative agent by reducing inflammation, maintaining normal
cell proliferation, and preventing DNA damage. Thus, topical
lycopene showed protective effects against acute UVB-induced
photodamage[609]. Overall, these studies indicate that water-
melon can aid in the prevention of skin cancer.

Mangoes (Mangifera indica)

Mangoes contain several dietary phytochemicals that have been
found to be effective against skin cancer[610]. One of the primary
phytochemicals found in mangoes is quercetin, which has been
shown to possess strong antioxidant properties and inhibit the
growth of cancer cells[82,284]. Another important phytochemical
found in mangoes is mangiferin, which has been found to possess
anti-inflammatory, antioxidant, and anticancer properties[611].
Studies have shown that mangiferin can inhibit the proliferation
of cancer cells and induce apoptosis, which is programmed cell
death[612]. Additionally, β-carotene and lutein, two other
important dietary phytochemicals found in mangoes, have been
shown to possess photoprotective properties and protect the skin
against UV-induced damage, which is a major risk factor for skin
cancer[613,614]. Norathyriol is a flavonoid compound that has
been identified in mangoes. It is a naturally occurring phyto-
chemical that belongs to the class of flavanones. Norathyriol has
been reported to have various biological activities, including
antioxidant, anti-inflammatory, and anticancer properties[615].
The combination of these dietary phytochemicals found in
mangoes makes it a potentially effective dietary intervention for
preventing and treating skin cancer. A multitude of research
groups have investigated its impact on skin cancer. Li et al.
describe a study where norathyriol, a compound derived from
plants and known to have anticancer activity, was identified
through virtual screening of the Chinese Medicine Library as a
potential chemopreventive agent for skin cancer. Norathyriol
was found to inhibit extracellular signal-regulated kinase (ERK)
1/2 activity and attenuate UVB-induced phosphorylation in

mitogen-activated protein kinases signaling cascades. It was
confirmed to bind specifically with ERK2 through co-crystal
structural analysis. Norathyriol was shown to inhibit in vitro cell
growth and significantly suppress solar UV-induced skin carci-
nogenesis in mouse skin tumorigenesis assays by inhibiting ERK-
dependent activity of transcriptional factors AP-1 and NF-κB
during UV-induced skin carcinogenesis. Overall, norathyriol was
identified as a safe and highly effective chemopreventive agent
against the development of UV-induced skin cancer[615]. In one of
the studies, Saleem et al. investigated the antitumor-promoting
effects of lupeol, a triterpene found in common fruit plants like
mangoes and medicinal herbs, in a mouse skin tumorigenesis
model. Topical application of lupeol inhibited conventional and
novel biomarkers of tumor promotion in a time-dependent and
dose-dependent manner. Lupeol treatment also inhibited the
activation of signaling pathways involved in tumor promotion,
resulting in reduced tumor incidence, lower tumor burden, and
delayed tumor appearance. The results suggest that lupeol is an
effective agent for cancer chemoprevention and should be eval-
uated in tumor models, including skin carcinogenesis[616].
Overall, the results of these studies suggest that eating mangoes
may help lower the risk of getting skin cancer.

Carrots (Daucus carota)

Carrots are a rich source of dietary phytochemicals that have
been shown to have potential health benefits, including the pre-
vention of skin cancer[617]. The most notable phytochemicals
present in carrots are carotenoids, which include β-carotene, α-
carotene, and lutein. These compounds have been shown to have
antioxidant properties that protect skin cells from oxidative stress
caused by ultraviolet radiation, the most important factor con-
tributing to skin cancer development[618]. Carotenoids can also
enhance immune function and stimulate repair mechanisms in the
skin[619,620]. In addition, falcarinol, a polyacetylene compound
found in carrots, has been found to have chemopreventive
properties against skin cancer by inducing apoptosis (cell death)
in cancer cells and inhibiting their proliferation[621]. Studies have
shown that consuming a diet rich in carrots and other carotenoid-
containing vegetables can reduce the risk of developing skin
cancer, particularly squamous cell carcinoma[628]. Therefore,
incorporating carrots into a balanced and healthy diet may be an
effective strategy for reducing the risk of skin cancer. Numerous
research groups have studied its effect on skin cancer. Shebaby
et al. performed a study that investigates the effects of wild carrot
oil fractions on skin cancer. Four fractions were tested for their
cytotoxic effects on human epidermal keratinocytes, with one
fraction showing a significant antitumor effect on DMBA/TPA-
induced skin carcinogenesis in mice. The study also identified a
major compound in the fraction, which caused an accumulation
of cells in the sub-G1 apoptotic phase and decreased the popu-
lation of cells in the S andG2/Mphases. Additionally, the fraction
caused an upregulation of the expression of pro-apoptotic pro-
teins and a downregulation of the expression of anti-apoptotic
proteins. The data suggest that the antitumor activity of the
fraction may be mediated through inhibition of the MAPK/ERK
and PI3K/AKT pathways. Overall, the study suggests that wild
carrot oil fractions, particularly the pentane/diethyl ether frac-
tion, may have the potential as a chemopreventive agent against
skin cancer[623]. Natarajmurthy and Dharmesh determined the
contribution of phenolics and β-carotene to the antioxidant,
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tyrosinase inhibitory, and antiproliferative properties of carrots
and evaluated their potential in preventing skin cancer in mice
induced by DMBA-UV. Phenolic fractions of carrots were
extracted and quantified using high-performance liquid chro-
matography (HPLC), and their capacities were determined. The
results showed that phenolics in CRFP and β-carotene, rather
than those in CRBP, exhibited a higher reduction in tumor for-
mation, tyrosinase, and galectin-3 levels and increased anti-
oxidant levels, indicating their potential to prevent skin cancer.
Thus, carrots enriched with phenolics and β-carotene may be an
efficient natural source in preventing skin cancer, as evidenced by
the in vitro and in vivo studies[624]. In another study, Zeinab et al.
investigated the chemopreventive effects of oil extract of Daucus
carota (DCOE) umbels on 7,12-dimethyl benz(a)anthracene
(DMBA)-induced skin cancer in mice. The oil extract was admi-
nistered to animals via gavage, intraperitoneal, and topical routes
for 20 weeks, and tumor appearance, incidence, yield, and
volume were compared with those of a non-treated control
group. The results showed that DCOE has remarkable antitumor
activity against DMBA-induced skin cancer compared with non-
treated animals, with the topical route being the most
effective[623]. Overall, these studies suggest that carrot con-
sumption may reduce the risk of developing skin cancer.

Future prospects of dietary phytochemicals to
prevent skin cancer

The use of dietary phytochemicals as chemopreventive agents in
topical skin cancer formulations has gained significant attention
in recent years[435]. While there is promising evidence for the use
of phytochemicals in preventing skin cancer, further studies are
needed tomeet the challenges of topical skin cancer formulations.
These challenges include skin penetration, optimum drug con-
centration, stability, dosing strategy, and sustained drug release
following topical application[625]. Skin penetration is a crucial
factor that affects the efficacy of topical formulations[625].
Dietary phytochemicals, such as flavonoids and polyphenols,
have been shown to have low skin penetration due to their large
molecular size and low lipophilicity[627]. Various strategies have
been explored to improve the skin penetration of phytochemicals,
including the use of nanoemulsions, liposomes, and penetration
enhancers[628]. Optimum drug concentration is another critical
factor that needs to be considered in the development of topical
skin cancer formulations containing dietary phytochemicals[625].
The concentration of phytochemicals needs to be optimized to
ensure that they are effective in preventing or treating skin cancer
while minimizing toxicity. This concentration may vary
depending on the phytochemical, the skin type, and the intended
use of the formulation[629]. Stability is also an important factor
that needs to be addressed in the development of topical skin
cancer formulations containing dietary phytochemicals. The
formulation must remain stable during storage and use to ensure
that the phytochemicals remain effective[435]. Stability can be
affected by factors such as pH, temperature, and light exposure.
Dosing strategy is another factor that needs to be considered in
the development of topical skin cancer formulations containing
dietary phytochemicals[435]. The dosing strategy must be opti-
mized to ensure that the phytochemicals are delivered in the most
effective manner. Factors such as the frequency of application, the
amount of phytochemicals applied, and the duration of treatment

must be carefully considered[629]. Finally, sustained drug release
following topical application is a crucial factor that needs to be
addressed in the development of topical skin cancer formulations
containing dietary phytochemicals. The phytochemicals must be
released in a controlled manner to ensure that they remain
effective for the intended duration of treatment[630]. Various
strategies have been explored to achieve sustained drug release,
including the use of polymers, liposomes, and nanoparticles[631].
Overall, while there is promising evidence for the use of dietary
phytochemicals in preventing skin cancer, further studies are
needed tomeet the challenges of topical skin cancer formulations.
Addressing these challenges is critical to the development of
effective and safe topical formulations containing dietary phy-
tochemicals for the prevention and treatment of skin cancer. The
development of such formulations has the potential to revolu-
tionize the management of skin cancer and improve patient
outcomes.

Conclusion

Dietary phytochemicals are biologically active compounds that
are naturally present in fruits and vegetables. These compounds
have been shown to possess numerous health benefits, including
the prevention of skin cancer by protecting cells from DNA
damage, inhibiting the production of pro-inflammatory cytokines
and chemokines, reducing inflammation and the risk of cancer
development, inhibiting the activation of signaling pathways
(MAPK pathway, PI3K/Akt pathway, Wnt pathway, Hedgehog
pathway, Notch pathway, etc.) involved in cell growth and pro-
liferation, which are dysregulated in skin cancer, and inducing
apoptosis in cancer cells through various mechanisms like acti-
vation of caspases, regulation of Bcl-2 family proteins, modula-
tion of p53, inhibition of NF-κB, induction of oxidative stress,
etc. Assessing the applicability of the preclinical data to humans
may require additional research, such as short-term human stu-
dies. In addition, studies on skin cancer prevention involving
fruits and vegetables seem to be necessary for high-risk humans,
such as those with weakened immune systems. In models of high-
risk skin carcinogenesis, preclinical studies may reveal positive
effects. In addition, fruits and vegetables can be combined with
current treatment methods to enhance the treatment of skin
cancer.
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[568] Bursal E, Köksal E, Gülçin İ, et al. Antioxidant activity and polyphenol
content of cherry stem (Cerasus avium L.) determined by LC–MS/MS.
Food Res Int 2013;51:66–74.

[569] Lichtenthaler HK, Schweiger J. Cell wall bound ferulic acid, the major
substance of the blue-green fluorescence emission of plants. J Plant
Physiol 1998;152:272–82.

[570] Rodríguez García SL, Raghavan V. Microwave-assisted extraction of
phenolic compounds from broccoli (Brassica oleracea) stems, leaves,
and florets: optimization, characterization, and comparison with
maceration extraction. Rec Progr Nutr 2022;2:1–20.

[571] Szczepańska J, Barba FJ, Skąpska S, et al. High pressure processing of
carrot juice: effect of static and multi-pulsed pressure on the poly-
phenolic profile, oxidoreductases activity and colour. Food Chem 2020;
307:125549.

[572] Min JY, Kang SM, Park DJ, et al. Enzymatic release of ferulic acid from
Ipomoea batatas L.(sweet potato) stem. Biotechnol Bioprocess Eng
2006;11:372–6.

[573] Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, et al. A com-
prehensive study on the phenolic profile of widely used culinary herbs
and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food
Chem 2014;154:299–307.

[574] Eliasson C, Kamal-Eldin A, Andersson R, et al. High-performance
liquid chromatographic analysis of secoisolariciresinol diglucoside and
hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. J
Chromatogr A 2003;1012:151–9.

[575] Khezeli T, Daneshfar A, Sahraei R. A green ultrasonic-assisted liquid–
liquid microextraction based on deep eutectic solvent for the HPLC-UV
determination of ferulic, caffeic and cinnamic acid from olive, almond,
sesame and cinnamon oil. Talanta 2016;150:577–85.

[576] Chen L, Liu Y, Liu H, et al. Identification and expression analysis of
MATE genes involved in flavonoid transport in blueberry plants. PLoS
One 2015;10:e0118578.

[577] Die JV, Jones RW, Ogden EL, et al. Characterization and analysis of
anthocyanin-related genes in wild-type blueberry and the pink-fruited
mutant cultivar ‘Pink Lemonade’: new insights into anthocyanin bio-
synthesis. Agronomy 2020;10:1296.

[578] Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and
their aglycons. J Agric Food Chem 2003;51:628–33.

[579] Lee YM, Yoon Y, Yoon H, et al. Dietary anthocyanins against obesity
and inflammation. Nutrients 2017;9:1089.

[580] Cassidy A. Berry anthocyanin intake and cardiovascular health. Mol
Aspects Med 2018;61:76–82.

[581] Wang D, Guo H, Yang H, et al. Pterostilbene, an active constituent of
blueberries, suppresses proliferation potential of human cholangio-
carcinoma via enhancing the autophagic flux. Front Pharmacol 2019;
10:1238.

[582] Campelo APBS. The use of pterostilbene in the treatment of skin cancer:
a literature review. Clin Surg 2022;8:1–4.

[583] Shivembe A, Ojinnaka D. Determination of vitamin C and total phe-
nolic in fresh and freeze dried blueberries and the antioxidant capacity
of their extracts. Integr Food Nutr Metab 2017;4:1–5.

[584] Maya-Cano DA, Arango-Varela S, Santa-Gonzalez GA. Phenolic
compounds of blueberries (Vaccinium spp.) as a protective strategy
against skin cell damage induced by ROS: a review of antioxidant
potential and antiproliferative capacity. Heliyon 2021;7:e06297.

[585] Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr
Sci 2016;5:e47.

[586] Coates EM, Popa G, Gill CI, et al. Colon-available raspberry poly-
phenols exhibit anti-cancer effects on in vitro models of colon cancer. J
Carcinog 2007;6:4.

[587] Katta R, Brown DN. Diet and skin cancer: the potential role of dietary
antioxidants in nonmelanoma skin cancer prevention. J Skin Cancer
2015;2015:893149.

[588] Duncan FJ, Martin JR, Wulff BC, et al. Topical treatment with black
raspberry extract reduces cutaneous UVB-induced carcinogenesis and
inflammation. Cancer Prev Res (Phila) 2009;2:665–72.

[589] Oberyszyn T. Effects of black raspberries on UV-induced cutaneous
inflammation and tumor development. In: Seeram NP, Stoner GD, eds.
Berries and Cancer Prevention. Springer; 2011. pp. 131–42.

[590] Mace TA, King SA, Ameen Z, et al. Bioactive compounds or metabolites
from black raspberries modulate T lymphocyte proliferation, myeloid
cell differentiation and Jak/STAT signalling. Cancer Immunol
Immunother 2014;63:889–900.

Singh et al. Annals of Medicine & Surgery (2024) Annals of Medicine & Surgery

5912



[591] Satpal D, Kaur J, Bhadariya V, et al. Actinidia deliciosa (Kiwi fruit): a
comprehensive review on the nutritional composition, health benefits,
traditional utilization, and commercialization. J Food Process Preserv
2021;45:e15588.

[592] Kim YM, Park YS, Park YK, et al. Characterization of bioactive ligands
with antioxidant properties of kiwifruit and persimmon cultivars using
in vitro and in silico studies. Appl Sci 2020;10:4218.

[593] Azeem M, Hanif M, Mahmood K, et al. An insight into anticancer,
antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects
of quercetin: a review. Polym Bull 2023;80:241–62.

[594] Wang J, Fang X, Ge L, et al. Antitumor, antioxidant and anti-inflam-
matory activities of kaempferol and its corresponding glycosides and the
enzymatic preparation of kaempferol. PLoS One 2018;13:e0197563.

[595] Ampomah-Dwamena C, McGhie T, Wibisono R, et al. The kiwifruit
lycopene beta-cyclase plays a significant role in carotenoid accumula-
tion in fruit. J Exp Bot 2009;60:3765–79.

[596] Nishiyama I, Fukuda T, Oota T. Cultivar difference in chlorophyll,
lutein and β-carotene content in the fruit of kiwifruit and otherActinidia
species. Acta Horticult 2006;753:473–8.

[597] Sommerburg O, Keunen JE, Bird AC, et al. Fruits and vegetables that are
sources for lutein and zeaxanthin: the macular pigment in human eyes.
Br J Ophthalmol 1998;82:907–10.

[598] ChauhanM,Garg V, Zia G, et al. Potential role of phytochemicals of fruits
and vegetables in human diet. Res J Pharm Technol 2020;13:1587–91.

[599] El-Raey MA, Ibrahim GE, Eldahshan OA. Lycopene and Lutein; A
review for their chemistry andmedicinal uses. J Pharmacogn Phytochem
2013;2:245–54.

[600] Kim YE, Cho CH, Kang H, et al. Kiwifruit of Actinidia eriantha cv.
Bidan has in vitro antioxidative, anti-inflammatory and immunomo-
dulatory effects on macrophages and splenocytes isolated from male
BALB/c mice. Food Sci Biotechnol 2018;27:1503–11.

[601] Kou L, Zhu Z, Redington C, et al. Potential use of kiwifruit extract for
treatment of melanoma. Med Oncol 2021;38:1–7.

[602] Kou L, Zhu Z, Fajardo E, et al. Harnessing the power of kiwifruit for
radiosensitization of melanoma. Anticancer Res 2021;41:5945–51.

[603] Maoto MM, Beswa D, Jideani AI. Watermelon as a potential fruit
snack. Int J Food Prop 2019;22:355–70.

[604] Kim CH, Park MK, Kim SK, et al. Antioxidant capacity and anti‐
inflammatory activity of lycopene in watermelon. Int J Food Sci Technol
2014;49:2083–91.

[605] van Breemen RB, Pajkovic N. Multitargeted therapy of cancer by
lycopene. Cancer Lett 2008;269:339–51.

[606] Manivannan A, Lee ES, Han K, et al. Versatile nutraceutical potentials
of watermelon - a modest fruit loaded with pharmaceutically valuable
phytochemicals. Molecules 2020;25:5258.

[607] Lester G. Melon (Cucumis melo L.) fruit nutritional quality and health
functionality. HortTechnology 1997;7:222–7.

[608] Itoh T, Fujita S, KoketsuM, et al. Citrulluside H and citrulluside T from
young watermelon fruit attenuate ultraviolet B radiation‐induced
matrix metalloproteinase expression through the scavenging of gener-
ated reactive oxygen species in human dermal fibroblasts.
Photodermatol Photoimmunol Photomed 2021;37:386–94.

[609] Ascenso A, Ribeiro H, Marques HC, et al. Chemoprevention of pho-
tocarcinogenesis by lycopene. Exp Dermatol 2014;23:874–8.

[610] Mirza B, Croley CR, Ahmad M, et al. Mango (Mangifera indica L.): a
magnificent plant with cancer preventive and anticancer therapeutic
potential. Crit Rev Food Sci Nutr 2021;61:2125–51.

[611] Saha S, Sadhukhan P, Sil PC. Mangiferin: a xanthonoid with multi-
potent anti‐inflammatory potential. Biofactors 2016;42:459–74.

[612] Shi W, Deng J, Tong R, et al. Molecular mechanisms underlying man-
giferin-induced apoptosis and cell cycle arrest in A549 human lung
carcinoma cells. Mol Med Rep 2016;13:3423–32.

[613] Schagen SK, Zampeli VA, Makrantonaki E, et al. Discovering the link
between nutrition and skin aging. Dermatoendocrinology 2012;4:
298–307.

[614] Balić A, Mokos M. Do we utilize our knowledge of the skin protective
effects of carotenoids enough? Antioxidants 2019;8:259.

[615] Li J, Malakhova M, Mottamal M, et al. Norathyriol suppresses skin
cancers induced by solar ultraviolet radiation by targeting ERK kinases.
Cancer Res 2012;72:260–70.

[616] Saleem M, Afaq F, Adhami VM, et al. Lupeol modulates NF-κB and
PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene
2004;23:5203–14.

[617] Liu RH. Potential synergy of phytochemicals in cancer prevention:
mechanism of action. J Nutr 2004;134:3479S–85S.

[618] Ahmad T, Cawood M, Iqbal Q, et al. Phytochemicals inDaucus carota
and their health benefits. Foods 2019;8:424.

[619] Hughes DA. Dietary carotenoids and human immune function.
Nutrition 2001;17:823–7.

[620] Boelsma E, Hendriks HF, Roza L. Nutritional skin care: health effects of
micronutrients and fatty acids. Am J Clin Nutr 2001;73:853–64.

[621] Alfurayhi R, Huang L, Brandt K. Pathways affected by falcarinol-type
polyacetylenes and implications for their anti-inflammatory function
and potential in cancer chemoprevention. Foods 2023;12:1192.

[622] Cooper DA, Eldridge AL, Peters JC. Dietary carotenoids and certain
cancers, heart disease, and age-related macular degeneration: a review
of recent research. Nutr Rev 1999;57:201–14.

[623] Shebaby WN, Mroueh MA, Boukamp P, et al. Wild carrot pentane-
based fractions suppress proliferation of human HaCaT keratinocytes
and protect against chemically-induced skin cancer. BMC Complement
Altern Med 2017;17:36.

[624] Natarajmurthy SH, Dharmesh SM. Amelioration of skin cancer in mice
by β-carotene and phenolics of carrot (Daucus carota). Am J
Biopharmacol Biochem Life Sci 2015;4:1–25.

[625] Islam SU, Ahmed MB, Ahsan H, et al. An update on the role of dietary
phytochemicals in human skin cancer: new insights into molecular
mechanisms. Antioxidants (Basel) 2020;9:916.

[626] Otto A, Du Plessis J, Wiechers JW. Formulation effects of topical
emulsions on transdermal and dermal delivery. Int J Cosmet Sci 2009;
31:1–19.

[627] Bitew M, Desalegn T, Demissie TB, et al. Pharmacokinetics and drug-
likeness of antidiabetic flavonoids: molecular docking and DFT study.
PLoS One 2021;16:e0260853.

[628] Puglia C, LauroMR, Tirendi GG, et al. Modern drug delivery strategies
applied to natural active compounds. Expert Opin Drug Deliv 2017;14:
755–68.

[629] More MP, Pardeshi SR, Pardeshi CV, et al. Recent advances in phyto-
chemical-based nano-formulation for drug-resistant cancer. Med Drug
Discov 2021;10:100082.

[630] Thakur L, Ghodasra U, Patel N, et al. Novel approaches for stability
improvement in natural medicines. Pharmacogn Rev 2011;5:48.

[631] Bonifacio BV, da Silva PB, Ramos MADS, et al. Nanotechnology-based
drug delivery systems and herbal medicines: a review. Int J
Nanomedicine 2014;9:1–15.

Singh et al. Annals of Medicine & Surgery (2024)

5913


