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Spontaneous cortical activity transiently organises
into frequency specific phase-coupling networks

Diego Vidaurre1'2'3'4, Laurence T. Hunt 1'2'3, Andrew J. Quinnw, Benjamin A. E. Hunt5'6, Matthew J. Brookes?,
Anna C. Nobre'37 & Mark W. Woolrich%3

Frequency-specific oscillations and phase-coupling of neuronal populations are essential
mechanisms for the coordination of activity between brain areas during cognitive tasks.
Therefore, the ongoing activity ascribed to the different functional brain networks should also
be able to reorganise and coordinate via similar mechanisms. We develop a novel method
for identifying large-scale phase-coupled network dynamics and show that resting networks
in magnetoencephalography are well characterised by visits to short-lived transient brain
states, with spatially distinct patterns of oscillatory power and coherence in specific fre-
quency bands. Brain states are identified for sensory, motor networks and higher-order
cognitive networks. The cognitive networks include a posterior alpha (8-12Hz) and an
anterior delta/theta range (1-7 Hz) network, both exhibiting high power and coherence in
areas that correspond to posterior and anterior subdivisions of the default mode network.
Our results show that large-scale cortical phase-coupling networks have characteristic sig-
natures in very specific frequency bands, possibly reflecting functional specialisation at
different intrinsic timescales.
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ARTICLE

fficient neuronal coordination between regions across the

entire brain is necessary for cognition!™ A proposed

mechanism for such coordination is oscillatory synchroni-
sation, that is, populations of neurons transmit information by
coordinating their oscillatory activity with the oscillations of the
receptor population at certain frequencies. Furthermore, different
frequencies, or, more generally, different oscillatory patterns,
subserve different functions®. At the same time, phase-coupling
between neuronal populations in specific frequency bands has
been proposed as a mechanism for regulating the integration and
flow of cognitive content®=® and coordinating neuronal spike
timing®. The role of phase-coupling at distinct frequencies has
also been demonstrated in tasks at the large scale, where task-
relevant information is effectively transmitted through phase-
locking between separate cortical regions®10-12,

Using functional magnetic resonance imaging (fMRI), it has
been shown that large-scale networks activated in tasks are also
spontaneously recruited in the resting state!. These networks
have previously been shown to have distinct band-limited power
in electroencephalography (EEG) and magnetoencephalography
(MEG)!4-18, If these spontaneously occurring networks are to
provide an effective substrate for cognitive processes, then they
might also be expected to exhibit the same fast changing phase-
coupling activity observed in tasks®!%20, However, the evidence
for frequency-specific phase-coupling in spontaneous activity at
timescales associated with fast cognition is limited.

Here we propose that cortical activity at rest can be described
by transient, intermittently reoccurring events in which large-
scale networks activate with distinct spectral features that include
both power and phase-coupling. To identify the possible presence
of these events, we use a new analysis approach based on the
Hidden Markov Model (HMM)?!, a general mathematical fra-
mework previously used to find recurring states in brain data’2.
For the first time, this allows for the identification of brain-wide
networks (or brain states) characterised by specific patterns of
power and phase-coupling connectivity, which, crucially, are
spectrally resolved (i.e. power and phase-coupling are defined as a
function of frequency). These patterns are also temporally
resolved, meaning that the method provides a probabilistic esti-
mation of when the different networks are active (see Fig. 1a). We
used resting-state MEG data from 55 healthy subjects, source-
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reconstructed to 42 regions across the entire cortex. Notably,
applying this approach to these data revealed the distinct tem-
poral and spectral properties of anterior versus posterior regions
of the default mode network (DMN). The joint description of the
spectral, temporal and spatial properties of ongoing neuronal
activity provides new insight into the large-scale circuit organi-
sation of the brain?3,

Results

Twelve states were identified using HMM. Using concatenated
MEG resting-state data from 55 subjects, mapped to a 42-region
parcellation using beamforming?* with reduction of spatial
leakage in order to diminish the effects of volume conduction??,
we identified 12 HMM states using a novel approach that we
refer to as time-delay embedded HMM (TDE-HMM). Essentially,
this technique finds, in a completely data-driven way, recurrent
patterns of network (or HMM state) activity. Each HMM state
has parameters describing brain activity in terms of power cov-
ariations and, crucially, coherence between every pair of regions.
The method provides information that is both spectrally (power
and phase-coupling are defined as a function of frequency) and
temporally resolved (different networks are described as being
active or inactive at different points in time). Importantly, while
the spatial and spectral description of the states is common to all
subjects, each subject has their own state time course, repre-
senting the probability of each HMM state being active at each
instant (see Methods for further details). See Fig. la for a gra-
phical example, and Supplementary Fig. 1 for an illustration of
the entire pipeline, and refer to Methods for links to the code
repository and examples.

The states exhibit specific phase-locking connectivity. Figure 2
shows spatial maps of power and phase-coupling connectivity,
both averaged across a wideband frequency range (1-45 Hz), for
4 of the 12 estimated states. The power maps are in relation to the
mean power across states, and all maps are thresholded for ease of
visualisation; see Supplementary Fig. 3 for a statistical testing
analysis on power and connectivity and Methods for further
details. Supplementary Fig. 2 shows the remaining eight states,
four of which exhibit reduced power and connectivity relative to
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Fig. 1 Schematic illustration of the method. a Each state is defined as having its own distinct temporal, spatial and spectral characteristics. The temporal
information is given by when the state is active (red boxes). The spatial and spectral descriptions of the power maps and phase-coupling networks are
contained in the parameters of each state. b Schematic of the iterative model inference. The state parameters are estimated using those segments of the
data for which the state is currently estimated to be active. In turn, the estimation of when a state is active is based on the how well each state can explain
each time point (i.e. according to the current estimate of the spatial/spectral state parameters)
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Fig. 2 Brain states identified using Hidden Markov Modelling represent networks of spectral coherence. Wideband (1-30 Hz) thresholded power maps and
phase-coupling are displayed for the two higher-order cognitive (anterior and posterior) states and the visual and motor states. The two higher-order
cognitive networks contain regions that suggest a subdivision of the default mode network. Power maps are relative to the temporal average, i.e. they are
globally centred such that blue colours reflect power that is lower than the average over states and red/yellow colours reflect power that is higher than the
average over states. The coherence networks only show high-valued connections (see Methods). In the circular phase-coupling plots, each numbered dot
represents one brain region. Supplementary Fig. 1 shows the same information for the other eight states

the grand average. The power maps and phase-coupling con-
nectivity of each state tend to be (although not exclusively)
bilateral, with strong increases in power tending to (although not
exclusively) accompany increases in phase-locking. We refer to
two of the states (left) as being “higher-order cognitive”, in
accordance with the brain areas they incorporate and previous
literature!326-28_ The other two states (right) correspond well to
visual and motor systems. The two higher-order cognitive net-
works involve regions that together form the DMN; see below.
This affords the interpretation that the DMN, when analysed at
the finer timescales, can be decoupled into two separate compo-
nents. The anterior higher-order cognitive state includes the
temporal poles (often associated with semantic integration®’) and
the ventromedial prefrontal cortex (typically implicated in emo-
tion regulation and decision making®’), exhibiting a strong
connectivity with the posterior cingulate cortex (PCC), which is
a key region of the DMN31:32, The posterior higher-order cog-
nitive network encompasses the PCC/precuneus, bilateral super-
ior and inferior parietal lobules; bilateral intraparietal sulci;
bilateral angular and supramarginal gyri and bilateral temporal
cortex. These regions are classically associated with integration of
sensory information, perceptual-motor coordination and visual
attention, as well as processing of sounds, biological motion and
theory of mind33.

Spectral features of the higher-order cognitive states. Previous
work looking at the global (temporally averaged) estimates of
large-scale functional connectivity has demonstrated that differ-
ent brain networks show correlation of power in different fre-
quency bands?%. Leveraging the fact that our model is spectrally
resolved, we sought to investigate how power and phase-coupling
varies with frequency in the different brain states.

For the four states shown in Fig. 2, Fig. 3a shows power versus
coherence, with dots representing each brain region. These results
are shown wideband (1-45 Hz) and for three different frequency
modes. The frequency modes were estimated following a data-
driven approach (non-negative matrix factorisation, see Meth-
ods), which identified frequency modes that approximately
correspond to classical frequency bands (although overlap one
another to a certain extent, bringing some data-driven flexibility).
For convenience, we labelled the data-driven modes using the
closest corresponding classical frequency bands, resulting in
“delta/theta” (0.5-10 Hz), “alpha” (5-15 Hz), “beta” (15-30 Hz)
and “low gamma bands” (30-45 Hz). It should, however, be kept
in mind that the frequency modes are derived from the data and
so are not exactly the same as the classical frequency bands
normally used. Possibly owing to the relatively low signal-to-noise
ratio in higher frequency bands, strong state-specific differences
in the gamma band could not be observed with this approach,
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Fig. 3 The higher-order cognitive states have distinct spectral features compared with the other states. a Total connectivity of each region (defined as the
sum of the values of coherence of the region with the rest of the regions) against power, for wideband and the three estimated frequency modes (see
Methods), where each dot represent a different brain region. Both power and connectivity are higher for the higher-order cognitive than for the visual and
motor states, with coherence exhibiting the largest difference. b Spectral profiles of the two higher-order cognitive (anterior and posterior) and the visual
and motor states, in terms of power averaged across brain regions (left) and coherence averaged across all pairs of brain regions (right); shaded areas
represent the standard deviation across brain regions (or pairs of regions). Supplementary Fig. 5 shows the power spectra for the anterior/posterior
precuneus alongside the PCCs. ¢ Power for PCC (top left), power for mPFC (bottom right) and coherence between mPFC and PCC (bottom left) for the
four considered states in comparison to the grand average (black line, with the shaded areas representing standard deviation across states). The
temporally average global power and coherence has a relative lack of spectral detail compared with the individual brain states

and therefore, we only show results for the delta/theta, alpha and
beta modes. Strong increases in power tended to (although not
exclusively) accompany increases in coherence. Interestingly, the
differences in coherence between the states are much more
pronounced than the differences in power.

To expand on the specific spectral differences between the
higher-order cognitive and the visual and motor states, Fig. 3b
shows power and coherence averaged across all brain regions as a
function of frequency. This shows frequency at full spectral
resolution rather than the frequency modes used in the previous
Fig. 3a. The anterior higher-order cognitive state is characterised
by strong power and coherence in the slowest frequencies (delta/
theta), whereas the posterior higher-order cognitive is dominated
by the alpha frequency. More specifically, there is a strong
component at ~4 Hz for the anterior higher-order cognitive state
in both power and coherence and a component at 10 Hz for the
posterior higher-order cognitive state also in both power and

coherence. These results reveal that the two higher-order
cognitive states, which may correspond to subdivisions of the
DMN, exhibit more power and coherence than the visual and
motor states. Moreover, they have very different dominant
frequencies.

Given the key role attributed to the PCC and the medial
prefrontal cortex (mPFC) within the DMN and resting-state
networks more broadly31:3235, we next examined the state-
specific frequency profile of the PCC and the mPFC to see if their
spectral characteristics in the higher-order cognitive states are
significantly different to the other (less cognitive) states. Figure 3c
shows the power in the PCC and the mPFC, as well as the
coherence between these two regions. The four considered states
were compared to the global average (solid black lines; shaded
areas represent the standard deviation across states), which
corresponds to the power and coherence computed from a static
(rather than dynamic) perspective. The PCC has more power
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Fig. 4 The two higher-order cognitive states operate in different frequencies. Frequency-specific relative power maps and phase-coupling (see Fig. 2 for
details) for the anterior and posterior higher-order cognitive states and for the three data-driven estimated frequency modes. Whereas activity (power and
phase-locking) is dominant in the delta/theta frequencies for the anterior-cognitive state, the posterior-cognitive state is dominated by alpha. Both states
exhibit strong phase-coupling with the PCC but in different frequency bands. Supplementary Fig. 4 shows a similar view of the visual and motor states

across all frequencies in the posterior higher-order cognitive state,
although the power in the slow frequencies for the anterior
higher-order cognitive state is also significantly above the global
average. By contrast, the mPFC shows high power in the anterior
higher-order cognitive state, particularly in the delta/theta
frequency range. Finally, global phase-coupling is high in the
anterior higher-order cognitive state in delta/theta, whereas the
posterior higher-order cognitive state exhibits high PCC con-
nectivity in alpha and beta. Altogether, these results suggest that
(i) the PCC has spectral properties that are unique to the higher-
order cognitive states (consistent with the idea of the PCC being a
hub region), (ii) the anterior higher-order cognitive state involves
the PCC in slower frequencies than the posterior higher-order
cognitive state for both power and phase-coupling connectivity,
and (iii) these properties are only observed when we compute
power and coherence specifically within the fast transient events
that correspond to the HMM brain states, whereas the global,
temporally averaged properties of the PCC (black line) are far less
striking.

We next examined the spatial distribution of these spectral
differences using the frequency modes identified in Fig. 3. Figure 4
shows power and phase-coupling in brain space for each
cognitive state and frequency mode (Supplementary Fig. 4
presents a similar view for the visual and motor states). This
view clearly reflects that the two higher-order cognitive states

have a distinct spatial distribution of power and connectivity. For
example, we observe strong phase-coupling between frontal areas,
mPFC and the PCC specifically in the delta/theta mode for the
anterior higher-order cognitive state. By contrast, the posterior
higher-order cognitive state is characterised by pronounced
intraparietal and PCC/precuneus connectivity (specifically in
the alpha frequency mode) and by some slow frequency power
and phase-coupling in the temporal regions. As observed in
Fig. 2, both power and connectivity exhibit strong interhemi-
spheric symmetry.

Temporal features of the higher-order cognitive states. Toge-
ther with the state distributions, the HMM inference also esti-
mates the time courses of the visits to each of the brain states. We
used these to look at the extent to which the temporal char-
acteristics of the higher-order cognitive states differed to the
visual and motor states. Figure 5a shows for each state: the dwell
times (or life-times, i.e. the amount of time spent in a state before
moving into a new state), the interval times between consecutive
visits to a state, and the fractional occupancies (reflecting the
proportion of time spent in each state). All HMM states were on
average short-lived, their dwell times lasted on average between
50 and 100 ms. Note that, as shown empirically in the Supple-
mentary Note 1, coherence can still be reliably measured for short
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Fig. 5 The higher-order cognitive states have distinct temporal features compared with the other states. The states depicted in brown colours are depicted
in Supplementary Fig. 2 in an order that consistent with this figure (i.e. the first four are states with positive activation and the second four have a negative
activation). a Distribution of state dwell times (time spent in each state visit), distribution of interval times between state visits and fractional occupancies
(proportion of time spent in each state). The dwell times are significantly longer for the posterior higher-order cognitive state than for all the other non-
cognitive states (p value < 0.001), and the interval times are significantly longer for the two higher-order cognitive states than for the other states (p value
<0.001). b Cumulative density function (CDF) for the interval times, reflecting much larger tails for the interval time distribution of the two higher-order
cognitive states, both of which have significantly larger CDF values than the other states (permutation testing; statistical significance for a confidence level
of 0.07is indicated by the lines on top of the panel). € Spectral analysis of a point process representing the onset of the state events, computed separately
for each state (99% confidence intervals are indicated by shaded areas); no slow oscillatory modes in the state occurrences themselves is revealed. The
higher-order cognitive states have a stronger power in the 1.5-5 Hz range of frequency than the rest of the states (statistical significance using permutation

testing is indicated on top, using a confidence level of 0.01)

state visits even at the slowest frequencies. Since the absolute
value of these temporal features must be interpreted with caution
given the state exclusivity assumption of the HMM (see Discus-
sion for details), we examined only relative differences between
the states.

We observed longer dwell times for the posterior higher-order
cognitive state than for the states that were not higher-order
cognitive states (permutation testing, p value < 0.001). However,
the largest differences are found in the interval times. Both of the
anterior and posterior higher-order cognitive states have visits
that are much more temporally separated than the other states
(permutation testing: p value < 0.001 for both tests). The interval
time distributions of the posterior higher-order cognitive state
and, to a lesser extent, of the anterior higher-order cognitive state,
have pronounced tails for higher interval times, as indicated by
the mean of the distribution being much larger than the median.
To further illustrate this, Fig. 5b shows the cumulative density
function (CDF) of the interval times, which evaluates the
proportion of intervals (y axis) that are longer than any given

interval duration (x axis). The CDF is particularly useful to
examine the differences between the tails of the distributions. We
observe that both higher-order cognitive states have significantly
larger CDF values than the other states (significance for a
confidence level of 0.01 is indicated by the lines on top of the
panel, using permutation testing). For example, the time between
state visits is >1's, in ~40% of the higher-order cognitive state
visits, as compared to only ~20% of the time for the other states.
Importantly, this is not due to differences in fractional occupancy
(depicted in the bottom panel of Fig. 5a), given that the fractional
occupancies of the higher-order cognitive states are not
significantly different from the visual and motor states. In
summary, these results indicate that the higher-order cognitive
states tend to last longer, but are not revisited for longer periods,
than the visual and motor states.

A related point is the extent of state fractional occupancy
variability in the across subjects and whether this distribution is
relatively flat or varies strongly across subjects. Supplementary
Fig. 6 reveals that the distribution is indeed not uniform and that
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different subjects have different degrees of state representation,
which might possibly relate to specific subject traits®.

We also investigated whether brain states are visited rhythmi-
cally, i.e. aligned to the peaks and troughs of a possible oscillation.
Modelling the state events as a point process (where a state
occurrence is defined at the onset of the state visit), we computed
the spectra of these processes to find whether there were any
strongly characteristic frequencies. Figure 5c¢ shows the power of
the event point process for all states (shaded areas reflect 99%
confidence intervals), which does not show any strong frequency
mode and has particularly low power in the slow frequencies.
This is in line with recent findings in task3’, where it is only
through trial-averaging (given the temporal variability of the task-
related events within each trial) that these events appear as
sustained oscillations. Also, consistently with the above results,
we observed a higher power in between 1 and 5 Hz for the higher-
order cognitive states (significance for a confidence level of 0.01,
using permutation testing, is indicated on top), reflecting the
longer dwell and interval times for these states.

The higher-cognitive states and the canonical fMRI DMN.
Throughout the paper, we have drawn a link between the two
identified higher-cognitive states and the DMN. We now evaluate
quantitatively this relation using a meta-analysis technique. In
particular, using Neurosynth38, we extracted a canonical map of
DMN activation from the fMRI research literature (Fig. 6a).
Using the wideband power maps (as shown in Fig. 2), we com-
puted masks by selecting the 10% most active voxels for each
state. We then defined the union of the two higher-cognitive
states (depicted in Fig. 6b) by selecting the voxels that are active
in either of the two corresponding masks. Using these masks,
Fig. 6¢ shows the correlation of each state to the canonical DMN
map. As observed, the two higher-order cognitive states hold the
highest correlation of all states with the canonical DMN, with

the union of the two higher-cognitive states being more correlated
to the canonical DMN map than any individual state. This
result quantitatively demonstrates the relation of the two higher-
cognitive states to what is understood by the canonical DMN as
measured by fMRL

Power versus connectivity in driving state switching. An
important question is which features in the data (i.e. power or
connectivity) are driving the HMM state segmentation. Given
that power can be estimated more precisely than cross-spectral
properties (such as coherence) and that the leakage correction
procedure?® may remove some genuine connectivity information
(if interactions occur with, or close to, zero-lag), changes in power
are expected to drive a considerable amount of state switching.
By manipulating the diagonal and off-diagonal elements of the
autocovariance matrices that characterise each state, we com-
puted the Riemannian distance (see Methods) between each pair
of states using (i) power and coherence, (ii) just coherence and
(iii) just power. Figure 7a reflects that the contribution of power
and coherence to state differences is variable, but, on average, the
contribution of power is indeed around four times higher on
average (note the difference in the scale bar).

However, this does not mean that phase coupling does not
contribute to the inference. To demonstrate this, we ran the
HMM on power envelopes computed from the data band-passed
filtered between 1 and 40 Hz*°, which defines HMM states as
having distinct patterns of power and power correlations in a
single frequency band. We then computed the spatial correlation
between the power maps and the coherence connectivity profiles
(in either case using the multitaper after the HMM inference)
between the two types of HMM. We paired the states between the
two runs such that the correlations are maximal. Figure 7b shows
that some power maps are relatively well correlated between the
two runs and that the differences of functional connectivity
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between the two runs are in general larger than the differences in
power. In summary, this analysis demonstrates that, while there
are similarities between the two HMM approaches, there are also
distinct characteristics to each of them.

Discussion

We show that large-scale networks in resting-state MEG can be
well described by repeated visits to short-lived transient brain
states. Here a state is defined as a distinct spatially and spectrally
defined pattern of network activity across the set of considered
regions, which span the whole brain. These patterns of activity and
phase-coupling were found to be largely symmetric across hemi-
spheres and corresponded to plausible functional systems,
including sensory, motor and higher-order cognitive networks.
According to our meta-analysis, two higher-order cognitive brain
states (or networks) contained regions suggesting a subdivision of
the DMN. These subdivisions have characteristic signatures in
distinct frequency bands, with one state corresponding to a pos-
terior network with high power and coherence in the alpha range
(8-12 Hz) and the other to an anterior network with high power
and coherence in the delta/theta range (1-7 Hz). Of note, although
we have paid closer examination to the four states represented in
Fig. 2, these occupy on average only 30% of the total scanning
time (see also Supplementary Fig. 6). While each state has its own
subject-specific temporal characteristics (i.e. the state time cour-
ses), their spatial and spectral features are defined at the group
level. However, note that if they are needed, e.g. to investigate their
between-subject spatial and spectral differences, it is straightfor-
ward to re-compute subject-specific states features by combining
the state time courses and data for each subject separately.
Importantly, the proposed HMM is not a biophysical model but a
useful perspective on the data. Other models and techniques, such
as multivariate autoregressive modelling, offer their own com-
plementary and useful descriptions of the dynamics in the data
(see Supplementary Discussion). For further discussion about
reproducibility of the results, the estimation of phase, the choice of

the number of states, the state exclusivity assumption and the
effect of volume conduction, we refer to the Supplementary Dis-
cussion and Supplementary Note 1, 2, 3 and 4.

In previous work on resting-state MEG, an HMM was used to
identify fast transient brain states characterised by co-
modulations in power?®. These states corresponded well with
canonical resting-state networks in fMRI, showing states
switching on ~100-200 ms timescales. However, being based on
band-limited power time courses, it was unable to identify
potentially faster phenomena that are only apparent in the raw
electrophysiological time courses. By contrast, the approach
presented in this paper can find brain states with distinct, brain-
wide networks of spectrally resolved power and phase-locking
from raw MEG time courses. As a consequence, states were found
to switch on ~50-100ms timescales, revealing fast dynamic
power and phase-locking information not apparent from a static
perspective. Being able to identify phase-coupling is crucial, as
this has been proposed as an important mechanism for regulating
the integration and flow of cognitive content®’. The identification
of large-scale networks of phase-locking in the present work is
consistent with the idea that the brain spontaneously evokes the
same network dynamics that we see in task!3.

But how can the fact that state visits are often under 100 ms in
duration be compatible with the slow frequencies (e.g. delta/theta
bands) that characterise the states? For example, an 8 Hz theta
cycle, which is in the realms of the frequencies reported here, has
a period of 125ms. This can be reconciled by noting that,
although we do not in general capture prolonged oscillations,
spectral estimation does not actually require entire cycles. Unlike
sliding window approaches, the HMM provides a large number of
separated sub-cycle wave segments, with which the spectral
estimation at the slow frequencies is possible. This is because
frequency is defined instantaneously and depends on the gradient
on the signal (see Supplementary Discussion, and Supplementary
References), which is theoretically defined at each time point. We
have performed simulations to show this empirically (see Sup-
plementary Note 1).
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Our results identified two higher-order cognitive states or
networks that showed particularly high power and coherence in
comparison with the other states. These higher-order cognitive
networks also exhibited different temporal dynamics in their
state occurrences, notably with longer periods of times between
state visits. One of these states represents a posterior network
including PCC, precuneus and bilateral intraparietal regions. The
other encompasses anterior areas including mPFC and temporal
poles, exhibiting strong connectivity with the PCC. Consistently
with previous studies in fMRI), these results afford the inter-
pretation of the DMN being separable into anterior and posterior
subdivisions. The present work, however, offers an important
new insight into the electrophysiological properties of these dis-
tinct subnetworks. Here the two subdivisions are distinguished
from each other by operating within very different frequency
bands: in the alpha band for the posterior network, and in the
delta/theta band in the anterior network. Furthermore, the
PCC may be acting as a link between the two higher-order
systems, given that it is present in both networks and has
particularly strong delta/theta band connectivity with the mPFC
in the anterior higher-order cognitive state. This is consistent
with previous work where, based on band-limited power corre-
lations yet ignoring phase-coupling, the PCC was proposed to
serve as a hub*!. The operation of these large-scale cortical phase-
coupling networks in very different frequency bands may reflect
the different intrinsic timescales that they specialise in within the
temporal domain#2-44,

Despite having been attributed a key role in the resting state,
and in particular in the DMN?32, the PCC has been somewhat
under-represented in the resting MEG/EEG literature, possibly
due to the relatively low signal-to-noise ratio (and, hence, visi-
bility) in MEG/EEG*. For example, previous analyses of resting
MEG data reported putative DMN networks that did not include
the PCC!>3439, One possible reason is that the PCC’s role as a
hub potentially involves many different network states in such a
way that is suppressed when examining differences between
networks or states?®. Notably, in a resting MEG study that used
time windows of high band-limited power correlation between
nodes of the DMN, the PCC exhibited the highest of these cor-
relations*!. Here the PCC is highly visible when networks are
characterised by phase-coupling, especially in the anterior and
posterior higher-order cognitive states. Indeed, given the issues in
representing the PCC in MEG, it is often merged with precuneus.
However, these are remarkably different regions, with different
structural connectivity profiles and distinct functional roles*%47.
Here we used a parcellation that specifically separated the PCC,
the anterior precuneus and the posterior precuneus. Supple-
mentary Fig. 5 shows power and phase-coupling with mPFC for
each state and each of the three regions. Some differences can be
clearly recognised between regions and, in particular, between the
PCC and the two precuneus regions. Remarkably, coherence with
mPFC is three times higher for the PCC than the precuneus (both
anterior and posterior) in the anterior higher-order cognitive
state. Also, in the anterior higher-order cognitive state the PCC
exhibits strong activity in the delta/theta frequency mode,
whereas the precuneus does not.

With the exception of the higher-order cognitive functions, for
which we have conducted a meta-analysis against existing lit-
erature, our state labelling is purely based on the anatomical
location of power and functional connectivity. For example, we
refer to the “visual” state as the state with wideband power and
connectivity in occipital areas. However, when looking at the
spectral characteristics of this state, we find that this activity is
primarily occurring in the alpha band (see Supplementary Fig. 4).
Given the hypothesised inhibitory role of alpha*®4°, it is likely
that this state is cognitively representing a reduction, rather than

an increase, in visual activity. Some further connections to
existing literature are plausible. For example, given its long-
distance connections between the anterior temporal lobes and its
low-frequency dominance, a relation between the anterior higher-
order cognitive state and memory retrieval is very likely!2°0:1,
yet cognitive control could also be involved®?. Likewise, the
posterior higher-order cognitive state could be related to atten-
tion'and cross-modal processing®®. A separate question is about
the mechanisms and causes of state switching and whether these
can be linked to avalanches of activity>*.

Our approach is not the first in proposing a segmentation
of electrophysiological time series into a discrete set of states.
For example, Rabinovich and colleagues®®, among others, argue
for the characterisation of brain dynamics as “a task-dependent
sequential activations metastable states, that is, states where
system variables reach and temporary hold stationary values”;
see also ref.>® for a general reference about metastability in the
brain. A prominent related methodology is the EEG microstates
framework; see ref.’’. Segmentation of EEG scalp maps into
microstates is based on finding repeating distributions of power
across multiple sensors and therefore could be expected to cap-
ture interactions related to those that drive the HMM. Micro-
states have also offered new insights into the nature of resting-
state networks including some evidence of a fragmentation of the
DMN into anterior and posterior states”®>°, However, some
fundamental differences exist. Most importantly, the HMM
directly identifies states with distinct spectral and cross-spectral
profiles, including coherence networks in distinct frequency
bands and, potentially, at diverse phases®”. In contrast, while
microstates can capture broadband spectral phenomena, their
estimation (performed in sensor space) is not based on spectral
profiles (but see ref!), and assumes zero-lag (or 180°) phase
differences. Also, whereas the proposed model operates in source
space, microstates are estimated in sensor space. Although HMM
states can also be estimated in sensor space, source reconstruction
is, however, useful for noise removal and to better balance the
contribution of deeper regions compared with more dominant
(superficial) cortical areas. In summary, it is through the use of
the HMM that we have been able to reveal that the fragmentation
of the DMN into anterior and posterior states is characterised
by not only the presence of phase-locking networks but also
spectral power and phase-locking in distinct frequency bands.
Furthermore, while other approaches applied to EEG data that
do capture spectral differences have also been proposed, these
are also in sensor space, and so it is more difficult to capture
the changes in phase-coupling between specific subnetworks of
cortical regions that we find in this work®>63.

This study focused on lower frequency bands (1-45Hz).
Because of the methodological considerations discussed in the
Methods section, and because of the higher signal-to-noise ratio
in lower frequency bands (1-30 Hz), low gamma frequencies
(30-45Hz) did not reveal any clear state-specific differences.
However, we would expect there to be different patterns in
gamma, given the possible top-down modulation of these fre-
quencies by the slow frequencies®. Because of the crucial
importance of gamma in cognition, having a key role in infor-
mation transference between regions and plasticity>®%3-%7, it
is of primary interest to understand how gamma frequency
is modulated at the whole-brain level across different states.
This will be an important area for future studies.

In summary, we have proposed an analysis approach that
allows the investigation of dynamic changes in whole-brain
phase-coupling in the resting state. Our study revealed that, at
these fast timescales, higher-order regions within the DMN dis-
sociate into two spatially, temporally and spectrally distinct states.
These states potentially index different higher-order cognitive
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processes that themselves operate at different timescales.
Although we have focused on this particular aspect of the data,
the wealth of information contained in the model output opens
many avenues for future analyses, hypotheses and questions.
These include the dynamics of specific phase relations between
areas, the whole-brain dynamics of gamma at rest and the exis-
tence of changing patterns of communication between processes
operating at different frequencies.

Methods

Data and preprocessing. As part of the UK MEG Partnership, 77 healthy parti-
cipants were recruited at the University of Nottingham. All participants gave
written informed consent and ethical approval was granted by the University of
Nottingham Medical School Research Ethics Committee. A final cohort of 55
participants (mean age 26.5 years, maximum age 48 years, minimum age 18 years,
35 males) was selected for analysis, discarding 22 subjects because of excessive head
motion or artefacts. To avoid effects of tissue magnetisation, MEG data were
acquired prior to participants entering the MRI. Resting-state MEG data were
acquired using a 275-channel CTF MEG system (MISL, Coquitlam, Canada)
operating in third-order synthetic gradiometry configuration, at a sample
frequency of 1200 Hz. MRI data, used here for the purpose of MEG coregistration,
were acquired using a Phillips Achieva 7 T system. (See ref.%® for further details
about MEG and MRI acquisition). MEG data were then downsampled to 250 Hz
using an anti-aliasing filter, filtered out frequencies <1 Hz and source-reconstructed
using LCMV beamforming?* to 42 dipoles covering the entire cortex excluding
subcortical areas (MNI coordinates are shown in Supplementary Table 1). Thirty-
eight of these dipoles were obtained from a ICA decomposition on resting-state
fMRI data from the Human Connectome Project, used previously to estimate large-
scale static functional connectivity networks in MEG!®; the other four parcels
correspond to the anterior and posterior precuneus that we wanted to disambiguate
from the PCC given the importance of this region in the resting state and the left
and right intraparietal sulci. Bad segments were removed manually and correction
for spatial leakage was applied using the technique described in ref.2>. The effect of
using alternative methods for leakage reduction is discussed in Supplementary
Note 2. In order to project the results to brain space, we used a weighted mask,
where each region had its maximum value at the centre of gravity.

The Hidden Markov Model. As a general framework, the HMM assumes that a
time series can be described using a hidden sequence of a finite number of states,
such that, at each time point, only one state is active. In practice, because the HMM
is a probabilistic model, the inference process acknowledges uncertainty and
assigns a probability of being active to each state at each time point. Effectively, this
amounts to having a mixture of models (or states) explaining the data at each time
point, where the mixture weights are the state probabilities. Importantly, the
probability of a state being active at time point  is modelled to be dependent on
which state was active at time point t—1 (i.e. it is order-one Markovian). The model
then assumes that the data observed in each state are drawn from a probabilistic
observation model. The observation distribution is of the same family for all states,
whereas the observation model parameters are different for each state. The
different varieties of the HMM are thus given by which family of probabilistic
observation distribution is chosen to model the states. This is useful because
different observation distributions can be adequate for different data
modalities?>363%69 while preserving a common framework. This can facilitate
integration of results across modalities. The variety of the HMM introduced in this
paper is presented in the next section along with some theoretical and practical
discussion about its properties. Whichever choice of the HMM state distribution,
the model can be applied to each subject independently or to the concatenated data
of all subjects, such that a group estimation of the states may be obtained. In this
paper, the states were defined at the group level; however, the information of when
a state becomes active (i.e. the state time course) is still specific to each subject.
Inference on the model (i.e. the estimation of the parameters of the posterior
distribution; see Fig. 1b) is carried out using variational Bayes (VB), a method
providing an analytical approximation at a reasonable cost by assuming certain
factorisations in the posterior distribution; we refer to ref.%? for further details
about the inference scheme. Still, because of the high sampling rate of our MEG
data (250 Hz) and the relatively high number of subjects (55), standard VB
becomes both time and memory consuming. On these grounds, we used stochastic
inference to further alleviate computation time?? such that an average run would
take approximately 5 h using a standard workstation with manageable memory
usage. After the inference process, the Viterbi path is computed; this is defined as
the most probable sequence of (hard assigned, i.e. non-probabilistic) states and can
be analytically computed, given the current estimation of the state observation
models, using a modification of the standard HMM state time course inference?!.
The HMM analysis was conducted using the HMM-MAR Matlab toolbox
(https://github.com/OHBA-analysiss HMM-MAR), which contains detailed
documentation of the tools’ usage (https://github.com/OHBA-analysis/HMM-
MAR/wiki/User-Guide). Furthermore, a script containing the entire pipeline is also

available online (https://github.com/OHBA-analysiss/ HMM-MAR/blob/master/
examples/NatComms2018_fullpipeline.m).

The TDE Hidden Markov Model. Here we apply a novel variety of the HMM to
raw time courses (instead of power envelopes®®). This allows us to detect changes
not only in power but also in phase-locking. Although this was already the case
with the HMM-MAR®’, the multivariate autoregressive (MAR) observation model
works optimally with a limited number of regions and does not scale to whole-
brain analysis. The reason, beyond computational, is that a MAR model of order
p needs 422 x p autoregressive coefficients to model data with 42 regions of interest
(as we use here). This large number of parameters can result in overfitting. As a
consequence, this makes the HMM unable to segment the time series effectively.

In this approach, the TDE-HMM, our definition of observation distribution
describes the neural activity over a certain time window using a Gaussian
distribution with zero mean (i.e. using the covariance matrix) to model the entire
window; this is equivalent to saying that our observation model corresponds to the
data autocovariance across regions (sometimes referred to as lagged cross-
covariance) within such window. For example, if we use a time window of 60 ms,
having time point t assigned to a certain state means that, for our current 250 Hz
sampling rate and 42-region parcellation, the activity of the 42 channels over a
window of 15 time points centred at t gets described by such state’s (15 x 42 by
15 x 42) autocovariance matrix. This multivariate autocovariance matrix (as the
MAR model) can effectively capture patterns of linear synchronisation in
oscillatory activity for those time points when a particular state is active, i.e. our
model can describe state-wise phase-locking. This is mathematically equivalent to
using a standard HMM with a Gaussian observation model on an “embedding”
transformation of the original data (see Supplementary Fig. 1 for an illustration of
the entire pipeline). In our case, with 55 subjects and 5 min of data at 250 Hz per
subject, this amounts to running the HMM on a large (4,125,000 by 630) volume of
data. As a result of the computational advantages of stochastic inference??, it is still
possible to handle such large amounts of data. However, it requires estimating
(630 x 629)/2 = 198,135 parameters within the multivariate autocovariance matrix
per state, which, above and beyond computational considerations, can also lead to
severe overfitting problems. To avoid this issue, we ran the HMM on a principal
component analysis (PCA) decomposition of the “embedded” space. This not only
greatly reduces the complexity of the state distributions but also naturally focusses
the slower frequencies in the data. This is a consequence of PCA aiming to explain
the highest possible amount of variance in the time series, in combination with the
1/f nature of electrophysiological data (i.e. that most of the power, or variance, is
concentrated in the slow frequencies). In particular, we use twice PCs as the
number of channels (i.e. 84 PCs). In this data set, this explains on average 60% of
the variance (lowest and highest across subjects are, respectively, 55% and 66%).
Note that, given that the time series from the source-space parcellation are
orthogonal after leakage correction?, the PCA step can only leverage
autocorrelations and non-zero lag cross-channel correlations to achieve an optimal
decomposition. Since the non-zero lag cross-channel correlations are very small in
comparison with the within-channel autocorrelation of the data®®, we chose a
number of PCA components that is a multiple of the number of channels;
otherwise, because of the very nature of PCA, the “extra” PCA components will be
explaining variance from just a few channels. Precisely which channels is mostly
arbitrary, given that all channels were standardised to have the same variance. For
example, for our 42-region parcellation, using 100 PCA components will result in
(100 — 42 x 2 =) 16 PCA components explaining variance from a (mostly) random
subset of 16 regions.

Therefore, besides the number of states (see Discussion), the important
parameters of the model are the length of the window (i.e. the number of lags to be
modelled by the state autocovariance matrices) and the number of PCA
components. From a practical perspective, a trade-off between these two
parameters will prescribe which frequencies in the data the TDE-HMM will be
more sensitive to. That is, longer windows (more extended lags) and fewer PCs will
incline the model to be more sensitive to the lower frequencies, whereas if we
include more PCs and/or reduce the window we will be better able to capture high-
frequency differences. In this paper, as mentioned earlier, we used a window of
60 ms and 42 x 2 PCs. This window contains one cycle at exactly 16.6 Hz, but
note that this does not preclude the model from accessing slower frequencies
(see Discussion).

Source-reconstructed dipole ambiguity. It is an acknowledged issue that source-
localised EEG and MEG data have an arbitrary sign as a consequence of the
ambiguity of the source polarity. As source reconstruction, in this case through
beamforming?4, is done for each subject separately, the sign of the reconstructed
dipoles risks being inconsistent across subjects. This is not a problem when
modelling the power time courses but is a cause of concern for models based on the
raw signal because connectivity between any pair of regions can cancel out at the
group level if regions have their time courses flipped for a subset of the subjects.
Here we extend and generalise the basic idea in ref. °® to multiple leakage-corrected
channels, making the assumption that the lagged partial correlation between each
pair of brain regions, across several different lags, has the same sign across subjects.
(We choose to use partial correlation instead of simple correlation because this is a
direct measure, i.e. there are no other channels interfering in the “sign relation”
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between every pair of channels.). More explicitly, for all lags (for example, in
between a = —10 and & = 410), we aim to find a combination of sign flips for each
subject such that the function

Gain(f) = Zjl.jz th

is maximised. Here s cycles through the N subjects, j1 and j2 cycle through regions,
Xgj1,a Tepresents the data time series for subject s and source j1 that have been
lagged o time points, f; ;; takes the value —1 or +1 and represents whether channel
j1 is flipped for subject s, p() represents the partial correlation between a pair of
time series and | | is absolute value. The idea is that, provided the aforementioned
assumption, Gain(f) will be maximised when the signs are correctly aligned. For
example, if there is a strong genuine anti-phase relationship (leading to negative
correlation) between a given pair of regions, the sign for these regions will be
pertinently flipped for those subjects having an in-phase relation (leading to
positive correlation) such that the negative correlations do not get partially can-
celled out by the occasional positive correlations when averaging across subjects.

To find the best combination of sign flips such that Gain(f) is maximised is an
integer programming problem and thus finding an exact solution is NP-hard. The
computationally expensive step is to compute the (no. of channels by no. of
channels) partial correlation matrix for each subject and lag (in our data, 21 lags x
55 subjects matrix inversions of size 42 regions x 42 regions). Once this is
computed, it is relatively inexpensive to evaluate the function Gain(f) given the
equivalence

Zs p(f;jlxsjl,OVLJZXs,jZ,pc)/N (1)

P(Xs‘jl‘o.*xs.jz.a) = 7P(Xs,jl,0.Xs.j2.uc)‘ (2)

Therefore, we can afford to evaluate many different solutions, for example by
multiple instantiations of a greedy algorithm with random initialisations of the
signs. Although in this paper we limited ourselves to this simple approach, other
more sophisticated search procedures can easily operate on this scheme.

Extracting spectral information. Once the HMM has found the states on the basis
of the data’s transient spectral properties, a logical further question is how can we
extract and represent the states’ spectral properties in an informative way. We can
extract the spectral information (power and coherence) from the multivariate
autocovariance matrix in each state’s observation model as it has a direct corre-
spondence to the parameters of a MAR model, which contains the spectral
information in the system. However, this estimation is biased towards the low
frequencies due to the PCA dimensionality reduction step discussed in the previous
section. So that we can effectively access high frequency information, we instead
made use of the state-wise multitaper approach introduced in ref.%%, which will
provide us with power and spectral coherence for each frequency bin (chosen to be
in between 1 and 45 Hz) and state without any PCA-induced bias.

Once we have estimated power and spectral coherence for each state, we
factorise this information into different components or frequency modes for ease
of interpretation and visualisation (see below about the choice of spectral
coherence to quantify phase-coupling). We could use the traditional frequency
bands for this matter but instead we opted for estimating these in a data-driven
fashion. To do this, we constructed a matrix by concatenating the spectrally
defined coherence (the spectral feature that is more interesting for our purposes)
across all states and pairs of regions. We shall denote this matrix as A. More
specifically, A has (12 states x 861 pairs of regions =) 10,332 rows and 90 columns,
90 being the number of frequency bins that we obtained from the multitaper
analysis. We then applied a non-negative matrix factorisation (NNMF) algorithm?®
on A, asking for four components, which we found to render stable decompositions
while still being reasonably frequency specific. This choice of four components
corresponds to the coarseness of classical frequency bands often used in the
low frequency range we are studying (i.e. low gamma, beta, alpha, delta/theta).
NNMF aims to find a factorisation A = WH, where W has dimension (10,332 by 4)
and H has dimension (4 by 90), such that all the elements in W and H are
positive. Each row of H then represents the spectral profile of this component,
inferred from the data. These components turn out to roughly correspond to the
canonical delta/theta, alpha, beta and (lower) gamma bands. Of these, our
interpretations are focussed on the first three components (displayed in Fig. 4, left
panels), excluding the fourth (gamma band) component for being potentially less
relevant to understanding large-scale synchronisation. Having four frequency
modes allowed us, however, to have beta separated from gamma, providing a
cleaner view on the data. With the component spectral profiles H in hand (referred
to as frequency modes throughout the paper), it is straightforward to obtain values
of coherence for each state, pair of regions and NNMF component. We do so by
simply multiplying the respective (1 by 90) vector of coherence values by the
corresponding transposed row of H (90 by 1). For power, we follow the same
procedure, reusing the component spectral profiles that we computed for
coherence. Wideband results (Fig. 2) correspond to a simple average across all
frequency bins.

For the purposes of visualisation, in Fig. 2, Fig. 4, Supplementary Fig. 2 and
Supplementary Fig. 4 we showed only the functional connections that were the
strongest in absolute value. To avoid setting an arbitrary threshold, we separately
fitted, for each state and NNMF frequency mode (and wideband), a mixture of two

Gaussian distributions to the population of functional connections, such that we
only show the connections that belong to the Gaussian distribution representing
the strongest connections. When the population of functional connections is well
represented by a single Gaussian distribution, that is indicative that there are no
connections that are pronouncedly stronger than the average connectivity within
the state, in which case we do not show any. For reference, the distributions of
connectivity values together with the fitted Gaussians are shown in Supplementary
Fig. 7 for the examined states. For the wideband results (Fig. 2, Supplementary
Fig. 2 and Supplementary Fig. 8), the power maps were thresholded such that only
the 50% of voxels with the highest activation or deactivation are shown. For the
frequency-specific results (Fig. 4 and Supplementary Fig. 4), the threshold was set
to 10%.

This analysis is designed to find which functional connections stand out from a
background level of connectivity within each state. A different question is which
functional connections, or power increments, are significantly stronger for any
given state with respect to the other states. We performed non-parametric
statistical testing to investigate these differences, for which we calculated the
spectral information (power and connectivity) for each subject separately and then
used this between-subject variability to run standard permutation testing analysis.
In detail, we used a shared set of permutations for each state, power value and
functional connection. At each permutation, we shuffled the target power or
functional connection value across states. By running 5000 permutations, we
effectively created (for each power and functional connection value) a null
distribution of differences between each state’s value and the mean value of the
other states, which we then used to produce a p value per activation value and
functional connection. Supplementary Fig. 3 shows statistically (uncorrected)
significant power and functional connectivity increments given a significance
level of 0.01.

How similar are two states?. Some of the validations carried out in the paper (e.g.
about reproducibility of the results) are dependent on comparing different states.
Given that each state is characterised by a (time lagsxnumber of regions by time
lagsxnumber of regions) autocovariance matrix, we quantified the dissimilarity
between states using the concept of Riemannian distance between their
corresponding autocovariance matrices, which can be defined as a mathematically
rigorous generalisation of the Euclidean distance for dealing with positive definite
matrices. Given two covariance matrices C; and C,, the Riemannian distance is
defined as the square root of the sum of the logarithms of the eigenvalues of the
product C, * Cy:

driemunn = (Zlog eig(cl * CZ))I/Z (3>

Data availability. The complete data set, acquired in Nottingham in the context
of the MEG UK Partnership, is not currently available as it contains data from
human participants including structural scans. The data are held by the MEG UK
Partnership, and access to the MEG UK Database can be requested at http://meguk.
ac.uk/contact. Preprocessed (and parcellated) data containing the time series as
they were fed to the HMM can be accessed at https://ora.ox.ac.uk/objects/
uuid:2770bfd4-6ab8-4fle-b5e7-06185¢8¢2ael.
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