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Abstract

Motivation: Conventional identification methods for gene regulatory networks (GRNs) have overwhelmingly adopted static
topology models, which remains unchanged over time to represent the underlying molecular interactions of a biological
system. However, GRNs are dynamic in response to physiological and environmental changes. Although there is a rich
literature in modeling static or temporally invariant networks, how to systematically recover these temporally changing
networks remains a major and significant pressing challenge. The purpose of this study is to suggest a two-step strategy
that recovers time-varying GRNs.

Results: It is suggested in this paper to utilize a switching auto-regressive model to describe the dynamics of time-varying
GRNs, and a two-step strategy is proposed to recover the structure of time-varying GRNs. In the first step, the change points
are detected by a Kalman-filter based method. The observed time series are divided into several segments using these
detection results; and each time series segment belonging to two successive demarcating change points is associated with
an individual static regulatory network. In the second step, conditional network structure identification methods are used to
reconstruct the topology for each time interval. This two-step strategy efficiently decouples the change point detection
problem and the topology inference problem. Simulation results show that the proposed strategy can detect the change
points precisely and recover each individual topology structure effectively. Moreover, computation results with the
developmental data of Drosophila Melanogaster show that the proposed change point detection procedure is also able to
work effectively in real world applications and the change point estimation accuracy exceeds other existing approaches,
which means the suggested strategy may also be helpful in solving actual GRN reconstruction problem.
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Introduction

Identifying causal relationships of a gene regulatory network

(GRN) is one of the fundamental problems in understanding cell

behaviors. For most conventional identification methods, it is

generally assumed the topological structure is constant over time.

Based on this assumption, various models and methods have been

proposed, such as Boolean networks [1], Bayesian networks [2],

regression and correlation analyses based methods [3], ordinary

differential equation (ODE) based methods [4], etc.

Recent research results, however, show that GRNs are dynamic

in response to physiological and environmental changes. For

instance, an example of such time-varying regulatory network can

be provided by the development of the fruitfly Drosophila

Melanogaster, which is segmented into different life stages:

embryogenesis, larva, pupa and adult [5]. Moreover, some studies

have also confirmed that the active regulatory paths in a gene

expression network of Saccharomyces cerevisiae exhibit dramatic

topological changes and hub transience during a temporal cellular

process and in response to diverse stimuli [6]. Although there is a

rich literature in modeling static or temporally invariant networks,

how to systematically recover these temporally changing networks

remains a major and significant pressing challenge.

To identify time-varying GRNs, some special methods have

been proposed recently. A machine learning method called

TESLA is presented in [7], which builds on a temporally

smoothed l1-regularized logistic regression formalism that can be

cast as a standard convex-optimization problem and solved by

using generic solvers scalable to large networks. However, the

estimated topology by this method is undirected and suboptimal.

In addition, there exist some methods that follow the Bayesian

paradigm [8–11]. While these approaches also have their

limitations. The method suggested in [8] assumes a fixed network

structure and only allows the interaction parameters to vary with

time, which is too rigid and idealistic in practice. The method

proposed in [9] requires a discretization of the data, which incurs

an ineluctable information loss. And, the limitation in [10,11] is

that these methods need prior distributions on the network

structure.

The purpose of this study is to suggest a two-step strategy that

recovers time-varying GRNs. In this paper, the model for time-

varying GRNs is adopted as the switching auto regressive model.
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Consequently, in the first step, on the basis of a relation between

the Kalman filter and recursive least squares (RLS) estimation, it is

shown that a stochastic process can be constructed which is white

if and only if the time series expression data are generated by the

same sub-regulatory network. Based on this observation, a

procedure is developed to detect change points of a time-varying

GRN. The observed time series are divided into several segments

using these detection results; and each time series segment

belonging to two successive demarcating change points is

associated with an individual static regulatory network. And then,

in the second step, conditional network structure identification

methods are used to reconstruct the topology for each time

interval. In summary, in the suggested time-varying GRN

identification strategy, the problem of identifying a time-varying

regulatory network is transformed into that of identifying multiple

single static regulatory networks. To solve the latter is much easier

than to solve the former. For the performance evaluation, we use

both time series data generated by a synthetic time-varying GRN

and time series data provided by the DREAM3 challenge, and

simulation results confirm that the proposed strategy can detect

the change points precisely and recover each individual topolog-

ical structure effectively. For a real data application, our proposed

strategy is applied to time series data of Drosophila Melanogaster

during a complete time-course of development, and computation

results show that the proposed change point detection procedure

has ability to work effectively in real world applications and the

change point positioning accuracy exceeds other existing ap-

proaches, which means the suggested strategy may also be helpful

in solving actual GRN reconstruction problem.

The rest of this paper is organized as follows. At first, the

problem discussed in this paper and some mathematic preliminary

results are given, then the change points estimation algorithm is

illustrated and the two-step strategy is derived. Afterwards, the

proposed estimation strategy is assessed using both In Silico data

and the developmental data of Drosophila Melanogaster. Variations of

estimation performances with respect to parameters of the

suggested method will also be reported. Besides, some concluding

remarks are given about the characteristics of the suggested

method, as well as some future works worthy of further efforts.

Finally, an appendix is included in Text S1 to give proof of some

technical results.

The following notations are adopted in this paper. vec(X )
denotes the operation of stacking the columns of matrix X from

left to right, and A6B the Kronecker product of matrices A and

B. E x½ � and E x yj½ � stand respectively for the expected value of a

random variable x and the conditional expected value of a

random variable x given an observation of the random variable y.

Yt is defined as Yt~ yt yt{1 � � � y1f g, while x̂xj tj represents an

estimate about xj based on some observed data from k~1 to k~t.

Both dij and di,j are used to denote the Kronecker delta function.

To avoid an awkward presentation, no difference is made in this

paper between a random variable and its realizations.

Methods

Problem Statement and Preliminary Results
Generally speaking, a basic model for a time-varying GRN

consisting of n genes can be expressed as [12]

yt~Atyt{1zwt ð1Þ

Here, yt[Rn is the time series experiment data of gene expression,

and wt[Rn is the Guassian white noise as wt*N 0,Rð Þ. The

system matrix At[Rn|n captures the causal relationships of genes,

that is, if Atð Þij is positioned significantly far from zero, the j-th

gene captures a large effect on the i-th gene from time point t{1
to t. On the other hand, it is generally assumed that the regulatory

mechanism among genes is unlikely to change drastically over

small time intervals [7,13], which presumes that the coefficient

matrix At should vary smoothly with time. Based on this

assumption, Equation (1) can be expressed as the switching auto

regressive (SAR) model as follows:

yt~Al tð Þyt{1zwt,l(t)[ 1,2, � � � ,sf g ð2Þ

By means of the model described by Equation (2), some concepts

are given. The so-called ‘‘change point’’ means that the time

instant at which its discrete state l(t) changes value, and the time

series segment belonging to two successive demarcating change

points is associated with an individual static regulatory network

which the causal relationship can be captured by Al(t).

It has been pointed out that over the course of a cellular process,

such as a cell cycle or an immune response, there may exist

multiple underlying themes that determine the functionalities of

each molecule and their relationships to each other, and such

themes are dynamic and stochastic [7]. As a result, GRNs are

dynamic in response to physiological and environmental changes.

In general, normal biological tissues will undergo morphologic

changes when they are inflicted by some external stimuli, such as

ionizing radiations. In fact, many literatures have studied the

radiation tolerance [14–16], especially, the ‘‘Time-Dose’’ relation-

ships [17]; that is to say, the time span that the normal biological

networks remain unchanged when they are eroded by certain

amount of ionization radiation is unknown. In other words, the

change points are not known a priori in this type experiment. And

by extension, the change points are not always known a priori in

general. Therefore, it is assumed that the change point is unknown

and its value is needed to estimate in some literatures on the

identification of time-varying GRNs [10,11]. We also hold this

assumption in the paper.

Based on the discussion above, the time-varying GRN

identification problem discussed in this paper is as follows.

Problem. Given a series of gene expression vectors yt

generated by model (2), t~1,2, � � � ,N , estimate all the change

points, the number of sub-networks s, and the model parameters

Al(t), l(t)[ 1,2, � � � ,sf g.
It is well known that the computation procedure of recursive

least squares (RLS) parametric estimations for AR models

possesses the same form as that of Kalman filtering [18,19].

Using these similarities, some system identification problems can

be easily transformed into a state estimation one, and vice versa.

To investigate the above change point estimation problem, some

relations are introduced here between RLS estimations of an AR

system and Kalman filtering.

Figure 1. Gene regulatory networks recovered from gene expression time series of Drosophila Melanogaster. For each physiological
stage, a network has been reconstructed(A: Adult, B: Embryo1, C: Embryo2, D: Larva, E: Pupa). And, interactions that have been verified are marked in
red.
doi:10.1371/journal.pone.0074571.g001
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Consider the following linear time invariant (LTI) AR system

yt~Ayt{1zwt ð3Þ

in which wt is a sequence of independent random vectors with

zero mean and covariance matrix R. Rewrite Equation (3) into a

state-space form as follows,

xtz1~xt, yt~htxtzwt ð4Þ

Here, xt~vec ATð Þ, ht~In6yT
t{1. Assume that x0 is an a priori

unbiased estimate about vec ATð Þ and its covariance matrix is P0.

Moreover, assume that this estimate is independent of wt with

t§1. Through adopting the general results of [18,19] on relations

between RLS parametric identification and state estimation to the

above LTI AR system, the following results can be straightfor-

wardly obtained.

Lemma 1. Set x̂x0D0 and P0D0 respectively as x̂x0D0~x0 and

P0D0~P0. Based on gene expression time series data yt generated

by model (3), t~1,2, � � � ,N, the RLS estimate for its model

parameters A, denote it by x̂xtDt, can be recursively computed as

follows,

x̂xt tj ~x̂xt{1 t{1j zKt yt{htx̂xt{1 t{1j
� �

ð5Þ

Kt~Pt{1 t{1j hT
t RzhtPt{1 t{1j hT

t

� �{1 ð6Þ

Pt tj ~Pt{1 t{1j {Pt{1 t{1j hT
t RzhtPt{1 t{1j hT

t

� �{1
htPt{1 t{1j ð7Þ

Moreover, if both x0 and wt are normally distributed, then, x̂xtDt is

also normally distributed, and x̂xtDt~E xtDYt½ �.

Change point Detection Procedure
In the time-varying GRN identification, a common situation is

that available knowledge about the actual network topology is

nothing but its gene expression data. In order to develop the

change points detection procedure, it appears appropriate to

investigate at first whether or not there exist some detectable

stochastic differences between gene expression data generated by

the same sub-network and those generated by more than one sub-

network. If the answer is positive, then a change of these stochastic

properties reflects a switch between two sub-networks. In other

words, a statistic can be constructed for estimating change points

of a time-varying GRN. Based on these considerations, stochastic

properties of an innovation process of the network described by

Equation (2) are investigated with respect to the recursive

estimation procedure given by Equations (5)–(7), in case that gene

expression data are generated respectively by a single sub-network

and multiple sub-networks.

Theorem 1. Suppose that gene expression time series data

ytDNt~1 are generated by the time-varying GRN described by

Equation (2). On the basis of the recursive estimation procedure of

Equations (5)–(7), define an innovation process etDNt~1 as follows,

et~yt{htx̂xt{1Dt{1 ð8Þ

Then, etDNt~1 is an independent random sequence if and only if the

network described by Equation (2) collapses to a static network.

A proof of the above theorem is given in Text S1. Furthermore,

from the above discussions, a direct result of Equation (2) is that

yt, t~1,2, � � � ,N, is also normally distributed. On the other hand,

from properties of Kalman filtering, it can be declared that

htx̂xt{1Dt{1~E ytDYt{1f g. Therefore, et defined in Equation (8) is a

normally distributed random vector. On the basis of Theorem 1

and its extensions, the following results can be obtained through

straightforward algebraic manipulations. These results are very

helpful in detecting the change point.

Corollary 1. Assume that for arbitrary j,k~1,2, � � � ,s and

j=k, there exists at least one scenario that Aj=Ak. For gene

expression time series data ytDNt~1 generated by model (2), define

x̂xtDt recursively using the procedure of Equations (5)–(7). Moreover,

define a time series �eetDNt~1 as follows

�eet~ RzhtPt{1Dt{1hT
t

� �{1=2
(yt{htx̂xt{1Dt{1) ð9Þ

Then, �eetDNt~1 is a sequence of independently distributed random

variables with zero mean and unit covariance matrix, if and only if

there is no sub-network switch during the time period 1ƒtƒN .

Corollary 1 makes it clear that change point estimation for a

time-varying GRN described by Equation (2) can be transformed

to independence validation of a Gaussian random sequence. The

latter can be checked by chi-square test. Based on the definition of

the x2-distribution, we have the following result.

Corollary 2. Based on the conditions of Corollary 1, define Q
as

Q~
Xt

i~t{1

�ee2
i ð10Þ

Then, Q obeys the x2-distribution with degrees of freedom 2n, if

and only if there is no sub-network switch during the time period

t{1ƒiƒt.

The results of Corollary 2 are helpful in detecting the change

point. As a matter of fact, in actual applications, if Qƒx2
1{a(2n),

then, the hypothesis that the collected gene expression data are

generated by the same sub-network can not be rejected with a

confidence level 1{a. Based on the results of Corollary 1 and

Corollary 2, a procedure can be developed for detecting the

change point. Details of this procedure are given in Table 1.

An attractive property of the change point detection procedure

is that its computational complexity does not depend on the

number of change points. Moreover, it is also worthwhile to point

out that in this detection procedure, neither prior distribution on

the number of change points nor knowledge about the change

time instant is required, i.e., our change points detection

procedure do not require the structure prior distribution of a

GRN, which is the major difference from the method proposed in

[10,11].

Two-Step Strategy
In the above subsection, the change point estimates have been

obtained, which are denoted by ti
s,i~1,2, � � � ,h. Base on these

change point estimates, the observed gene expression time series

data are divided into hz1 segments, which are

L1 : ytD
t1
s {1

t~1 ,L2 : ytD
t2
s {1

t1
s

,:::,Lhz1 : ytDNth
s
; and each time series seg-

ment belonging to two successive demarcating change points is

supposed to associate with an individual static GRN. Consequent-

ly, for each time interval, the causal relationships inference

problem can resort to conditional network structure identification
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methods. The suggested two-step strategy inference method for

time-varying GRNs is summarized as follows.

1. Estimate change points using the change point detection

procedure in Table 1.

2. For each time series segment, infer the causal relationships by

conditional network structure identification methods, such as

IOTA [20], and LASSO [21], etc.

In summary, the suggested two-step strategy can decouple the

change point detection problem and the topology inference

problem, that is, the problem of identifying a time-varying

regulatory network is transformed into that of identifying multiple

single static regulatory networks. To solve the latter is much easier

than to solve the former.

Remark. It should be noted that the number of the biological

experimental time series data is very limited. If there exist some a

priori information about the network topology, it is also desirable to

jointly learn the static networks across time segments. A feasible

method is as follows.

Suppose that the time series yt
N
t~1

�� is cut into two segments

P
D
~

yt
k
t~1

��� �
, and Q

D
~

yt
N
t~kz1

��� �
by the suggested change

point detection procedure. If gene j regulate gene i throughout this

time period based on other a priori knowledge, then we can set the

initial value AQ

� �
ij

as ÂAP

	 

ij

that is obtained from the data

segment P, when learn the network topology based on the data

segment Q. Therefore, jointly learning the static networks across

time segments can be done by this way.

Results and Discussion

Simulation Study
In order to evaluate the properties of the suggested two-step

strategy, gene expression time series data are generated by an

academic dynamic network. This simulated dynamic network

include two sub-networks denoted by A1 and A2. The simulation

time span is 60, and at time instant 31, the active sub-network is

changed from A1 to A2. The simulated dynamic network include

10 genes; and the nonzero elements for A1 are (A1)1,1~

0:02656,(A1)2,2~{0:0324,(A1)7,2~0:0767,(A1)3,3~0:1900,

(A1)8,3~0:2004,(A1)9,3~0:0803,(A1)5,4~0:7089,

(A1)2,5~0:2441,

(A1)4,5~0:0265,(A1)5,6~{0:0183,

(A1)6,6~{0:0215,(A1)1,7~0:5605,

(A1)4,7~0:1922,(A1)7,7~0:2841,

(A1)3,8~0:6424,(A1)10,8~0:0982,

(A1)8,9~0:2512,(A1)9,9~0:2605,

(A1)2,10~0:5514, (A1)6,10~0:3873, (A1)10,10~0:5897 respective-

ly; while the nonzero elements for A2 are

(A2)1,1~0:03778,(A2)8,1~0:3624, (A2)2,2~0:3975,

(A2)9,2~{0:0009, (A2)7,3~{0:0228, (A2)3,4~0:6232,

(A2)10,4~{0:0157, (A2)4,5~0:5368, (A2)5,6~{0:0222,

(A2)8,6~0:2090, (A2)6,7~0:4607, (A2)7,7~0:3293,

(A2)5,8~0:4301, (A2)8,8~0:3317, (A2)2,9~0:2580,

(A2)4,9~0:0402, (A2)9,9~0:2110, (A2)1,10~0:2886,

(A2)10,10~0:0578, respectively. The noise wt is a sequence of

independent Gaussian random variable with mean 2 and variance

0.5.

In the second step, we apply a recent identification method,

named the inner composition alignment (IOTA) [20]. In IOTA, a

measurement t is defined to characterize the causality of two time

series. For the given short time series y(l) and y(k), sort y(l) with the

order y(l), such that Vi, y lð Þ y lð Þ
	 
h i

i
ƒ y lð Þ y lð Þ

	 
h i
iz1

, and

reorder the time series y(k) with respect to y(l) as

g k,lð Þ~y kð Þ y lð Þ
	 


. Define t as follows,

tkl~1{

Pm
i~1

Pm{1
j~iz1 vijH g

k,lð Þ
jz1 {g

k,lð Þ
i

	 

g

k,lð Þ
i {g

k,lð Þ
j

	 
h i

D

Here, m is the length of the time series, D~ m{1ð Þ m{2ð Þ=2 is a

normalization constant which corresponds to the maximum

number of crossings, vij denotes a weight, and H x½ � is the

Heaviside step function,

H x½ �
1,xw0

0,xƒ0

8><
>:

In the last ranking list of tkl , if the magnitude is larger, the

corresponding transcription regulation will be established in a

larger probability from gene l to gene k.

In systems biology, predictions are compared with the actual

network structure using the following two different metrics in

topology prediction accuracy evaluations.

N AUPR: The area under the precision-recall curve;

N AUROC: The area under the receiver operating characteristic

curve.

Choose a as 0.05, independently simulate this dynamic network

500 times, and the results are summarized in Table 2.

The change point estimated mean in Table 2 are very close to

the actual change time instant, and the variance of these estimates

Table 1. Change point Detection Procedure.

S1: Initialization: Select a positive number a[(0,1) . Set x̂x0D0~0, P0D0~I .

S2: Calculate recursively �eet using Equation (9) and the procedure of Equations (5)–(7).

If the number of the computed �eet is greater than 2, compute the statistic Q.

S3: If Qƒx2
1{a(2n), the current time instant isn’t a change point. Let t?tz1 and return

to S2. Otherwise, record the current time instant as a change point, assign it to be the

initial time for detecting the next change point, and return to S1.

S4: Stop the procedure in case that every gene expression data has been utilized.

doi:10.1371/journal.pone.0074571.t001
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is very small, which shows our change point detection procedure is

effectively. And, the estimate variances of AUROC and AUPR are

quite small. It is concluded that the main difficulty of the switched

autoregressive exogenous model identification is that the identi-

fication problem includes a classification problem in which each

data point must be associated to the most suitable sub-model; and,

the more precise the data classification is, the better the

identification results are [22]. This argument is also suitable for

the scenario of identifying a time-varying GRN. Due to the high

accuracy of the change point estimates, the estimate variances of

AUROC and AUPR are quite small. Therefore, these simulation

results show that our two-step strategy is appropriate for

reconstructing time-varying GRNs.

The above simulation is an academic case, in which the

experimental environment is very close to the fundamental

assumption in the section of Methods. In the rest of this

subsection, we will give another simulation, in which gene

expression data are from the DREAM3 in silico size10 challenge

[23,24]. Although gene expression data in the DREAM challenges

are emulational, the simulation model in the DREAM challenges

is nonlinear and the noise is not exactly Gaussian. Therefore, the

source networks are closer to the real situation. Due to the static

nature of the network in the DREAM challenges, we concatenate

gene expression data generated by 5 different networks to simulate

a time-varying GRN. Applying our strategy to these data, the

simulation results are shown in Table 3.

From Table 3, we know the actual change time instants are 22,

43, 64, 85, respectively, and our change point detection procedure

estimate these change points accurately. That is, gene expression

time series are successfully divided into five segments, and the

problem of identifying a time-varying regulatory model is

effectively transformed into that of identifying five single regula-

tory models. Consequently, conditional identification methods for

the static GRN are used to reconstruct the topology for each

segment, which means that the proposed two-step strategy can

ease the difficulty level in recovering a time-varying GRN.

Real Data Application
The gene expression data of Drosophila Melanogaster have been

well-studied in different aspects [5,10,11,25]. Here, we apply our

two-step strategy to the developmental data provide by [5]. In this

study, the researchers have reported gene expression data for

nearly one third of all Drosophila Melanogaster genes during a

complete time-course of development. And, cDNA microarrays

were used to analyze the RNA expression levels during 66

sequential time periods, including the embryonic period (30

samples), the larval period (10 samples), the pupal period (18

samples) and the first 30 days of adulthood (8 samples). In

addition, a major morphological change relates to a modification

of transcriptional regulations during the first 0 to 6.5 hours of

embryonic development, which consists of 12 samples. Therefore,

the actual change instants ought to be 13, 31, 41, and 59. Here, we

use a sub-dateset of this developmental data, containing the

following 11 genes: ‘actn’,‘eve’,‘gfl’,‘mhc’,‘mlc1’,‘msp300’,‘-

myo61f’,‘prm’,‘sls’,‘twi’, and ‘up’.

To apply our change point detection procedure, we first

estimate noise covariance matrix R. Reformulize the basic model

(1) as

yt~Atyt{1zwt~wthtzwt

Here, ht~vec AT
t

� �
, wt~In6yT

t{1. Based on this formulation, we

utilize the weighted recursive least square algorithm to estimate R

[18,19]. Concretely, given the initial condition P0 and ĥh0, the

recursive expression equations to calculate ht are given as follows.

ĥht~ĥht{1zKt yt{wtĥht{1

h i
ð11Þ

Kt~Pt{1wT
t wtPt{1wT

t zmI
� �{1 ð12Þ

Pt~m{1 I{Ktwt½ �Pt{1 ð13Þ

On the basis of the weighted recursive least square procedure of

Equations (11)–(13), define a residual sequence etDNt~1 as follows,

et~yt{wtĥht: ð14Þ

Then, the noise covariance matrix R can be estimated as

R̂R~
1

N

XN

t~1

ete
T
t : ð15Þ

Table 2. Performances with simulation data.

changetime
estimate AUROC1 AUPR1 AUROC2 AUPR2

mean 31.0900 0.6208 0.4043 0.6454 0.3414

standard
deviation

0.2865 0.0410 0.0588 0.0417 0.0476

doi:10.1371/journal.pone.0074571.t002

Table 3. Performances with DREAM3 in silico size10 challenge.

segment number starting point (actual/estimate) ending point (actual/estimate) AUROC AUPR

1 1/1 21/21 0.7344 0.2007

2 22/22 42/42 0.6933 0.2893

3 43/43 63/63 0.6011 0.1354

4 64/64 84/84 0.6789 0.3522

5 85/85 105/105 0.7681 0.4408

doi:10.1371/journal.pone.0074571.t003
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The typical initial value can be selected as P0~dI , where d is a

large number, ĥh0~0, and the weighting coefficient m is typically

chosen as 0:98vmv1 [18,19].

By setting d~103,m~0:985,a~0:05, the change point esti-

mates by the suggested change point detection procedure are 13,

31, 46, 59. Although the third change point estimate is a little

away from the actual value, the other changetime estimates are

equal to the actual change instants. On the other hand, using the

same dataset, a report that time intervals {18 to 19}, {31 to 33},

{41 to 43} and {59 to 61} contain more than 40% of the change

points can be found in [10]; and in [11], the authors have given

only the last three change points. These results show that the

proposed change point detection procedure appears to exceed the

the two alternative methods, and our approach has ability to work

effectively in real world applications.

Based on these change point estimates, the developmental data

of Drosophila Melanogaster have divided into five segments. For each

segment, we use the well-studied LASSO model in statistics to

infer the causal relationship [21]. Specifically, let

Y~½y1,y2, � � � ,yN �, and Y1~Y : ,1 : N{1ð Þ, Y2~Y : ,2 : Nð Þ,
then reconstructing a static GRN can be formulized as follows,

min AY1{Y2k k2zl Ak k1

s:t:
Pn
j~1

aij

�� ��ƒ1, for all i~1, � � � ,n ð16Þ

The elements on each row of matrix A are independent and

constraints in (16) are independent of each row in matrix A.

Therefore, optimization problem (16) can be reduced to n
optimization problems, each having n variables which are

elements on a row of matrix A. That is, for each row in matrix

A, i.e., for each gene i (i~1,2, � � � ,n), we have

min YT
1 ai{Y2j

�� ��
2
zl aik k1

s:t: aik k1ƒ1 ð17Þ

in which, Y2j~ y2ð Þj , � � � , yNð Þj
h iT

. By solving optimization

problem (17), the topological structure of a GRN can be

recovered.

By setting l~0:5, the topological structure for each segment is

shown in Figure 1. An objective assessment of the reconstruction

accuracy is not feasible due to the limited existing biological

knowledge and the absence of a gold standard. However, we can

mark some interactions that have been verified in red. More

specifically, the interactions ‘actn<mhc’, ‘actn?up’, and

‘up<mhc’ have been verified in [26,27]; the interaction ‘eve?twi’

twi’ has been verified in [28]; and the interactions ‘actn?msp300’,

‘actn?prm’, ‘prm<sls’ and ‘sls?up’ have been verified in [29];

and the interaction ‘actn?sls’ has been verified in [30]. These

computation results using the developmental data of Drosophila

Melanogaster show that the suggested two-step strategy may also be

helpful in solving actual GRN reconstruction problem.

Apart from the developmental data of Drosophila Melanogaster,

there exist some other real microarray compendia. Especially, the

more recent DREAM5 network inference challenge offer some

alternative real microarray compendia, which can be found in the

web site at http://wiki.c2b2.columbia.edu/dream/index.php/

D5c4 or in [31]. Whereas, the time series data in a single

experiment are quite short. Thus, using them to reconstruct a

simulative time-varying GRN that is obtained by concatenating

gene expression data of different networks is very tricky. However,

there exists an especial long time series, i.e., time series data of

No. 49 experiment, Network4. This long time series has 48

samples; and from Sample 1 to Sample 11 there is no external

interference to the network, while from Sample 12 to Sample 48

there is an uninterrupted external interference (P19) to the

network. As mentioned before, biological networks change in

response to environmental cues, and the change point is not

always known a priori in general. Therefore, we use the suggested

change point detecting algorithm to check whether there is a

topological change in response to P19.

Based on the gold standard of Network4 suggested by the

Dream project organizers, we select three sub-networks. In this

way, although it is not clear that whether there is a biological

significance for these sub-networks, it can be guaranteed that the

system matrix A for each sub-network is not a zero matrix. The

first one include 7 genes, which are G20, G61, G76, G111, G224,

G273, G319. The second one include 8 genes, which are G15,

G21, G45, G95, G101, G111, G212, G213. And, the third one

include 8 genes, which are G15, G45, G47, G87, G101, G112,

G152, G273. By setting d~103,m~0:98 in Equations (11)–(15),

we can obtain R̂R for the dataset. Then, setting a~0:001 and using

the change point detection procedure in Table 1, we find that each

sub-network changes its network topology at the time interval 16

to 17. This result also verifies the general conclusion that biological

networks are dynamic in response to environmental changes [6,7],

and the rewiring processes may be time-delayed [11].

Finally, some information about the dataset can be found in

[31]. More specifically, Network 4 is S. cerevisiae; the external

interference P19 is phenelzine treatment; and the de-anonymized

gene names are listed as follows: G15: YKL043W, G20:

YJR147W, G21: YER045C, G45: YMR016C, G47: YNL167C,

G61: YLR131C, G76: YJR060W, G87: YHR206W, G95:

YNL314W, G101: YGL162W, G111: YOR028C, G112:

YER111C, G152: YLR182W, G212: YDL106C, G213:

YIL130W, G224: YEL009C, G273: YDR259C, and G319:

YPR104C.

Concluding Remarks
In this paper, we consider the time-varying GRN identification

problem. The switching auto-regressive model is used to approx-

imate the regulatory model for time-varying GRNs. And, a two-

step strategy is proposed to recover the topological structure. In

the first step, on the basis of a relation between the Kalman filter

and recursive least squares estimation, it is shown that the

innovation process is white if and only if the time series expression

data are generated by the same sub-regulatory network. Based on

this observation, a procedure is developed to detect change points

of a time-varying GRN. The observed time series are divided into

several segments based on these detection results; and each time

series segment belonging to two successive demarcating change

points is associated with an individual static regulatory network.

Therefore, in the second step, for each time interval, the causal

relationships inference problem can resort to conditional network

structure identification methods, such as IOTA, and LASSO, etc.

The main difficulty of the time-varying GRN identification

problem is that the identification problem includes a classification

problem in which each data must be associated to the most

suitable sub-network. The more precise the data classification is,

the better the identification results are. The proposed two-step

strategy efficiently estimates the change point, which results in the

decoupling of the change point detection problem and the

topology inference problem. Hence, the problem of identifying a

time-varying regulatory model is transformed into that of

Recovering Time-Varying GRNs
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identifying multiple single static regulatory models, which means

that the proposed two-step strategy can ease the difficulty level in

recovering a time-varying GRN. Simulation results show that the

proposed strategy can detect the change point precisely and

recover each individual topology structure effectively. Moreover,

computation results with the developmental data of Drosophila

Melanogaster show that the suggested strategy may also be helpful in

solving actual GRN reconstruction problem.

Under our two-step strategy architecture, recovering a static

GRN from time series is the most basic problem. However, this

problem is not solved completely and efficaciously! Therefore, the

most urgent problem is how to utilize gene expression time series

data to obtain a static network structure with high accuracy.
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Text S1 Appendix: Proof of Theorem 1.
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