
Mejía-Roa et al. BMC Bioinformatics (2015) 16:43
DOI 10.1186/s12859-015-0485-4
SOFTWARE Open Access
NMF-mGPU: non-negative matrix factorization on
multi-GPU systems
Edgardo Mejía-Roa1, Daniel Tabas-Madrid2, Javier Setoain2, Carlos García1, Francisco Tirado1

and Alberto Pascual-Montano2*
Abstract

Background: In the last few years, the Non-negative Matrix Factorization (NMF) technique has gained a great
interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional
datasets. However, the computing time required to process large data matrices may become impractical, even for a
parallel application running on a multiprocessors cluster.
In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes
advantage of the high computing performance delivered by Graphics-Processing Units (GPUs). Driven by the
ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have
evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used
as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory,
which is not considered by other NMF implementations on GPU.

Results: NMF-mGPU is based on CUDA (Compute Unified Device Architecture), the NVIDIA’s framework for GPU
computing. On devices with low memory available, large input matrices are blockwise transferred from the system’s
main memory to the GPU’s memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized
for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI (Message
Passing Interface). In a four-GPU system, this implementation is about 120 times faster than a single conventional
processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup).

Conclusions: Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding
performance when compared to traditional processors. In addition, their relatively low price represents a highly
cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the
daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of
experimental information. NMF-mGPU can be used “out of the box” by researchers with little or no expertise in
GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely
available at https://github.com/bioinfo-cnb/bionmf-gpu.

Keywords: Non-negative Matrix Factorization (NMF), Graphics-Processing Unit (GPU), CUDA, Multi-GPU implementation,
Message Passing Interface (MPI), Biclustering analysis, Sample classification, Gene-expression analysis
* Correspondence: pascual@cnb.csic.es
2Functional Bioinformatics Group, Biocomputing Unit, National Center for
Biotechnology-CSIC, UAM, Madrid 28049, Spain
Full list of author information is available at the end of the article

© 2015 Mejía-Roa et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

https://github.com/bioinfo-cnb/bionmf-gpu
mailto:pascual@cnb.csic.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 2 of 12
Background
The recent advances in the high-throughput technologies
used in Biology generate large amounts of data that re-
quire analysis and interpretation. Multiple data-mining
methods are very useful for hypothesis formulation and
exploratory analysis of biological datasets. Clustering algo-
rithms or matrix factorization techniques, such as Princi-
pal Component Analysis (PCA) [1], Singular Value
Decomposition (SVD) [2], or Independent Component
Analysis (ICA) [3], are among the most popular tools
to find natural group structures in high-dimensional
datasets.
The Non-negative Matrix Factorization (NMF) [4,5]

technique has also been established as a very effective
method to discover biological patterns. NMF decomposes
a large input dataset into a small set of highly interpret-
able and additive parts. This property has centered the
attention of scientists for a wide range of applications in
Bioinformatics, such as gene-expression analysis [6,7],
scientific literature mining [8], neuroscience [9], and
several -omics techniques [10,11]. A good review of some
of them can be found in [12]. Other fields of science also
use NMF. For example, face and object recognition [5,13],
color science [14], computer vision [15], polyphonic music
transcription [16], as well as other signal-processing
methods [17,18].
The interest on this technique by the bioinformatics

community has yield to several standalone applications
[19], online tools [20-22], and code in different program-
ming languages [23-25]. The scientific community has
also reported some conventional parallel implementations
intended for other fields of science [15,26]. However, the
usage of any of these applications is hindered by the large
and constantly growing datasets that require analysis, es-
pecially in fields like Genomics or Proteomics. For in-
stance, since the release in June 2008 of our public web
tool, bioNMF [20], the server has registered an average of
75 jobs per month. In spite of using a parallel implementa-
tion of NMF in an eight-processors system, some of these
jobs took tens of hours to complete, monopolizing the
cluster and increasing the response time of subsequent
submissions.
Even on a dedicated local cluster, the required com-

puting time may become impractical in many scenarios.
An example is the application of NMF to the explora-
tory data analysis, which usually involves numerous exe-
cutions of the NMF algorithm using different parameters
(e.g., [23]). Another scenario results from the develop-
ment of high-throughput sequencing technologies and
the potential bottleneck caused by NMF, since experi-
mental data may be generated at a higher rate than
it can be analyzed. Therefore, a new strategy to im-
prove the performance of the NMF algorithm is highly
desirable.
In this paper, we present an alternative implementation
of the NMF algorithm based on a programmable Graph-
ics-Processing Unit (GPU). GPUs are devices specially
designed to perform the numerous linear-algebra opera-
tions required to draw graphics on the screen much faster
than any conventional processor (CPU: Central Processing
Unit) [27]. The high-performance parallel architecture of
GPUs has evolved to a general-purpose programmable
system that, working as a coprocessor, is able to execute
non-graphics-related applications [28].
All these features have centered the attention of scien-

tist in a wide range of fields, such as image processing
[29], molecular dynamics, quantum chemistry [30], and
physics [31], among many others. There are, in addition,
other publications focused on different approaches to
perform particular linear-algebra operations (e.g., matrix
multiplications [32] and LU Factorizations [33]), as well
as generic linear-algebra libraries [34] and plug-ins for
other systems [35]. In Bioinformatics, GPUs have been
used, for instance, in gene-expression connectivity map-
ping [36], sequence alignment [37], and protein docking
[38], among others [39].
Nevertheless, most GPU architectures are presented in

the form of a detached device connected to the CPU via a
system bus (e.g., PCI Express), and equipped with a dedi-
cated on-board memory. This configuration requires the
transfer of the input data from the CPU’s main memory to
the GPU’s memory before starting the process. Similarly,
after the computing process is finished, the output data
must be transferred back to the CPU’s memory in order to
retrieve the results.
Moreover, the amount of such on-board memory

ranges from hundreds of megabytes to a few gigabytes,
which is usually much less than its CPU counterpart.
Therefore, in order to analyze large datasets, the algo-
rithm must be able to explicitly blockwise transfer and
process the input data. This sequential procedure must
be performed with care to avoid severe negative effects
on performance.
To the best of our knowledge, there are only a few

GPU implementations of the NMF algorithm [16,40-42],
but these domain-specific applications do not perform
any blockwise processing since they do not consider the
available amount of GPU memory, nor make use of mul-
tiple GPU devices. Therefore, they are not suitable for
the analysis of current large biological datasets.
Conversely, NMF-mGPU is an application able to

process datasets of any size using a single or multiple
GPU devices. An in-depth performance analysis of a pre-
liminary version of this application can be found in [43]. It
shows that negative consequences of blockwise processing
can be mitigated with the use of multiple GPUs, or a
multi-GPU system, where multiple data blocks can be
simultaneously transferred and processed. Nevertheless,

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 3 of 12
attention must be paid to avoid excessively increase the
number of devices, and thus, the overhead due to inter-
device synchronizations [43]. In this work, our goal is not
only to show the outperformance of GPU implementation
over conventional CPU processing, but also to provide an
easy-to-use NMF software package that, “out-of-the-box”,
can be used in a laptop by any researcher with little or no
expertise in GPU programming, or by experimented
people in a high-end multi-GPU system.

Implementation
The Non-Negative Matrix Factorization (NMF)
One of the most popular applications of NMF in Bio-
informatics is the Gene-expression Analysis [6,7]. It is
based on the Microarray Technology, which is a
powerful method able to monitor the expression level
of thousands of genes, or even whole genomes, in a sin-
gle experiment [44]. The generated information is usu-
ally stored in a numerical matrix whose rows represent
genes in a given organism, and the columns correspond
to different experimental conditions or samples. There-
fore, cells in this matrix encode the relative abundance,
or expression level, of a given gene in a certain experi-
mental condition [45].
NMF is able to transform this matrix into the linear

combination of a reduced set of elements named fac-
tors. The usually low number of such components re-
duces considerably the dimensions of data to be analyzed.
Mathematically, NMF can be described as the decompos-
ition of an input matrix (V ∈ Rn × m) into two other matri-
ces (W ∈ Rn × k and H ∈ Rk × m, where k < < n, m)
constrained to have non-negative elements, and whose
product is approximately the former (i.e., V ≈W * H). In
this way, W contains the reduced set of k factors, and H
Figure 1 Schematic representation of the NMF model applied to gene-
be decomposed as the product of two matrices, W and H, encoding, respect
stores the coefficients of the linear combination of such
factors that rebuilds V. Note that the number of factors, k,
is generally chosen to a value much less than n and m.
Figure 1 shows a graphic representation of the model
when used on gene-expression data.
NMF iteratively modifies W and H until their prod-

uct approximates to V. Such modifications, composed
by matrix products and other algebraic operations, are
derived from minimizing a cost function that quantifies
in some way the differences between W*H and V.
There are numerous objective functions, leading each
to different update rules [4,46]. Similar to our both pre-
vious releases of bioNMF [19,20], the new NMF-mGPU
implements the following rules taken from [23]:

Hpj ← Hpj

Xn

i¼1

WipV ij= WHð Þij
Xn

r¼1

Wrp

Wip ← Wip

Xm

j¼1

V ijHpj= WHð Þij
Xm

t¼1

Hpt

In contrast to other similar factorization algorithms (e.g.,
PCA [1], SVD [2], or ICA [3]), NMF is constrained to use
non-negative values and additive-only combinations on all
matrices. This results in a parts-based representation of
data, where each factor can be interpreted contextually [5].
In the last few years, some variants of this algorithm

have been proposed in order to enforce sparseness on
the resulting matrices [47,48], since there is no explicit
guarantee in the method—other than the non-negativity
expression data. Input matrix V represents a gene-experiment matrix to
ively, the most significant genes, and experimental samples.

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 4 of 12
constraints—to support a parts-based representation of
the data [49]. Others variants try to increase the effect-
iveness and the speed of the algorithm on biological
data by relaxing such non-negativity constraint, as well
as the alternate application of the update rules (i.e., one
of the output matrices may be updated a few times
while the other stays fixed, and vice versa) [50].
With the development of different expression-profiling

techniques [51], a large collection of gene-expression datasets
has been made available to the scientific community. They
constitute reference databases or “compendiums” of gene-
expression profiles in the study of a variety of biological sys-
tems [52-54]. Many of these databases may contain the ex-
pression level of entire genomes analyzed on thousands of
experimental conditions. Therefore, they are ideal candidates
to be used as input for NMF and similar algorithms.
One of the most popular applications of NMF in gene-

expression analysis is Biclustering Analysis [55,56]. It is
a two-way clustering method that identifies groups of
genes and experimental conditions that exhibit similar
expression patterns. This results in sets of genes simi-
larly expressed in subsets of experimental conditions.
Identification of such block-structures plays a key role
to get insights into the biological mechanisms associ-
ated to different physiological states, as well as to de-
fine gene-expression signatures [55,56].
Another popular analysis method is Sample Classifi-

cation [23]. This method makes use of NMF and a
model-selection algorithm to determine the most suit-
able number of clusters into which samples (or experi-
ments) can be grouped. This model, based on a reduced
set of metagenes, provides a more accurate and robust
classification than other methods based on the high-
Figure 2 CUDA (a) hardware and (b) software entities hierarchy.
dimensional gene space [23]. Nevertheless, since this
method is based on repeating the NMF algorithm nu-
merous times (most typically, in the order of several
hundred of times) using different parameters, it is cru-
cial to have an efficient implementation of NMF.

The CUDA programming model
We have developed our GPU implementation of the NMF
algorithm taking advantage of NVIDIA’s GPU program-
ming framework: CUDA (Compute Unified Device Archi-
tecture) [57]. CUDA presents GPUs as systems composed
by hundreds or thousands of very simple processors—
named cores—that allow the simultaneous execution of a
given instruction on different data. For instance, when add-
ing a scalar value to a vector, all cores work simultaneously,
each performing the addition to a different vector compo-
nent. This feature makes GPUs very convenient for linear-
algebra algorithms which can be processed much faster
than on any single-processor system [27].
The GPU cores are grouped into several multiprocessors

integrated in the same GPU (see Figure 2a), being their dis-
tribution and number specific to each GPU architecture.
The execution of instructions in a CUDA program is car-
ried out by CUDA threads. As shown on Figure 2b, these
threads are organized into a grid of CUDA blocks. Within
certain constraints, the programmer can specify the num-
ber of blocks and threads per block to be executed. At run-
time, the GPU executes the threads according to its
physical computing resources, so that devices with a larger
number of cores will simultaneously execute more threads
than devices with fewer processors. The programming
model is closely related to this organization: each CUDA
block is executed by one multiprocessor chip, which

Figure 3 Update rule for matrix H. Matrix V is blockwise transferred,
whileW and H are fully loaded into the GPU memory at algorithm
start. Nevertheless, both V and H are processed in portions of size
n × bm and k × bm, respectively (bm ≤m). Circled operations denote
CUDA Kernels. Symbols “.*” and “./” denote pointwise matrix
operations. Updated columns from H are marked with a big down
arrow. Finally, the squared region at bottom left represents the
reduction and accumulation of updated columns into a single
k-length vector required by the next update-W rule.

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 5 of 12
depending on the resource availability can accommodate
multiple blocks concurrently. The scheduling unit, named
warp, is a set of 32 threads. Every two clock cycles, the
scheduler in each multiprocessor chooses the next warp of
threads and executes them in a SIMT (Single- Instruc-
tion Multiple-Threads) fashion, one half-warp at a cycle.
In this model, the programmer implements the generic be-
havior of a single thread during all the computing process.
Such code is named CUDA Kernel. Then, at runtime, the
scheduler selects the next single instruction from the kernel
and executes it for the entire warp.
To help programmers to implement new applications or

migrate existing code to GPU Computing, CUDA provides
an extension to the C language to (i) allocate memory on the
GPU, (ii) transfer data between the CPU’s main memory and
the GPU’s memory, and (iii) launch kernels on the GPU.
CUDA also provides inter-thread communication and
synchronization mechanisms. Threads within a block can co-
operate with each other by (i) sharing data through a fast—
but low-capacity—shared memory, and (ii) synchronizing
their execution via thread barriers. In contrast, threads from
different blocks can only communicate with each other via a
slower—but much higher-capacity—global memory. How-
ever, there is no mechanism to synchronize the execution of
threads in different blocks, so extra care must be taken in
order to avoid race conditions. Both resources constitute the
GPU’s on-board memory, and a proper management of such
is critical to the performance of algorithms. For instance, ac-
cesses to shared memory are a hundred times faster than ac-
cesses to global memory.
Finally, CUDA classifies the existing GPU architectures

with the term “Compute Capability X.Y”, where “X” de-
notes the GPU generation step, and “Y” quantifies the evolu-
tion level within that generation. For instance, “Compute
Capability 3.5” represents a medium evolution within the
third generation of GPU devices.
NMF on Graphics-Processing Units (GPUs)
As described in the Background section, a critical resource
in this work is the limited size of the on-board GPU mem-
ory, which forces to design a data-decomposition scheme in
order to process large datasets.
Figure 3 shows the update-rule scheme for matrix H.

The main loop processes on each iteration, bm columns
from H (bm ≤m). In order to update such columns, it re-
quires a full copy of W and the corresponding bm columns
from V. Matrix products are computed by the NVIDIA’s
CUBLAS Library [34], while the rest of operations are
performed by our CUDA kernels. Since the next update-
W rule requires all columns from H to be reduced to a
single k-length vector (see denominator in second equa-
tion of the NMF algorithm), we take advantage of the tem-
poral locality in the update-H rule by reducing and
accumulating each set of bm columns once they are up-
dated. This process is represented in the squared region at
bottom left of Figure 3. The reduction kernel allocates
memory for a k-length vector and performs an inner itera-
tive process. The update rule for matrix W is similar. In
this case, the loop iterates over bn rows (bn ≤ n) from
matrices W and V. Note that both W and H are always
fully loaded into the GPU memory since k is usually low.
This simplifies the implementation and reduces data
transfers.
In addition to the data-decomposition scheme, a

proper geometry of CUDA blocks and their distribution
into a grid must be decided for all kernels we have de-
veloped. For this implementation, a configuration of 1D
blocks in a 1D grid seems to provide the best perform-
ance. Since data matrices are stored in memory as large
vectors, successive CUDA threads can be mapped to

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 6 of 12
contiguous matrix data. This ensures that threads in the
same warp access to consecutive addresses in global
memory. Proper data alignment in memory is also en-
sured by forcing all matrix widths and vector sizes to be a
multiple of the warp size. Other minor architecture-
specific optimizations, mostly related to arithmetic in-
structions and data sharing among threads within a warp,
may be also enabled at compile time according to the se-
lected target GPU device(s).
Data transfers are performed asynchronously, so they

can be overlapped with kernel executions. Modern
GPU architectures can also execute different kernels
simultaneously. In both cases, concurrency is managed
by CUDA Streams and CUDA Events.
Finally, it is important to mention that matrix H is in-

ternally stored in memory with column-major order (i.e.,
it is transposed), so that W and H have the same “width”
(i.e., k “columns”) and kernels can be reused on both up-
date rules.

NMF on Multi-GPU devices
NMF-mGPU can operate on multiple GPU devices syn-
chronized through MPI (Message Passing Interface) to
provide even more parallelism, especially on very large
datasets. In this case, the input matrix is distributed
among the existing devices and each portion is proc-
essed as described for a single device. That is, all the it-
erations of the loop shown in Figure 3 are then
distributed and simultaneously executed on multiple de-
vices. Since each GPU has to manage a smaller problem,
the conjunction of both levels of parallelism also repre-
sents a reduction of data transfers between the CPU
main memory and the GPU memory. Furthermore, if
such data portions are small enough, they can be trans-
ferred only once at algorithm start.
Nevertheless, this hybrid version also imposes new

overheads. Since each device requires a full copy of both
matrices W and H, a collective-communication step is
necessary after performing each update rule in order to
keep coherence among all local replicas. Furthermore,
such communication steps must be performed through
the CPU, so that each device must previously transfer
the updated data to the main memory. Similarly, the
resulting synchronized data must be transferred back to
the on-board memory.

Results and discussion
Performance
Our experimental evaluations have been performed on an
Intel workstation equipped with four NVIDIA Tesla C1060
GPUs connected via a PCI Express bus. Each device has 4
GB of memory, a Compute Capability of 1.3, and 240 cores
distributed on 30 multiprocessors. Our software was com-
piled and tested on a 64-bits Linux with gcc 4.4.5, CUDA
3.2, and mpich 1.2.7p1. For performance reasons, all arith-
metic operations on floating-point data were executed in
single-precision mode; however, NMF-mGPU can be easily
configured to make use of double-precision data on capable
devices. Finally, it is important to mention that, although
our tests were performed on old GPU devices with an also
old CUDA release, all results are still valid for newer hard-
ware/software systems. That is, as stated on the previous
section, NMF-mGPU has been explicitly optimized for the
different generations of CUDA-capable devices. This guar-
antees that it is widely available to almost anyone, which
was one of our central goals in this proposal.
Three gene-expression datasets were tested. They

represent small-, medium-, and large-size classes,
respectively:

� ALL-AML (5000 × 38): A set of 5000 genes analyzed
from 38 bone marrow samples, corresponding to
two tumoral tissues: Acute Lymphoblastic Leukemia
(ALL) and Acute Myelogenous Leukemia (AML) [58].

� ExpO (54675 × 1973): A set of 1973 tumor samples
obtained by the expO project [53], which are
available at Gene Expression Omnibus [52]
(accession number: GSE2109).

� HG (22283 × 5896): Microarray data from almost
6000 human samples representing different cell and
tissue types, disease states and cell lines. They were
collected by [59] and made available at ArrayExpress
[54] (accession number: E-TABM-185).

All tests were performed for different factorization ranks
(k), ranging from 2 to 10 factors. In order to have the closest
test conditions, matrices W and H were initialized with “ran-
dom” values generated from the same seed. In addition, all
tests correspond to only the first 440 iterations of the NMF
algorithm, preventing the convergence criterion to affect the
computing time. Our baseline sequential code used for refer-
ence, was executed on an IBM PowerPC 970 FX (2.2 GHz,
4 GB of memory), compiled with XLC, and linked with the
ATLAS library v3.6 [60] for faster matrix operations.
It is worth to mention that our tests do not to include

a performance comparison between NMF-mGPU and
the other NMF implementations on GPU [16,40-42]
described in the Background section. As previously
stated, these applications do not take into account the
available GPU memory, nor make use of multiple GPU
devices. Therefore, only small-or medium-size datasets
could be tested. In this reduced scenario, NMF-mGPU
is clearly in disadvantage, since its capability of block-
wise processing large datasets always entails a slightly
inherent overhead (e.g., management of different CUDA
streams and events, data transfers, block sizes, etc.),

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 7 of 12
even in the analysis of a small input matrix. Further-
more, as test results show below, this overhead be-
comes noticeable in the multi-GPU version.

Performance of the single-GPU version
Although the 4 GB of memory available on the GPU
device is enough to fully load any of the three datasets,
our tests were performed by limiting that amount of
memory to 800 MB. This forced the largest dataset
(“HG”) to be blockwise transferred from the CPU to the
GPU, so we could measure the impact of such data
transfers.
Figure 4 illustrates the speedup of a singe GPU com-

pared with CPU execution times. On the smallest data-
set (“ALL-AML”), speedups are modest (less than 6x
compared to the CPU), since there is not enough useful
work to sustain thousands of threads running concur-
rently. On the medium-size dataset (“ExpO”), which fit
into the GPU memory, it performs up to 38 times faster
than the CPU. Finally, on our largest data set (“HG”),
the speedup is reduced to 29× due to the overhead of
frequent data transfers, which represent about 30% of
the time.

Performance of the Multi-GPU version
Figures 5a and 5b show the average speedups compared
to a single GPU and to a single CPU, respectively. In
addition, the efficiency of this hybrid implementation is
depicted in Figure 5c. The Efficiency quantifies the
utilization of each GPU. A value of 1.0 denotes that
synchronization overheads do not affect the performance.
Compared to a single GPU device (Figure 5a), results

show a worst or similar pattern on both small and
medium-size datasets, respectively, due to the increased
number of data transfers and synchronization over-
heads. In contrast, on the “HG” dataset, it achieves a
super-linear speedup. That is, with two (four) GPUs, it
performs faster than twice (four times) the speed of a
single device. This is possible since the portion of the
input matrix distributed to each device is small enough
Figure 4 Speedups of a single GPU compared to a CPU.
to be transferred only once, at algorithm start. This largely
compensates all other synchronization overheads.

Software usage
NMF-mGPU consists of two executable files, one to
execute the algorithm in a single GPU, and the other to
operate multiple devices through MPI. The latter can
also be used in a single device with a little overhead
produced by the MPI synchronization mechanism. In
the project webpage (https://github.com/bioinfo-cnb/
bionmf-gpu), we included a short tutorial on how to
install the package and its dependencies.
We have implemented an easy-to-use and simple exe-

cutable code that allows a researcher with no experi-
ence to use the advantages of these devices. For the
single-GPU case, the software consists on one binary
file, “NMF_GPU”, which performs the standard NMF
analysis in a single GPU device. Valid input-file formats
are the same as our previous web tool, bioNMF [20], in-
cluding ASCII text files with tab-separated data, and
binary files encoded using IEEE little-endian byte order-
ing. The latter is a standard format widely used in many
applications.
Input options include the selection of the factorization

rank (k), the number of iterations to perform before
testing for convergence, the maximum number of iter-
ations in case data never converge to a stable solution,
and the stopping threshold for a convergence test. The
test of convergence computes the assignment of sam-
ples to each factor, which it is represented in matrix H
by the column index of the maximum value for each
row. This sample classification is then compared with
the one computed on the previous convergence test. If
no differences are found after a certain number of
consecutive tests (set by the stopping threshold par-
ameter mentioned above), the algorithm is considered
to have converged to a stable solution.
Finally, the output consists on two files containing the

W and H matrices. The format of these files can be ei-
ther a tab-separated text, or binary.

https://github.com/bioinfo-cnb/bionmf-gpu
https://github.com/bioinfo-cnb/bionmf-gpu

Figure 5 NMF-mGPU performance. Average speedups of the multi-GPU version compared to (a) a single GPU, and (b) to a conventional CPU.
(c) Efficiency achieved compared to a single GPU. It is defined as the speedup divided by the number of GPUs.

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 8 of 12
For instance, the following command:

./NMF_GPU matrix.txt -k 4 -j 10 -t 40
-i 2000

processes the input file “matrix.txt” with a
factorization rank of 4. The test of convergence will be
performed each 10 iterations. If there are no relative dif-
ferences in matrix H after 40 consecutive convergence
tests, the algorithm has converged. Otherwise, a max-
imum of 2000 iterations will be performed. Finally, output
matrices W and H are saved in files “matrix.txt_W.
txt” and “matrix.txt_H.txt”, respectively.
The multi-GPU version works similarly. The execut-

able file is named “NMF-mGPU”; however, the MPI stand-
ard requires the software to be executed through the
mpiexec or mpirun commands.
Although the actual arguments may be MPI-

implementation specific, a typical invocation com-
mand in a two-GPUs cluster, using similar parameters as
the example above, should be the following:

Mpiexec -np 2 NMF_mGPU matrix.txt -k 4
-j 10 -t 40 -i 2000

The resulting output files are also similar as in the
single-GPU version.

Use case
We have analyzed some biological data as an example on
how to use the tool. We have chosen data from [61],
whose authors compared microarray expression data from
samples of normal human Schwann cells (NHSC), dermal
and plexiform NF1-derived primary benign neurofibroma
Schwann cells (dNFSCs and pNFSCs), and malignant per-
ipheral nerve sheath tumor cell lines (MPNST). In that
work, they found that most MPNSTcell lines share a tran-
scriptional signature, which is different from NHSC cells.
In addition, the set consisting on dNFSCs and pNFSCs
also differs from the other cell types. Nevertheless, there
are not clearly visible differences between such dermal
and plexiform NFSCs.
We retrieved the expression data from Gene Expres-

sion Omnibus [52] (accession number GSE14038) in
order to generate a data matrix where samples are in
columns and gene probes are in rows. This was done
using the GEOquery tool [62]. We then carried out two
different analyses using NMF-mGPU.
For our first test, we generated a sub-matrix with only

data from MPNST and NHSC cells, and executed our tool
using the default parameters, including a factorization
rank of two. We obtained two matrices: H, with metagene
expression levels in each row; and W, whose columns rep-
resent the coefficients of each gene in that metagene. This
can be considered a biclustering analysis due to the scatter
nature of the NMF factorization [19,20]. Heatmap repre-
sentations of all three matrices are shown in Figure 6.
There is a clear distinction between the MPNST and the
NHSC groups, both represented in matrix H as different
expression levels of each metagene in the samples.
The second analysis corresponds to a sample classifica-

tion of the four cell groups. We executed our tool using a
factorization rank of four. The output matrices led us to
the same conclusions as the authors of the study, where
they identified two clearly differentiated groups, MPNST
and NHSC, and two other classes containing a mix of the
remaining samples with elements from dNFSCs and
pNFSCs. Figure 7 depicts these findings, which are repre-
sented by the different metagene expression levels in
matrix H.
Both analyses took just a few seconds in an old NVIDIA

GeForce 8800 GTX (128 cores and 768 MB of memory),

Figure 6 Heatmap representation of the NMF applied to MPNST and NHSC cells. Each matrix is represented as a heatmap, with each item
representing a normalized expression value. Black color corresponds to zero (no expression values), while red items correspond to the maximum
value. Sample names are reported in Matrix H.

Figure 7 Heatmap representation of the NMF applied to MPNST, dNFSCs, pNFSCs, and NHSC cells. Each matrix is represented as a
heatmap, with each item representing a normalized expression value. Black color corresponds to zero (no expression values), while red items
correspond to the maximum value. Sample names are reported in Matrix H.

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 9 of 12

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 10 of 12
connected to a personal computer. Then, all heatmaps
were generated using the aheatmap tool from the package
NMF for R [25].
Conclusions
The applications of GPUs in Bioinformatics are getting
more and more attention due to their spectacular
speedup improvements when compared to traditional
CPU computations. Conventional high-performance
clusters are still useful in many areas, but their cost is
several orders higher than GPU devices, which are, in
addition, already present on many modern personal
computers. Furthermore, their greater acceptance has
allowed commercial developments of multi-GPU sys-
tems that facilitate the exploitation of multiple levels of
parallelization as discussed in this work. In life sciences,
this represents an excellent opportunity to facilitate the
daily work of bioinformaticians that are trying to ex-
tract biological meaning out of hundreds of gigabytes
of experimental information. However, the spread of
the use of this technology is still limited to those with
programming experience on this type of devices. In this
work, we wanted to make a very simple use case of a
widely used algorithm, the NMF, in a GPU platform.
Our main goal is to reach and help the final experimen-
talist in using this technology, either in a simple laptop
or in a high-end GPU workstation. We hope this imple-
mentation helps in providing the Bioinformatics com-
munity with a way in presenting the GPU applications
and we also hope that NMF algorithms can now be
used in more complex problems with the help of the
great performance provided by one or more GPU de-
vices. As future work, we are planning to migrate the
code to OpenCL, so it will be able to execute this appli-
cation on GPU devices from other manufacturers (e.g.,
Intel, ATI, etc.).
Availability and requirements
Project name: NMF-mGPU
Home page: https://github.com/bioinfo-cnb/bionmf-gpu
Operating system(s): Mac OS X and Linux
Programming language: C/CUDA
Other requirements: CUDA Toolkit 4.2 or higher. The
multi-GPU version requires, in addition, an MPI-2.0 li-
brary (e.g., Open-MPI, Mpich, etc.).
Please note that since CUDA 6.0, support for old de-

vices (e.g., compute capability 1.0) and old operating sys-
tems (e.g., any 32-bits Linux, Mac OS X 10.7 Lion and
below) has been removed. In that case, we recommend
installing CUDA 5.5.
Software License: GPLv3+
Any restrictions to use by non-academics: none
Consent and ethical approval
All datasets used for this article come from third-party
works, whose authors had already made them publicly
available on recognized scientific databases or institu-
tional websites. These works, including any accession
number, are properly cited in the manuscript.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EMR and APM designed the study. EMR, CG, and DTM wrote the software
and tested the implementation. EMR, FT, JS, and APM interpreted and
analyzed the data. All authors contributed to writing the manuscript and
technical input. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by the Spanish Ministry of Science and Innovation
with grants [TIN2012-32180] and [BIO2013-48028-R]; by the Government of
Madrid (CAM) with grant [P2010/BMD-2305]; by the PRB2-ISCIII platform,
which is supported by grant PT13/0001 and the Children’s Tumor Foundation.
In addition,EMR was supported by the scholarship FPU from the Spanish
Ministry of Education. Finally, we acknowledge support of the publication
fee by the CSIC Open Access Publication Support Initiative through its Unit
of Information Resources for Research (URICI).

Author details
1ArTeCS Group, Department of Computer Architecture, Complutense
University of Madrid (UCM), Madrid 28040, Spain. 2Functional Bioinformatics
Group, Biocomputing Unit, National Center for Biotechnology-CSIC, UAM,
Madrid 28049, Spain.

Received: 16 September 2014 Accepted: 30 January 2015

References
1. Jollife IT. Principal component analysis. 2nd ed. New York: Springer; 2002

[Springer Series in Statistics].
2. Golub GH, Van Loan CF. Matrix computations. 4th ed. Baltimore: Johns

Hopkins University Press; 2012.
3. Hyvärinen A, Karhunen J, Oja E. Independent component Analysis. New

York: John Wiley & Sons, Inc; 2002 [Adaptive and Learning Systems for
Signal Processing, Communications, and Control].

4. Paatero P, Tapper U. Positive matrix factorization: a non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics.
1994;5:111–26.

5. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix
factorization. Nature. 1999;401:788–91.

6. Kong W, Mou X, Li Q, Song Y. Learning the local molecular pattern of
Alzheimer’s disease by non-negative matrix factorization. In: Proceedings of
the International Conference on Green Circuits and Systems (ICGCS’10).
Piscataway, NJ: IEEE; 2010. p. 621–5.

7. Tamayo P, Scanfeld D, Ebert BL, Gillette MA, Roberts CWM, Mesirov JP.
Metagene projection for cross-platform, cross-species characterization of
global transcriptional states. Proc Natl Acad Sci U S A. 2007;104:5959–64.

8. Vazquez M, Carmona-Saez P, Nogales-Cadenas R, Chagoyen M, Tirado F,
Carazo JM, et al. SENT: semantic features in text. Nucleic Acids Res.
2009;37:W153–9.

9. Nakaoka H, Tajima A, Yoneyama T, Hosomichi K, Kasuya H, Mizutani T, et al.
Gene expression profiling reveals distinct molecular signatures associated
with the rupture of intracranial aneurysm. Stroke. 2014;45:2239–45.

10. Hutchins LN, Murphy SM, Singh P, Graber JH. Position-dependent motif
characterization using non-negative matrix factorization. Bioinformatics.
2008;24:2684–90.

11. Arnedo J, del Val C, de Erausquin GA, Romero-Zaliz R, Svrakic D, Cloninger
CR, et al. PGMRA: a web server for (phenotype x genotype) many-to-many
relation analysis in GWAS. Nucleic Acids Res. 2013;41:W142–9.

12. Devarajan K. Nonnegative matrix factorization: an analytical and interpretive
tool in computational biology. PLoS Comput Biol. 2008;4:e1000029.

https://github.com/bioinfo-cnb/bionmf-gpu

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 11 of 12
13. Ramanath R, Snyder W. Eigenviews for object recognition in multispectral
imaging systems. In: Proceedings of the 32nd Applied Imagery Pattern
Recognition Workshop (AIPR’03). Los Alamitos, CA: IEEE Computer Society;
2003. p. 33–8.

14. Ramanath R, Kuehni RG, Snyder WE, Hinks D. Spectral spaces and color
spaces. Color Res Appl. 2004;29:29–37.

15. Robila SA, Maciak LG. Sequential and parallel feature extraction in
hyperspectral data using nonnegative matrix factorization. In: Proceedings
of the IEEE Long Island Systems, Applications and Technology Conference
(LISAT’07). Piscataway, NJ: IEEE; 2007. p. 1–7.

16. Battenberg E, Wessel D. Accelerating non-negative matrix factorization for
audio source separation on multi-core and many-core architectures. In:
Proceedings of the 10th International Society for Music Information Retrieval
Conference (ISMIR’09). Montreal, Canada: International Society for Music
Information Retrieval; 2009. p. 501–6.

17. Wilson KW, Raj B, Smaragdis P, Divakaran A. Speech denoising using
nonnegative matrix factorization with priors. In: Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP’08). Piscataway, NJ: IEEE; 2008. p. 4029–32.

18. Cichocki A, Zdunek R, Amari S. New algorithms for non-negative matrix
factorization in applications to blind source separation. In: Proceedings of
the IEEE International Conference on Acoustics Speed and Signal Processing
(ICASSP’06). Volume 5. Piscataway, NJ: IEEE; 2006. p. V–621–4.

19. Pascual-Montano A, Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM,
Pascual-Marqui RD. bioNMF: a versatile tool for non-negative matrix
factorization in biology. BMC Bioinformatics. 2006;7:366.

20. Mejía-Roa E, Carmona-Sáez P, Nogales R, Vicente C, Vázquez M, Yang XY,
et al. bioNMF: a web-based tool for nonnegative matrix factorization in
biology. Nucleic Acids Res. 2008;36(2):W523–8 [http://bionmf.dacya.ucm.es/]

21. Mejía-Roa E, Vazquez M, Carmona-Saez P, Garcia C, Tirado F, Pascual-
Montano A. bioNMF-grid: an online grid-based tool for non-negative matrix
factorization in biology. In: Mayo R, Hoeger H, Ciuffo LN, Barbera R, Dutra I,
Gavillet P, Marechal B, editors. Proceedings of the 2nd EELA-2 conference.
Madrid, Spain: CIEMAT Editions; 2009. p. 133–9 [Serie Ponencias].

22. Liao R, Zhang Y, Guan J, Zhou S. CloudNMF: a MapReduce implementation
of nonnegative matrix factorization for large-scale biological datasets.
Genomics Proteomics Bioinformatics. 2014;12:48–51.

23. Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern
discovery using matrix factorization. Proc Natl Acad Sci U S A. 2004;101:4164–9.

24. Cichocki A, Zdunek R. NMFLAB-MATLAB toolbox for non-negative matrix
factorization. 2006.

25. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix
factorization. BMC Bioinformatics. 2010;11:367.

26. Dong C, Zhao H, Wang W. Parallel nonnegative matrix factorization
algorithm on the distributed memory platform. Int J Parallel Program.
2009;38:117–37.

27. Nickolls J, Dally WJ. The GPU computing era. IEEE Micro. 2010;30:56–69.
28. GPGPU.org: General-Purpose Computation on Graphics Hardware [http://

gpgpu.org]
29. Setoain J, Prieto M, Tenllado C, Tirado F. GPU for parallel on-board

hyperspectral image processing. Int J High Perform Comput Appl.
2008;22:424–37.

30. Isborn CM, Luehr N, Ufimtsev IS, Martínez TJ. Excited-state electronic
structure with configuration interaction singles and tamm-dancoff time-
dependent density functional theory on graphical processing units. J Chem
Theory Comput. 2011;7:1814–23.

31. Burau H, Widera R, Honig W, Juckeland G, Debus A, Kluge T, et al.
PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans
Plasma Sci. 2010;38:2831–9.

32. Oancea B, Andrei T. Developing a high performance software library with
MPI and CUDA for matrix computations. Computational Methods in Social
Sciences (CMSS). 2013;1:5–10.

33. Tavakoli Targhi A, Björkman M, Hayman E, Eklundh J. Real-time texture
detection using the LU-transform. In Computation Intensive Methods for
Computer Vision Workshop (CIMCV’06), in conjunction with the 9th European
Conference on Computer Vision (ECCV’06). 2006 [http://www.mobvis.org/pub-
lications/tavakoli_etal_cimcv06.pdf]

34. NVIDIA Corp: cuBLAS: CUDA Basic Linear Algebra Subroutines. [https://
developer.nvidia.com/cublas]

35. Reese J, Zaranek S. GPU Programming in MATLAB. MathWorks News&Notes.
Natick, MA: The MathWorks Inc; 2012. p. 22–5.
36. McArt DG, Bankhead P, Dunne PD, Salto-Tellez M, Hamilton P, Zhang S-D.
cudaMap: a GPU accelerated program for gene expression connectivity
mapping. BMC Bioinformatics. 2013;14:305.

37. Schatz MC, Trapnell C, Delcher AL, Varshney A. High-throughput sequence
alignment using Graphics Processing Units. BMC Bioinformatics.
2007;8:474.

38. Ghoorah AW, Devignes M-D, Smaïl-Tabbone M, Ritchie DW. Protein docking
using case-based reasoning. Proteins. 2013;81:2150–8.

39. Dematté L, Prandi D. GPU computing for systems biology. Brief Bioinform.
2010;11:323–33.

40. Platoš J, Gajdoš P, Krömer P, Snášel V. Non-negative matrix factorization on
GPU. In: Zavoral F, Yaghob J, Pichappan P, El-Qawasmeh E, editors. Networked
Digit Technol. Berlin: Springer; 2010. p. 21–30 [Communications in Computer
and Information Science, vol. 87].

41. Lopes N, Ribeiro B. Non-negative matrix factorization. Implementation using
Graphics Processing Units. In: Fyfe C, Tino P, Charles D, Garcia-Osorio C,
Yin H, editors. Intelligent Data Engineering and Automated Learning
(IDEAL 2010). Berlin: Springer; 2010. p. 275–83 [Lecture Notes in Computer
Science, vol. 6283].

42. Kysenko V, Rupp K, Marchenko O, Selberherr S, Anisimov A. GPU-
Accelerated non-negative matrix factorization for text mining. In: Bouma G,
Ittoo A, Métais E, Wortmann H, editors. Natural language processing and
information systems. Berlin: Springer; 2012. p. 158–63 [Lecture Notes in
Computer Science, vol. 7337].

43. Mejía-Roa E, García C, Gómez JI, Prieto M, Tirado F, Nogales R, et al.
Biclustering and classification analysis in gene expression using Nonnegative
Matrix Factorization on multi-GPU systems. In: Ventura S, Abraham A, Cios K,
Romero C, Marcelloni F, Benitez JM, Gibaja E, editors. Proceedings of the 11th
International Conference on Intelligent Systems Design and Applications
(ISDA). Piscataway, NJ: IEEE; 2011. p. 882–7.

44. Brown PO, Botstein D. Exploring the new world of the genome with DNA
microarrays. Nat Genet. 1999;21(1):33–7.

45. Brazma A, Vilo J. Gene expression data analysis. FEBS Lett. 2000;480:17–24.
46. Lee DD, Seung HS. Algorithms for non-negative matrix factorization. In: Leen

TK, Dietterich TG, Tresp V, editors. Adv Neural Inf Process Syst 13. Cambridge,
MA: MIT Press; 2001. p. 556–62.

47. Pascual-Montano A, Carazo JM, Kochi K, Lehmann D, Pascual-Marqui RD.
Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Trans Pattern
Anal Mach Intell. 2006;28:403–15.

48. Kim H, Park H. Sparse non-negative matrix factorizations via alternating
non-negativity-constrained least squares for microarray data analysis.
Bioinformatics. 2007;23:1495–502.

49. Mel BW. Computational neuroscience. Think positive to find parts. Nature.
1999;401:759–60.

50. Nikulin V, Huang TH, Ng SK, Rathnayake SI, McLachlan GJ. A very fast
algorithm for matrix factorization. Stat Probab Lett. 2011;81:773–82.

51. Mantione KJ, Kream RM, Kuzelova H, Ptacek R, Raboch J, Samuel JM, et al.
Comparing bioinformatic gene expression profiling methods: microarray
and RNA-Seq. Med Sci Monit Basic Res. 2014;20:138–41.

52. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids
Res. 2013;41(Database issue):D991–5.

53. IGC Expression Project for Oncology (expO) [http://www.intgen.org/
research-services/biobanking-experience/expo/]

54. Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, et al.
ArrayExpress update–trends in database growth and links to data
analysis tools. Nucleic Acids Res. 2013;41:D987–90 [http://www.ebi.ac.uk/
arrayexpress]

55. Carmona-Saez P, Pascual-Marqui RD, Tirado F, Carazo JM, Pascual-Montano
A. Biclustering of gene expression data by non-smooth non-negative matrix
factorization. BMC Bioinformatics. 2006;7:78.

56. Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: a
survey. IEEE/ACM Trans Comput Biol Bioinforma. 2004;1:24–45.

57. NVIDIA Corp: CUDA: Compute Unified Device Architecture. [http://www.
nvidia.com/object/cuda_home.html]

58. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al.
Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science. 1999;286:531–7.

59. Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W, et al. A
global map of human gene expression. Nat Biotechnol. 2010;28:322–4
[http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-185/]

http://bionmf.dacya.ucm.es/
http://gpgpu.org
http://gpgpu.org
http://www.mobvis.org/publications/tavakoli_etal_cimcv06.pdf
http://www.mobvis.org/publications/tavakoli_etal_cimcv06.pdf
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://www.intgen.org/research-services/biobanking-experience/expo/
http://www.intgen.org/research-services/biobanking-experience/expo/
http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-185/

Mejía-Roa et al. BMC Bioinformatics (2015) 16:43 Page 12 of 12
60. Whaley RC, Petitet A. Minimizing development and maintenance costs in
supporting persistently optimized BLAS. Softw Pract Exp. 2005;35:101–21
[http://math-atlas.sourceforge.net]

61. Miller SJ, Jessen WJ, Mehta T, Hardiman A, Sites E, Kaiser S, et al. Integrative
genomic analyses of neurofibromatosis tumours identify SOX9 as a
biomarker and survival gene. EMBO Mol Med. 2009;1:236–48.

62. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression
Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://math-atlas.sourceforge.net/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	The Non-Negative Matrix Factorization (NMF)
	The CUDA programming model
	NMF on Graphics-Processing Units (GPUs)
	NMF on Multi-GPU devices

	Results and discussion
	Performance
	Performance of the single-GPU version
	Performance of the Multi-GPU version
	Software usage
	Use case

	Conclusions
	Availability and requirements
	Consent and ethical approval

	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

