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ABSTRACT Alteration of the lung microbiome has been observed in several respira-
tory tract diseases. However, most previous studies were based on 16S ribosomal
RNA and shotgun metagenome sequencing; the viability and functional activity of
the microbiome, as well as its interaction with host immune systems, have not been
well studied. To characterize the active lung microbiome and its associations with
host immune response and clinical features, we applied metatranscriptome sequenc-
ing to bronchoalveolar lavage fluid (BALF) samples from 25 patients with chronic
obstructive pulmonary disease (COPD) and from nine control cases without known
pulmonary disease. Community structure analyses revealed three distinct microbial
compositions, which were significantly correlated with bacterial biomass, human
Th17 immune response, and COPD exacerbation frequency. Specifically, samples
with transcriptionally active Streptococcus, Rothia, or Pseudomonas had bacterial
loads 16 times higher than samples enriched for Escherichia and Ralstonia. These
high-bacterial-load samples also tended to undergo a stronger Th17 immune re-
sponse. Furthermore, an increased proportion of lymphocytes was found in samples
with active Pseudomonas. In addition, COPD patients with active Streptococcus or
Rothia infections tended to have lower rates of exacerbations than patients with ac-
tive Pseudomonas and patients with lower bacterial biomass. Our results support the
idea of a stratified structure of the active lung microbiome and a significant host-
microbe interaction. We speculate that diverse lung microbiomes exist in the popu-
lation and that their presence and activities could either influence or reflect different
aspects of lung health.

IMPORTANCE Recent studies of the microbiome proposed that resident microbes
play a beneficial role in maintaining human health. Although lower respiratory tract
disease is a leading cause of sickness and mortality, how the lung microbiome inter-
acts with human health remains largely unknown. Here we assessed the association
between the lung microbiome and host gene expression, cytokine concentration,
and over 20 clinical features. Intriguingly, we found a stratified structure of the ac-
tive lung microbiome which was significantly associated with bacterial biomass, lym-
phocyte proportion, human Th17 immune response, and COPD exacerbation fre-
quency. These observations suggest that the microbiome plays a significant role in
lung homeostasis. Not only microbial composition but also active functional ele-
ments and host immunity characteristics differed among different individuals. Such
diversity may partially account for the variation in susceptibility to particular dis-
eases.
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Investigation of the lung microbiome is a relatively young field; however, there has
been remarkable progress in understanding the composition and function of the

lung microbiome in the last few years (1). Dickson and colleagues have described an
adapted island model for the lung microbiome (2), in which lung microbes are largely
derived from the upper respiratory tract and oral cavity (UO) through microaspiration
and mucosal dispersion. Simultaneously, microbes in the lung are eliminated by
mucociliary clearance, cough, and host immune defenses, while reproduction and
growth of the microbes are determined by regional conditions in the lung. Alterations
of the lung microbiome have been observed in many respiratory diseases, including
chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis, but associ-
ations with clinical features and interactions with host genes are largely unknown (3–5).

Sequencing of 16S rRNA gene amplicons is a convenient method to characterize the
structure of the microbial community (6, 7). However, information provided by this
method is limited due to its narrow detection spectrum (bacteria), low resolution
(genus), and lack of direct insights into the viability and functional activity of the
microbiome. An alternative approach is shotgun metagenome sequencing, which has
been used to reveal the composition of the lung microbiome with a higher resolution
and wider detection spectrum (8, 9); however, recent studies proposed that expression
of microbial genes could significantly change without large alterations in overall
community structure (10, 11), which emphasize the importance of investigating the
functional activity of the microbiome. Metatranscriptome sequencing can provide not
only active microbiome profiles at high resolution but also the details of functional
elements (10, 12). Moreover, it enables analysis of interactions between the microbiome
and the host, as both microbial and human transcripts can be analyzed (13). Such
studies on the lung microbiome are very limited thus far, and there is an urgent need
to explore the active host-microbe interaction in the lung.

COPD, a chronic inflammatory disorder characterized by long-term poor airflow, has
been predicted by the World Health Organization to become the third leading cause of
death by 2030 (14). The lung microbiome changes dramatically in COPD patients during
the exacerbation period (15–17). However, microbes associated with COPD and exac-
erbation are inconsistent among different studies (15, 17–22). In this study, we aimed
to provide a comprehensive description of transcriptionally active microbes and their
associations with host gene expression, cytosine concentration, and different clinical
features, on the basis of metatranscriptome data.

RESULTS
Overview of the active lung microbiome. The transcriptionally active microbiome

was examined in the bronchoalveolar lavage fluid (BALF) samples of 25 COPD patients
(during their stable period) and 9 non-COPD controls by metatranscriptome sequenc-
ing (demographic and clinical information are described in Table S1 in the supplemen-
tal material). After stringent quality control was performed, 76.7% (�11.5%) of the
reads were mapped to the human genome. Among the reads mapping to archaea,
bacteria, fungi, and viruses (ABFV), 92% could be assigned to a specific genus, and 60%
could be assigned to a specific species or subspecies. Rarefaction analysis showed that
the current sequencing depth (30 million reads per sample) enabled us to study most
genera/species with read abundance (proportion of reads among all ABFV reads, which
reflects the transcriptional activity of the genera/species) greater than 0.1% but not
those with lower read abundance. Thus, our study focused only on microbes with read
abundance of at least 1% in at least one sample.

Three phyla (Proteobacteria, Firmicutes, and Actinobacteria) were detected in all 34
samples and accounted for 91% of the total ABFV reads (see Fig. S1 in the supplemental
material). At the genus level, Streptococcus, Pseudomonas, Ralstonia, Escherichia, and
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Rothia were the most abundant; those genera accounted for 66% of all ABFV reads and
explained more than 70% of the variance among samples (Fig. 1). Eighty-seven species
from 49 genera were identified. Among all genera, Streptococcus and Pseudomonas
were most diverse, with 14 species and 11 species detected, respectively. Of note, the
number of species identified was partially determined by the richness of diversity of
sequences included in the reference database; thus, well-studied genera (such as
Streptococcus and Pseudomonas) could be more diverse at the species level. However,
only a limited number of species belonging to the same genus could be identified in
any one sample.

No significant difference was found between COPD and non-COPD samples in terms
of alpha diversities and microbial composition with our data (P � 0.05 and P � 0.05,
respectively) (Fig. 1; see also Fig. S1). Several microbes showed marginal read abun-
dance differences between the two groups. At the genus level, Gemella was observed
in only 10 COPD samples and at very low read abundance (median � 0.03%; P � 0.05,
false-discovery rate [q] � 0.1). At the species level, four low-read-abundance species
(Prevotella enoeca, Neisseria gonorrhoeae, Bifidobacterium dentium, and Enterococcus
cecorum) were enriched in COPD samples (P � 0.05, q � 0.1), and the first three species
are known to inhabit the oral cavity and upper respiratory tract. Notably, the sample
size in the study was relatively small, which provided us very limited power to detect
differences; thus, we aimed to identify the features that are most closely associated
with the active lung microbiome.

FIG 1 Diversity and composition of the lung microbiome at the genus level. (A) Alpha diversity values
for COPD patients and non-COPD controls. (B) Violin plot of the active lung microbiome composition;
only genera with a mean read abundance of at least 5% are shown; thickness indicates the density of the
value, and each white dot indicates the median value.
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Consistency between metatranscriptome sequencing results and 16S rRNA
sequencing results. 16S rRNA sequencing data were successfully obtained for twenty
samples (V3-V4 region, with at least 10,000 reads); 73 genera were identified, 28 of
which were also discovered in the metatranscriptome data (Fig. 2A). Those 28 genera
accounted for 83% of the 16S rRNA reads and 89% of the ABFV metatranscriptome
reads, suggesting that the high-abundance genera could be faithfully identified by
both methods. However, the abundances determined were not always comparable
between the two methods (Fig. 2B and C); for example, Acinetobacter had a higher
abundance in the 16S rRNA data, while Ralstonia and Pseudomonas were more highly
enriched in the metatranscriptome data. The overall correlation coefficient for the read
abundance of each genus estimated on the basis of these two methods was 0.326
(P � 0.001), with the highest correlation coefficient being 0.99 in patient COPD38
(P � 0.001) (Fig. 2D). Discrepancies between the two methods might reflect the differ-
ent states of the microbes, which could be either active/viable (overrepresented in
metatranscriptome data) or resting/suppressed (underrepresented in the metatran-
scriptome data). However, an alternative explanation could be that samples with low
correlation coefficients had lower bacterial biomass and, hence, that their lung micro-
biomes were more likely to have been contaminated by reagents and/or the broncho-
scope. This hypothesis was supported by the fact that correlation coefficients were

FIG 2 Comparison of microbiome composition between metatranscriptome data and 16S rRNA data. (A) Overlap of identified genera between two data sets.
(B) The read abundance of the top 10 most abundant genera in 16S rRNA data in two data sets. (C) The read abundance of the top 10 most abundant genera
in metatranscriptome data in two data sets. (D) Correlation of the read abundance of each genus between the two methods at the individual level. Red dots
denote the genus detected in patient COPD38, who had the highest metatranscriptome-versus-16S rRNA correlation (rho � 0.99, P � 0.001). For display, an
abundance of 0 was converted to 10�6.
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positively correlated with bacterial biomass quantified by a 16S rRNA assay (P � 0.02,
rho � 0.560).

Structure of the active lung microbiome. Possible lung microbiome subgroups
were investigated using two statistical methods (Dirichlet multinomial mixtures and
partitioning around medoid clustering coupled with the heuristic Calinski-Harabasz
index; see details in Text S1 in the supplemental material), which gave very similar
results (only one sample was assigned differently at the phylum level). At the phylum
level, samples were clustered into two subgroups, which were dominated by either
Proteobacteria or Actinobacteria and Firmicutes (Fig. S2A and C). We found that the read
abundances of the dominant (core) microbes (the definition and algorithm are de-
scribed in Text S1) in the two subgroups were negatively correlated (P � 0.01), whereas
the read abundances of microbes within each subgroup were positively correlated
(P � 0.01). At the genus level, samples could be further classified into three subgroups
(Fig. 3). Twenty samples were assigned to subgroup I, which was enriched for Strepto-
coccus and Rothia; 10 samples were assigned to subgroup II, which was enriched for
Ralstonia and Escherichia; and only 4 samples were assigned to subgroup III, whose

FIG 3 Structure of the lung microbiome at the genus level. (A) Principal-coordinate-analysis (PCoA) plot
of the active lung microbiome inferred from metatranscriptome data. Core microbes are labeled on the
plot, and the pairwise distance is represented by the Jensen-Shannon divergence (JSD) value. (B) Read
abundance of the core microbes in different individuals; samples are ordered by the subgroups to which
they belong.
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microbiome was dominated by Pseudomonas. Core microbes of subgroup I were
negatively correlated with those in subgroup II and subgroup III (P � 0.01). Clustering
at the species level was identical to that seen at the genus level (Fig. S2B and D).

The significance of the group classification was further evaluated by three methods
(average silhouette width, predictive strength, and simulation; see details in Text S1).
Clustering at the phylum and genus levels was supported by all statistical metrics, while
clustering at the species level had a relatively low predictive strength (0.679) (Fig. S3),
suggesting that the clustering scheme is reliable.

Associations between active lung microbiome and clinical features. Associa-
tions between the structure of the active lung microbiome and 21 clinical features were
investigated (Table 1). First, all samples in subgroup III were COPD patients, suggesting
that this might be a COPD-specific group, though this hypothesis needs to be con-
firmed with a larger sample size. Second, all samples in subgroup II were negative in the
bacteria smear test, which differs significantly from the results from the samples in
subgroups I and III (P � 0.05) (Fig. 4A). We hypothesized that this difference could be
an indication of lower bacterial biomass for subgroup II, an interpretation that was
supported by the observation that samples in subgroup II had the lowest ratio of
bacterial reads to human reads (P � 0.01, Fig. 4B). As the proportion of reads could have

TABLE 1 Tests of the association between the structure of the active lung microbiome
and clinical featuresa

Phenotype Range or resultsk P value

COPD {Yes, no} 0.129h

Smoking category {Smoker, quit, never} 0.338h

Smoking amount, rangeb [0, 60] 0.229i

Inflammationc {Yes, no, unclear} 0.487h

Gender {Male, female} 0.378h

Location {Left lower lobe, left lingular lobe, right middle lobe} 0.631h

Age range (yrs) [28, 83] 0.355i

Smear test {Positive, negative} 0.019h

Inhaled corticosteroids {Yes, no} 0.731h

Bronchodilators {Yes, no} 0.553h

Exacerbation timed [0, 3] 0.819i

Macrophagee (%) [0, 100%] 0.153i

Lymphocyte (%) [0, 100%] 0.021i

Neutrophil (%) [0, 100%] 0.896i

FEV1 [28.3, 99.3] 0.593i

FEV1FVC [34.4, 70.13] 0.650i

RV/TLC [5.2, 88.6] 0.476i

CAT [2, 23] 0.057i

mMRC {0, 1, 2, 3} 0.904h

Severity score (GOLD)f {1, 2, 3, 4} 0.3628h

Exacerbation frequencyg {0.4, 2, 3.5} 1.3e�5j

aUse of inhaled corticosteroids and bronchodilators in the previous 3 months prior to the bronchoscope
examination was considered. Antibiotics were not used at least 8 weeks preceding the bronchoscopy. CAT,
COPD assessment test; FEV1, median forced expiratory volume in 1 s; FVC, forced vital capacity; mMRC,
modified Medical Research Council dyspnea scale; RV, residual volume; TLC, total lung capacity;

bData represent numbers of packs of cigarettes smoked per year.
cInflammation status was judged by clinician during bronchoscopy.
dData represent numbers of exacerbations during the year preceding the bronchoscopy.
eCells in the BALF were collected and stained with Wright Giemsa’s stain, and cells were counted under a
microscope.

fGOLD, Global Initiative for Obstructive Lung Disease criteria.
gData represent frequencies of exacerbations for COPD patients in the previous 4 years (2014 to 2018) after
the collection of BALF samples.

hFor discrete data, the contingency table was created and the Fisher exact test was used for the significance
test; thus, we were testing whether a specific classification (e.g., male or female) was associated with one of
the three active lung microbiome subgroups.

iFor continuous data, the Kruskal-Wallis rank sum test was applied; thus, we were testing whether a given
feature was different among three different active lung microbiome subgroups.

jFor frequency data, the chi-square test was used for the significance test; thus, we were testing whether the
events were randomly distributed in different active lung microbiome subgroups.

kBraces mean all possible elements are given here (discrete variable). Square brackets mean a range is given
here, e.g., from 0 to 60 (including 0 and 60)(continuous variable).

Ren et al.

September/October 2018 Volume 3 Issue 5 e00199-18 msystems.asm.org 6

msystems.asm.org


been biased by the amplification process during library preparation, the actual amount
of bacterial DNA was further quantified by a 16S rRNA assay. The median amounts of
bacteria DNA in the subgroup I and III samples were 28-fold and 9-fold higher,
respectively, than the bacterial DNA amounts in subgroup II samples (77.2 pg/ml and
25.6 pg/ml versus 2.7 pg/ml) (P � 0.05) (Fig. 4C). Of note, Salter and colleagues pro-
posed that contamination from laboratory reagents critically impacted results obtained
from low-microbial-biomass samples, and both Escherichia and Ralstonia were on their
list of contaminant genera (23). To examine the possibility of contamination, we
collected two saline samples (washing through different bronchoscopes before real
samples were collected) and prepared the sequencing library following the protocol
that had been used with the negative controls. We found that the major compositions
were similar, and both Escherichia and Ralstonia were identified in two negative
controls (with read abundances of 35% and 0.1%, respectively) (Fig. S4). Thus, the
possibility of contamination is high for this subgroup, and the high read abundance of
Escherichia and Ralstonia may reflect only the background noise introduced from
reagents and/or the bronchoscope. In addition, the lymphocyte proportion for the
subgroup III samples was significantly higher than that for other subgroups (P � 0.05),
while the macrophage proportion was lower in this subgroup (P � 0.05) (Fig. 4D and E).
We further found that the lymphocyte proportion was positively correlated with
the relative read abundance of Bordetella (mostly Bordetella pertussis) (rho � 0.501,
P � 0.01, Fig. 4F). No correlation was found between the subgroups and the severity of
COPD, smoking, or use of inhaled corticosteroids, bronchodilators, or other factors
(Table 1).

Although COPD is a chronic disease, some patients suffer from exacerbations.
Recurrent exacerbation in COPD patients could lead to a faster decline in lung function
and could increase their mortality risks. We have obtained the number of exacerbations
for 21 COPD patients in the past 4 years (2014 to 2018) (after the bronchoscopy) (Fig. 5).
In total, 29 exacerbation events were recorded; 14 of them occurred in 3 patients
belonging to subgroup III, 10 of them occurred in 3 patients belonging to subgroup II,

FIG 4 Association between the lung microbiome and clinical features. (A) Bacterial smear test results for different microbiome subgroup samples. (B) Ratio of
bacteria reads to human reads. (C) Quantification of bacteria DNA. (D) Proportion of lymphocytes in BALF samples. (E) Proportion of macrophages in BALF
samples. (F) Correlation between the proportion of lymphocytes and the read abundance of bacterial genus Bordetella; black dots denote samples in subgroup
III. The box plot shows the lymphocyte proportion in Bordetella-positive samples and Bordetella-negative samples.
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and 5 of them occurred in 3 patients belonging to subgroup I. The exacerbation
frequency was significantly higher in patients belonging to subgroups II and III than in
those belonging to subgroup I (2 and 3.5 versus 0.4, P � 1.3e�5). This observation
suggests that colonization of the lung by bacteria of some specific genera (e.g.,
Streptococcus, Rothia) might be protective against exacerbation whereas colonization
by other bacteria (e.g., Pseudomonas) could be harmful. Interestingly, multiple studies
have proposed that Pseudomonas could be a risk factor for exacerbation in COPD
patients (24–26). Associations between individual microbes and clinical features are
described in Text S1.

The highly transcribed microbial genes in subgroup I and III samples were similar
and enriched for functional catalogs related to metabolism, biosynthesis, replication
and repair, and membrane transport (Fig. 6).

Interaction between active lung microbiome and host gene expression. A large
(�50%) proportion of the RNA reads in the BALF samples were actually derived from
human cells (including macrophages, lymphocytes, and neutrophils) (27), enabling us
to investigate the host-microbe interaction in 34 samples. We found that the expression
levels of 10 genes were strongly correlated with the read abundance of specific
microbes at the genus level (21 genes at the species level) (P � 0.01 and q � 0.01)
(Table S2); however, no specific biological or signaling pathway was enriched in the
gene list.

Thousands of genes were differentially expressed in the three microbiome sub-
groups (adjusted P value [padj], �0.01). Interestingly, one gene-enriched pathway
(“differential regulation of cytokine production in macrophages and T helper cells by
interleukin-17A [IL-17A] and IL-17F”) seems to be involved in the immune response to
lung microbes, as CD4� T helper (Th) cells can regulate the adaptive immune response
against pathogens and their differentiation has been proposed to be associated with
the lung microbiome (28–30). To further investigate the differentiation of Th cells, we
compared the expression levels of 36 key genes in this pathway among the three
subgroups (Fig. S5A). Overall, samples in subgroup I tended to have a higher expression
level of all of these genes than samples in subgroup II (16 of them with P � 0.05). In
particular, the expression levels of the most critical molecules for Th17 cell differenti-
ation (including IL-6, transforming growth factor � [TGF�], STAT3, RORC, and IL-17)
were all significantly increased in subgroup I samples, and these expression levels were
highly synchronized (Fig. 7). The cytokine assay results further confirmed the increased
levels of inflammatory cytokines (IL-6, IL-8, and IL-1�) in subgroup I samples (P � 0.05,
Fig. S5B) compared to those of subgroup II. Subgroup III is not discussed here due to
the small sample size.

We then looked for microbes that could potentially associate with the differentiation
of Th17 cells. At the genus level, only Gemella was positively correlated with the

FIG 5 Exacerbation frequency in 21 COPD patients during 2014 to 2018. GOLD (Global Initiative for
Obstructive Lung Disease) criteria were used to assess disease severity. A score of “A” represents the mild
stage, and a score of “D” represents the most severe stage. Types were defined by microbial composition.
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expression of IL-6 (Table S3). At the species level, seven species could potentially
stimulate this process by upregulating key genes (Table S3).

DISCUSSION

Although differences in lung microbiome between COPD and non-COPD samples
have been found in several studies (15, 19–21), COPD is not the feature that explains
most of the variance in lung microbiome in our study. Interestingly, we found that
microbes enriched in COPD samples were mostly upper respiratory tract and oral (UO)
microbes. They were found exclusively in 15 COPD samples (but were not correlated
with severity of COPD), 12 of which had at least two UO microbes codetected (P � 0.05).
UO microbes can enter the lung through microaspiration but normally are quickly
removed by the mucociliary clearance system in the lung. Such clearance is impaired
in COPD patients (20, 31), and therefore enrichment of UO microbes is likely to be a

FIG 6 Enrichment of KEGG pathways in microbial genes in different samples. (A) Comparison between
subgroup I and subgroup II. (B) Comparison between subgroup I and subgroup III. (C) Comparison between
subgroup II and subgroup III. Only pathways with P values of �0.01 and q values of �0.1 (Mann-Whitney
U test) are shown. The pathways were sorted by their fold changes in different subgroups (increasing from
top to bottom). Red boxes represent subgroup I samples, blue boxes represent subgroup II samples, and
green boxes represent subgroup III samples.
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consequence of COPD. This phenomenon is not specific to COPD but is also observed
in other diseases, e.g., mechanically ventilated and pneumonia patients (31, 32).

The composition of the active lung microbiome observed in our study is similar to
that found by other studies (2, 8, 9, 12, 33), except that two frequently observed
high-abundance microbes, Prevotella and Veillonella, had relatively low read abun-
dances in our study (1.4% and 3.6%). However, their abundances were higher in the 16S
rRNA data (5.1% and 4.3%) and also much higher in the upper respiratory tract (throat
swabs were available for seven samples) (see Fig. S6 in the supplemental material). We
speculate that these two microbial genera in the lung were acquired by microaspiration
from the upper respiratory tract and that their growth was likely to be suppressed by
the regional conditions in the lung, although more upper respiratory tract samples
were needed to address this issue.

Since the discovery of enterotypes in the gut, similar microbial structures have been
identified in other organs (34–36). The concept of a pneumotype was initially proposed
by Segal and colleagues in healthy individuals; the researchers defined two pneumo-
types according to the abundance of the oral microbes Veillonella and Prevotella in
BALF samples (29, 33). Recently, Shenoy and colleagues also identified two pneumo-
types (microbial community states) in HIV and pneumonia patients (30) but with
different core microbes. Pneumotypes in both studies were identified on the basis of
16S rRNA data. In our study, three subgroups were identified from metatranscriptome
data that may be more functionally relevant as they were inferred from the actively
transcribed microbiome.

The subgroup I microbiome was dominated by Streptococcus and Rothia and was
associated with high bacterial biomass, highly expressed microbial genes involved in
metabolism and biosynthesis, and activation of the Th17 immune response. These
features seem relevant, as bacterial growth requires an abundant nutrient supply and
activation of microbial genes that absorb nutrients and synthesize proteins. Actively
growing bacteria might activate the host defense system, including recruitment and

FIG 7 Activation of the Th17 cell differentiation pathway in humans. (A) Expression pattern of 13 key genes
involved in Th17 cell differentiation. Differentially expressed genes are indicated in red (P � 0.05). (B)
Correlation between the expression of IL-6 and downstream genes in the pathway (STAT3, RORC, and IL17A).
The correlation coefficients (rho) were 0.641, 0.578, and 0.681, respectively (P � 0.001). The gene expression
level was calculated as log2(normalized number of transcripts per million [TPM] � 0.00001).
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differentiation of Th17 cells that mediate host defenses against microbes (37). Coinci-
dentally, Vandeputte and colleagues have recently reported a similar association
between microbial load and enterotype in gut (38). We speculate that the correlation
could reflect the growth rate variation among different microbes under certain regional
conditions. Moreover, COPD patients in this subgroup tended to experience less-
frequent exacerbations, suggesting that bacterial colonization could be a crucial stim-
ulus to airway inflammation and could thereby be a risk factor and represent a potential
predictor of exacerbations in COPD patients.

Subgroup II had active Escherichia and Ralstonia, which have been discovered in the
respiratory tract and mostly associate with pulmonary inflammation and cystic fibrosis
(12, 39, 40). However, they could also have caused the contamination from reagents
and bronchoscopes used in our study, as Escherichia was the most abundant compo-
nent in the negative controls. Nevertheless, this subgroup is distinctive in terms of low
bacterial biomass and should be considered separately.

Bacterial biomass and microbial gene function enrichment in subgroup III were
similar to those in subgroup I, but the proportion of lymphocytes in subgroup III was
much higher. This could indicate a more severe inflammation in this subgroup as
lymphocytes are normally recruited into the alveolar space during inflammation (41);
this may also associated with the fact that COPD patients in this subgroup experienced
the most frequent exacerbations. Interestingly, an increased proportion of lymphocytes
was found to be associated with the abundance of Veillonella (33). However, this
correlation was not observed in our data (P � 0.05). Rather, the proportion of lympho-
cytes was found to be associated with the activity of Bordetella pertussis (Fig. 4F);
infection with Bordetella pertussis is not rare in either the healthy population or COPD
patients (42, 43), which could be related to the release of pertussis toxin (PT). PT could
inhibit the recruitment of neutrophils and macrophages and could impede the move-
ment of lymphocytes into lymph nodes (44). However, there are still samples that have
a high proportion of lymphocytes but that have no Bordetella pertussis, suggesting that
other mechanisms might be involved.

One limitation of the study was the relatively small number of microbial reads used
in the analysis (median number � 8,276). Although a host rRNA depletion protocol was
applied, 80% of the reads were derived from humans. On the one hand, this enabled
us to investigate interactions between the microbiome and the host. On the other
hand, less-active microbes could not be detected; however, rarefaction and variance
analysis suggested that the data enabled us to identify the most active microbes and
capture most of the variance among samples and thus should not have influenced the
main conclusion of our study. Another limitation of our study was the relatively small
sample size due to the difficulty encountered in collecting lower respiratory tract
samples (as the procedure is invasive), which limited the statistical power of the study
to detect differences between subgroups; thus, we focused only on the features that
most closely associate with lung microbiome (bacterial biomass, Th17 immune
response, COPD exacerbation frequency, etc.). Meanwhile, this potentially restricted
the study to identification of only a subset of possible microbiome types. Actual
lung microbiomes might be more diverse, and their association with clinical features
could be more complicated. Nonetheless, data corresponding to the stratified structure
of the transcriptionally active lung microbiome and its association with various
features are all statistically significant and support the idea of an active host-
microbe interaction. Together with previous studies on 16S rRNA and metagenome
data, it is tempting to speculate that the lung microbiome variation is stratified in
different dimensions in both healthy cases and some disease states. This stratifica-
tion might represent differences in homeostasis states between the host and the
microbiome. Critical follow-up studies should address to what extent the structures
exist in different populations, how they are established and persist, and how they
interact with the host immunity.

Lung Microbiome and Associated Clinical Features

September/October 2018 Volume 3 Issue 5 e00199-18 msystems.asm.org 11

msystems.asm.org


MATERIALS AND METHODS
Subjects and clinical samples. Twenty-five COPD cases and nine non-COPD controls (not paired)

were enrolled in this study. All COPD subjects were in a stable state (at least 8 weeks without
exacerbation or use of antibiotics). The exclusion conditions included known cardiovascular diseases,
renal or liver insufficiency, bronchiectasis, active pulmonary tuberculosis, bronchial asthma, pulmonary
fibrosis, and lung cancer. Non-COPD controls had had no respiratory tract infection symptoms in the
three months before submitting to bronchoscope examination. Clinical information was obtained for
each enrolled patient (Table S1 in the supplemental material).

BALF samples were collected from each subject using a bronchoscope as part of normal clinical
management. Two aliquots of 50 ml sterile isotonic saline solution were instilled, with 50% of the volume
recovered on average. The BALF samples were immediately placed on ice and processed within 30 min.
Bacterial culturing was performed on the BALF samples using an ATB Expression automatic bacterial
identification instrument (bioMérieux, Marcy l’Etoile, France). The remnant samples were aliquoted and
stored at �80°C before processing. Two negative controls (saline solution passed through a new
bronchoscope and a reused sterilized bronchoscope) were collected and processed following the same
library preparation protocol.

Metatranscriptome sequencing. A 1-ml aliquot of each whole-BALF sample was pretreated with
Turbo DNase (Life Technologies, USA) to decrease the host genome background, according to the
manufacturer’s instructions. RNA was extracted using a QIAamp UCP pathogen minikit (Qiagen, Valencia,
CA, USA), reverse transcribed, and amplified using an Ovation RNA-Seq system (NuGEN, CA, USA).
Following fragmentation, the library was constructed using Ovation Ultralow System V2 (NuGEN, CA,
USA) and was sequenced on an Illumina HiSeq 2500/4000 platform (Illumina, United Kingdom) (125-bp
read length, paired-end protocol).

Metatranscriptome data processing. The raw data were first filtered by base quality score and read
length using Trimmomatic (v0.35; SLIDINGINDOW:4:10 MINLEN:70) (45). All filtered reads that could be
properly mapped to the human reference genome (GRCh38) or to human cDNA sequences (Ensembl
release 83) by Bowtie2 (v2.2.6 – end-to-end, –sensitive) were suspected to represent host contamination
and were discarded from further analysis (46). The remaining nonhuman reads were then searched
against the ribosome RNA database using SortMeRNA (v2.1, –paired_out) (47), and the nonmapping
reads were used for de novo assembly. Five assemblers were applied to the data, and the results were
compared, “–pre_correction” was used for IDBA_UD and IDBA_Tran (48), “-k 31” was set for Ray(v2.3.1)
(49), and default parameters were used for Trinity (v2.1.1) and SOAPdenovo2 (50, 51). Of note, none of
these de novo assemblers performed well (see Text S1 in the supplemental material); thus, unassembled
reads were used directly.

Taxonomy assignment. Unassembled reads were mapped against the NCBI nt database using
BLASTN (v2.3.0, -task megablast, -evalue 1e-10, -max_target_seqs 10, -max_hsp 1 – qcov_hsp_perc 60)
(52). The results were then used as the input for MEGAN 6 (Min Score 100, Top Percent: 10) (53), and the
taxonomic assignment for each read was inferred using the lowest common ancestor (LCA) method.
Meanwhile, nonhuman non-rRNA reads were also mapped to the NCBI nr database using Diamond
(v0.7.11, –sensitive – c 1) (54), with the thresholds used in MEGAN6 modified accordingly (Min Score: 40,
Max Expected 0.001). The conversion file from Gi number to KEGG was used to annotate the function of
microbial reads (55). Unless stated otherwise, microbes with a read abundance of at least 1% (among all
ABFV reads) in at least 1 sample were regarded as true positives and included in the analysis.

16S rRNA sequencing. The V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified
with barcoded primer set 341F (CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT) with an
expected amplicon length of 466 bp. Sequencing of the amplicons was performed using an Illumina
HiSeq 2500 instrument (Illumina, United Kingdom) (250-bp read length, paired-end protocol). Reads were
analyzed by Mothur (v1.31.2) using the SILVA database (56, 57). Due to the low concentration of
microbial DNA in the BALF, enough reads (�10,000) were obtained for only 20 samples with one repeat.

Statistical analysis. Pearson’s chi-square test or Fisher’s exact test was used for categorical variables,
and the Mann-Whitney U test or Kruskal-Wallis rank sum test was used for continuous variables that do
not follow a normal distribution. For multiple-test correction, the q value was calculated and a threshold
value of 0.1 was applied (58). Benjamini and Hochberg’s adjusted P value (padj) was given by an
integrated pathway analysis (IPA; Ingenuity Systems, Inc.) in the gene enrichment analysis (59), and a
threshold value of 0.05 was applied.

More details of the methods employed are provided in the supplemental material.
Ethics statement. The study was approved by the Institutional Review Board of the Peking University

People’s Hospital. All steps were carried out in accordance with relevant guidelines and regulations.
Written informed consent was obtained from each participant.

Data availability. The metatranscriptome and 16S rRNA data have been submitted to NCBI’s
Sequence Read Archive (SRA) database under project number PRJNA390194.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00199-18.
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