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Abstract: The present study investigated the effects of α-bisabolol on DOX-induced testicular damage
in rats. Testicular damage was induced in rats by injecting DOX (12.5 mg/kg, i.p., single dose) into
rats. α-Bisabolol (25 mg/kg, i.p.) was administered to the rats along with DOX pre- and co-treatment
daily for a period of 5 days. DOX-injected rats showed a decrease in absolute testicular weight and
relative testicular weight ratio along with concomitant changes in the levels/expression levels of
oxidative stress markers and Nrf2 expression levels in the testis. DOX injection also triggered the
activation of NF-κB/MAPK signaling and increased levels/expression levels of pro-inflammatory
cytokines (TNF-α, IL-6, and IL-1β) and inflammatory mediators (iNOS and COX-2) in the testis. DOX
triggered apoptosis, manifested by an increment in the expression levels of pro-apoptotic markers
(Bax, Bcl2, cleaved caspase-3 and -9, and cytochrome-C) and a decline in the expression levels of
anti-apoptotic markers (Bcl-xL and Bcl2) in the testis. Additionally, light microscopy revealed the
changes in testicular architecture. α-Bisabolol rescued alterations in the testicular weight; restored
all biochemical markers; modulated the expression levels of Nrf2-mediated antioxidant responses,
NF-κB/MAPK signaling, endoplasmic reticulum (ER) stress, and apoptosis markers in DOX-injected
testicular toxicity in rats. Based on our findings, it can be concluded that α-bisabolol has the potential
to attenuate DOX-induced testicular injury by modifying NF-κB/MAPK signaling and the ER-stress-
mediated mitochondrial pathway of apoptosis by invoking Nrf2-dependent antioxidant defense
systems in rats. Based on the findings of the present study, α-bisabolol could be suggested for use as
an agent or adjuvant with chemotherapeutic drugs to attenuate their deleterious effects of DOX on
many organs including the testis. However, further regulatory toxicology and preclinical studies are
necessary before making recommendations in clinical tests.

Keywords: α-bisabolol; doxorubicin; testicular dysfunction; NF-κB/MAPK signaling; ER stress; apoptosis

1. Introduction

Cancer treatment using chemotherapeutic agents substantially compromises physio-
logical and biochemical homeostasis and triggers multiple organ failure in the course of
therapeutic procedures [1]. Many chemotherapeutic agents are gonadotoxic, leading to
infertility, and this fertility potential had a huge impact on the quality of life according to
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cancer survivors [2]. Among numerous chemotherapeutic agents, doxorubicin (DOX), a
predominant anti-neoplastic agent, has acquired immense popularity over a few decades
due to its usefulness in the management of various hematological and solid tumors. How-
ever, its clinical use has been restricted owing to its lethal multiple organ toxicities [3–6].
The testis is among the major non-target organs which are highly vulnerable to the lethal
side effects of DOX; these effects strikingly impede the process of spermatogenesis and
eventually lead to infertility [7]. DOX-chemotherapy-associated testicular damage involves
an oxidative injury that is mediated by the formation of oxyradical complexes containing
hydroxyl and superoxide radicals and traces of iron [8]. DOX is a well-known cytotoxic
agent functioning through topoisomerase II inhibition and intercalation of DNA in rapidly
developing malignant cancer cells [9]. Even though the exact underlying mechanism of
DOX-induced testicular toxicity is still not fully understood, published evidence revealed
that DOX-induced testicular toxicity primarily involves the combination of various patho-
physiological events including oxidative stress, lipid peroxidation, inflammation, and
cellular apoptosis [10].

Inflammation is a potential counteraction against pathogens, injured cells, and toxic
chemicals by the immune system in which the levels of inflammatory cytokines and
mediators are altered by the macrophages [11,12]. In recent years, numerous studies
revealed a strong interlink between DOX assault and the activation of nuclear factor kappa
B (NF-κB), which participates in the regulation of genes that encode inflammatory cytokines
and apoptotic cell death [13]. In addition, the inflammatory cytokines are also regulated
by the mitogen-activated protein kinase (MAPK) signaling, including p38 MAPK [14]. To
modulate inflammatory cascades, p38 MAPK also participates in controlling cell cycle and
death. DOX triggered p38 MAPK activation and its role in promoting apoptosis is well
documented from earlier reports [15].

Apart from the involvement of mitochondrial apoptotic pathways, recently, endo-
plasmic reticulum (ER) stress has also been recognized as playing a vital role in the organ
injuries caused by DOX. In addition to the mitochondrial apoptotic pathways, targeting
ER stress received enormous attention for protective maneuvers in DOX-associated organ
injuries. Increased ROS production has a bidirectional relationship with the ER, and oxida-
tive stress results in unfolded protein accumulation in the ER [16]. Upon initiation of ER
stress, GRP78, a key ER stress sensor, is released and facilitates programmed cell death [17].

Since oxidative stress plays a major role in DOX-induced testicular injury, the pro-
tective mechanism might be dependent on invoking antioxidant defense mechanisms,
antioxidants (SOD, catalase, Gpx), and nuclear factor erythroid factor 2-related factor 2
(Nrf2) signaling against oxidative stress. Nrf2 is a master oxidative stress regulator and
a chief regulator in orchestrating redox defense mechanisms during stress conditions via
activation of HO-1 and antioxidant defense systems [18–20]. Additionally, NF-κB was
revealed to inversely regulate Nrf2 transcription and activities [19]. Nrf2 activation has
been reported to rescue the ER from oxidative stress by scavenging ROS overload [21].
Based on the above-mentioned concepts, numerous antioxidants and anti-inflammatory
or antiapoptotic agents were tested to counter DOX-triggered testicular toxicity in rats.
Currently, there is no single agent proven efficient enough to reverse or attenuate this
life-threatening adverse effect in cancer survivors.

In recent years, a number of studies demonstrated that medicinal plants and phy-
tochemicals derived from plants play an important role in improving male reproductive
function markers in healthy and infertile individuals. Among them, numerous phyto-
chemicals have been investigated in DOX-induced testicular injury and shown to reduce
oxidative stress and inflammation. In different classes of phytochemicals, sesquiterpenes
are recognized as the most active constituents abundantly present in various traditional
medicinal plants with plenty of pharmacological properties [22]. α-Bisabolol, a major
monocyclic sesquiterpene abundantly present in chamomile (Chamomilla recutita L.) [23],
the wood of candeia (Eremanthus erythropappus) [24], Plinia cerrocampanensi [25], and Salvia
(Salvia runcinata) [22].
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Recently, the hydroalcoholic extract of Matricaria chamomile had shown protective
effects in testicular ischemia–reperfusion in a rat model of torsion/detorsion-induced testis
tissue damage [26]. This protective effect was attributed to the presence of α-bisabolol and
its antioxidant capacity [26]. α-Bisabolol is one of the major ingredients in dermatological
and cosmetic formulations, including lipsticks, baby care products, hand and body lotions,
after-sun products, aftershave creams, deodorants, and sun care sports creams. Oral
administration of α-bisabolol has been reported to be safe and non-toxic in rats and mice
(LD50 13,000 to 14,000 mg/kg body weight) [27]. In addition, α-bisabolol is a very well
documented phytochemical in countering lipid peroxidation, oxidative stress, inflammatory
signaling cascades, inflammasome activation, mitochondrial dysfunction and apoptosis
in isoproterenol (ISO)-induced myocardial ischemia in rats [28–30]. However, there is
no scientific evidence on the possible protective effect of α-bisabolol on DOX-induced
testicular toxicity in rats. In this study, we hypothesized that α-bisabolol may attenuate
the testicular toxicity triggered by DOX, and we also investigated the involved molecular
mechanisms behind its counteraction against DOX-induced infertility in rats.

2. Materials and Methods
2.1. Drugs, Chemicals, and Antibodies

α-Bisabolol and DOX were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Primary antibodies used for immunoblotting analysis were purchased from Abcam (Cam-
bridge, MA, USA), Santa Cruz Biotechnology (Dallas, TX, USA), and Cell Signaling Tech-
nology (Danvers, MA, USA). Secondary biotinylated and horseradish peroxidase (HRP)-
conjugated antibodies (goat anti-rabbit/goat anti-mouse) were obtained from Cell Sig-
naling Technology (Danvers, MA, USA). All other chemicals used in this study were of
analytical grade.

2.2. Experimental Animals

Male albino Wistar rats (220–250 g) were acclimatized for two weeks before the
beginning of the experiments in the Animal House of the College of Medicine and Health
Sciences (CMHS), United Arab Emirates University (UAEU). The animals were kept in
polypropylene cages in a group of four rats at the standard animal house conditions of
photoperiod with free access to a chow diet and purified water ad libitum. The experimental
procedures were conducted following approval from the Animal Ethics Committee of the
UAEU, Al Ain, Abu Dhabi, United Arab Emirates (UAE).

2.3. Experimental Design

The animals were randomly divided into four experimental groups, each containing
15 rats. α-Bisabolol was diluted in scientific-grade light olive oil (vehicle), and the solutions
were freshly prepared just before administration. A single intraperitoneal injection of DOX
(12.5 mg/kg body weight) was administered to the rats to induce testicular toxicity. Group
I: normal control rats; Group II: rats treated with α-bisabolol (25 mg/kg, intraperitoneally)
daily for a period of 5 days; Group III: rats intraperitoneally injected with a single dose
of DOX (12.5 mg/kg) to induce testicular toxicity; Group IV: rats administered a single
intraperitoneal dose of DOX (12.5 mg/kg) and α-bisabolol (25 mg/kg, intraperitoneally)
for five days. After the treatment duration (i.e., on the 6th day), the rats were anesthetized
using pentobarbital sodium (60 mg/kg, body weight) and then sacrificed by cervical decap-
itation. The isolated testis tissues were snap-frozen in liquid nitrogen for the biochemical
and immunoblotting experiments. The testicular tissues were also fixed in the 10% neu-
tral buffered formalin for histological studies. Experimental groups and study design is
presented in Figure 1.
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Figure 1. Study design and experimental groups.

2.4. Biochemical Parameters
2.4.1. Estimation of Oxidative Stress Markers

Malondialdehyde (MDA) levels were measured using a commercial detection kit
(Northwest Life Science, Vancouver, WA, USA). The activities of SOD and catalase and
the concentration of GSH were measured using commercial kits acquired from Sigma
Chemicals (St. Louis, MO, USA) and Cayman Chemical Company (Ann Arbor, MI, USA),
according to the manufacturer’s instructions.

2.4.2. Estimation of Pro-Inflammatory Cytokines

The levels of interleukin-1β (IL-1 β), tumor necrosis factor-α (TNF-α), and interleukin-
6 (IL-6) were measured using enzyme-linked immunosorbent assay (ELISA) kits procured
from BioSource International (Camarillo, CA, USA).

2.5. Western Blot Analysis

Testicular protein extracts were produced by homogenizing testis samples in ice-cold
radioimmunoprecipitation assay buffer mixed with 1X phosphatase and protease inhibitor
cocktail (Millipore, Burlington, MA, USA). The homogenate was centrifuged at 1648× g for
30 min at a temperature of 4 ◦C. Samples for immunoblotting were prepared by mixing the
supernatant with 4X Laemmli buffer (Bio-Rad, Hercules, CA, USA) and 2-mercaptoethanol
(Sigma Aldrich, St. Louis, MO, USA). Equal amounts of protein samples were separated
by SDS-PAGE and transferred onto polyvinylidene difluoride membranes (Amersham
Hybond P 0.45, GE Health Care Life Sciences, Munich, Germany).

The membranes were incubated at 4 ◦C overnight with primary antibodies against
inducible nitric oxide synthase (iNOS) (1:1000) (anti-rabbit; Sigma Aldrich, St. Louis, MO,
USA), nuclear factor erythroid factor 2-related factor 2 (Nrf2) (1:2000), cyclooxygenase-2
(COX-2) (1:500), Bcl2 associated X protein (Bax) (1:500), B-cell lymphoma 2 (Bcl2) (1:1000),
p-NF-κB-P65 (1:500), t-IκBα (1:2000), p-IκBα (1:500), P38 (1:1000), p-P38 (1:1000), Bcl-xL
(B-cell lymphoma-extra-large), procaspase-3 (1:1000), procaspase-9 (1:1000), cytochrome-
C (1:3000) (anti-rabbit and mouse; Abcam, Cambridge, MA, USA), NADPH oxidase-2
(NOX2) (1:1000), NADPH4 (NOX4) (1:1000), glutathione peroxidase-1 (GPX1) (1:2000)
(Invitrogen, USA), superoxide dismutase-1 (SOD1) (1:2000), superoxide dismutase-2 (SOD2)
(1:2000), catalase (1:2000), tumor necrosis factor-α (TNF-α) (1:1000), interleukin-6 (IL-6)
(1:1000), interleukin-1β (IL-1β) (1:500), (Santacruz, Dallas, TX, USA), and cleaved caspase-3
(1:500), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1:5000) (Cell Signaling
Technology, Danvers, MA, USA) was employed as a loading control. Membranes were
further incubated with their corresponding secondary antibodies (anti-mouse/rabbit) for
1 h at room temperature, and the proteins bands were visualized by using an enhanced
chemiluminescence developing kit procured from Thermo Fisher Scientific (Rockford,
IL, USA). The signal intensity (densitometry) of the bands was quantified using ImageJ
software (NIH, Bethesda, MD, USA).
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2.6. Estimation of Protein Content in the Testis

The concentration of protein in the homogenate of testis was analyzed using a com-
mercially available Pierce BCA protein assay kit procured from Thermo Fisher Scientific
(Rockford, IL, USA).

2.7. Histopathological Evaluation

After fixing testicular tissue in neutral buffered formalin (10% w/v) for one week,
the tissues were gradually dehydrated using different concentrations of ethanol, cleared
of alcohol residue in xylene, and lastly embedded in paraffin blocks. The tissues were
serially sectioned (5–10 µm) using a microtome (RM2125 RTS, Leica Biosystems, Nussloch,
Germany). The sections were stained with hematoxylin and eosin. The tissue sections were
mounted on the slides and examined under a light microscope (BX41, Olympus, Tokyo,
Japan) using an objective lens of 10× magnification.

2.8. Statistical Analysis

The data were statistically analyzed by one-way analysis of variance accompanied
by Duncan’s multiple range test (DMRT) using Statistical Package for the Social Sciences
(SPSS) software version 25 (IBM, Armonk, NY, USA). The results are expressed as the
mean ± standard error of the mean (SEM) for eight rats in each group. The criteria for
differences between each group were considered significant at p < 0.05.

3. Results
3.1. α-Bisabolol Prevented Testicular Weight Loss and Oxidative Stress in DOX-Induced Testicular
Injury in Rats

DOX-injected rats displayed a significant (p < 0.05) reduction in the absolute testicular
weight and relative testicular weight ratio; a significant (p < 0.05) rise in the level of
MDA, a lipid peroxidation product, in the testis; and a significant (p < 0.05) reduction
in the activities/concentration of testicular SOD, catalase, and GSH. Rats treated with
α-bisabolol showed an improved absolute weight of testis and relative testicular weight
ratio; significantly (p < 0.05) decreased MDA levels in the testis; and a substantial rise in
the activities/levels of testicular SOD, GSH, and catalase in DOX-injected rats compared to
rats that received only DOX (Table 1).

Table 1. Effect of α-bisabolol on testicular weight, relative testicular weight ratio, and oxidative stress
markers in DOX-injected rats.

Groups Control BSL DOX BSL + DOX

Testis weight (g) 3.62 ± 0.049 3.63 ± 0.041 2.48 ± 0.048 * 3.11 ± 0.078 **

Relative testis weight (%) 1.52 ± 0.017 1.50 ± 0.015 1.14 ± 0.030 * 1.35 ± 0.031 **

MDA (µM/mL) 56.17 ± 3.788 63.79 ± 1.31 103.53 ± 4.639 * 72.16 ± 4.532 **

SOD (U/mL) 36.61 ± 0.898 34.43 ± 1.386 19.02 ± 1.429 * 29.34 ± 1.946 **

Catalase (µM/min/mL) 84.46 ± 7.69 77.60 ± 12.927 28.14 ± 3.194 * 53.12 ± 3.648 **

GSH (µM/mL) 704.41 ± 36.847 684.36 ± 20.967 307.32 ± 15.269 * 580.59 ± 24.84 **

Each column represents mean ± SEM for eight rats in each group; columns not sharing a common symbol (*,
**) differ significantly from each other (* p < 0.05 vs. normal control, ** p < 0.05 vs. DOX control), CON-Control,
BSL-α-Bisabolol, DOX-Doxorubicin, BSL + DOX-α-Bisabolol + Doxorubicin.

3.2. α-Bisabolol Activates Nrf2 Signaling and Triggers Upregulation of Antioxidant Defenses in
DOX-Induced Testicular Injury in Rats

Rats injected with DOX exhibited significant (p < 0.05) downregulation in the expres-
sion levels of testicular proteins, Nrf2, SOD1, SOD2, catalase, and GPx1 and significant
(p < 0.05) upregulation in the testicular protein expression levels of NOX2 and NOX4 com-
pared to normal control rats. In addition, α-bisabolol-treated rats showed a significant
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(p < 0.05) increase in the testicular protein expression levels of Nrf2, SOD1, SOD2, catalase,
and GPx1 and considerably (p < 0.05) decreased expression levels of NOX2 and NOX4
compared to normal control rats (Figure 2).

Nutrients 2022, 14, x FOR PEER REVIEW 6 of 15 
 

 

Rats injected with DOX exhibited significant (p < 0.05) downregulation in the expres-

sion levels of testicular proteins, Nrf2, SOD1, SOD2, catalase, and GPx1 and significant (p 

< 0.05) upregulation in the testicular protein expression levels of NOX2 and NOX4 com-

pared to normal control rats. In addition, α-bisabolol-treated rats showed a significant (p 

< 0.05) increase in the testicular protein expression levels of Nrf2, SOD1, SOD2, catalase, 

and GPx1 and considerably (p < 0.05) decreased expression levels of NOX2 and NOX4 com-

pared to normal control rats (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effect of α-bisabolol on Nrf2 activation and expression levels of NADPH oxidases/antiox-

idants in DOX-injected rats. (A) Representative images of Western immunoblot analysis for Nrf2, 

NOX2, NOX4, SOD1, SOD2, catalase, and GPx1. (B) Densitometric analysis of testicular protein ex-

pression levels of Nrf2, NOX2, NOX4, SOD1, SOD2, catalase, and GPx1 assessed by Western blot 

analysis. Columns not sharing a common symbol (*, **) differ significantly from each other (* p < 

0.05 vs. normal control, ** p < 0.05 vs. DOX control), CON-Control, BSL-α-Bisabolol, DOX-Doxoru-

bicin, BSL + DOX- α-Bisabolol + Doxorubicin. 

3.3. α-Bisabolol Attenuates the Levels and Expression Levels of Pro-Inflammatory Cytokines in 

DOX-Induced Testicular Injury in Rats 

A significant (p < 0.05) rise in the levels and expression levels of TNF-α, IL-1 β, and 

IL-6 was observed in the testicular tissue of DOX-injected rats in comparison with nor-

mal control rats. Treatment with α-bisabolol considerably (p < 0.05) inhibited the DOX-

induced rise in the levels and expression levels of testicular pro-inflammatory cytokines 

compared to treatment with DOX alone (Figure 3). 

  

DOX 

BSL 

Nrf2 

NOX2 

NOX4 

SOD1 

SOD2 

Catalase 

GPx1 

GAPDH 

(A) (B) 

*

**

0

1

2

Nrf2

N
rf

2
/G

A
P

D
H

CON BSL
DOX BSL + DOX

*

**

0

1

2

NOX2

N
O

X
2

/G
A

P
D

H

CON BSL

DOX BSL + DOX

*

**

0

1

2

NOX4

N
O

X
4

/G
A

P
D

H

CON BSL

DOX BSL + DOX

*

**

0

0.5

1

SOD1

S
O

D
1

/G
A

P
D

H

CON BSL
DOX BSL + DOX

*
**

0

1

2

SOD2

S
O

D
2

/G
A

P
D

H

CON BSL

DOX BSL + DOX

*

**

0

1

2

Catalase

C
a

ta
la

se
/G

A
P

D
H

CON BSL
DOX BSL + DOX

*

**

0

0.5

1

GPx1

G
P

x
1

/G
A

P
D

H

CON BSL
DOX BSL + DOX

Figure 2. Effect of α-bisabolol on Nrf2 activation and expression levels of NADPH oxidases/antioxidants
in DOX-injected rats. (A) Representative images of Western immunoblot analysis for Nrf2, NOX2,
NOX4, SOD1, SOD2, catalase, and GPx1. (B) Densitometric analysis of testicular protein expression
levels of Nrf2, NOX2, NOX4, SOD1, SOD2, catalase, and GPx1 assessed by Western blot analysis.
Columns not sharing a common symbol (*, **) differ significantly from each other (* p < 0.05 vs.
normal control, ** p < 0.05 vs. DOX control), CON-Control, BSL-α-Bisabolol, DOX-Doxorubicin,
BSL + DOX-α-Bisabolol + Doxorubicin.

3.3. α-Bisabolol Attenuates the Levels and Expression Levels of Pro-Inflammatory Cytokines in
DOX-Induced Testicular Injury in Rats

A significant (p < 0.05) rise in the levels and expression levels of TNF-α, IL-1 β, and
IL-6 was observed in the testicular tissue of DOX-injected rats in comparison with normal
control rats. Treatment with α-bisabolol considerably (p < 0.05) inhibited the DOX-induced
rise in the levels and expression levels of testicular pro-inflammatory cytokines compared
to treatment with DOX alone (Figure 3).

3.4. α-Bisabolol Protects the Testicular Architecture in DOX-Induced Testicular Injury in Rats

Testicular sections of normal and α-bisabolol-treated rats appear devoid of remarkable
alterations in the testicular and epididymis architecture. However, histological examina-
tion of testicular sections in DOX-injected rats revealed severe derangement of testicular
morphology. Treatment with α-bisabolol reinstates the near-normal testicular architecture
in rats (Figure 4).
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Figure 3. Effect of α-bisabolol on the levels/expression levels of pro-inflammatory cytokines.
(A–E) Effect of α-bisabolol on the levels/expression levels of pro-inflammatory cytokines (TNF-α,
IL-1β, and IL-6) in the testis. Each column is mean ± SEM for eight rats in each group; columns
not sharing a common symbol (*, **) differ significantly from each other (* p < 0.05 vs. normal
control, ** p < 0.05 vs. DOX control), CON-Control, BSL-α-Bisabolol, DOX-Doxorubicin, BSL + DOX-
α-Bisabolol + Doxorubicin.
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Figure 4. Histopathology of the testis. Testes of normal control rats and rats treated with α-bisabolol
alone showed no pathological alterations. Rats treated with DOX alone showed severe derangement
of testicular morphology, whereas α-bisabolol pre- and co-treatment reinstated the near normal
testicular architecture in DOX-injected rats (10×), CON-Control, BSL-α-Bisabolol, DOX-Doxorubicin,
BSL + DOX-α-Bisabolol + Doxorubicin.
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3.5. α-Bisabolol Attenuates the Expression Levels of Inflammatory Mediators and Downregulates
NF-κB/MAPK Signaling Pathway in DOX-Induced Testicular Injury in Rats

The expression levels of iNOS, COX-2, p-NF-κB, p-IκB, and p-p38 in the testes of rats
treated with DOX alone were significantly (p < 0.05) increased compared to those in normal
control rats. α-Bisabolol treatment considerably (p < 0.05) reduced the increased testicular
expression levels of iNOS, COX-2, p-NF-κB, p-IκB, and p-p38 compared to those in rats
treated with DOX alone (Figure 5).

Nutrients 2022, 14, x FOR PEER REVIEW 8 of 15 
 

 

normal testicular architecture in DOX-injected rats (10×), CON-Control, BSL-α-Bisabolol, DOX-Dox-

orubicin, BSL + DOX- α-Bisabolol + Doxorubicin. 

3.5. α-Bisabolol Attenuates the Expression Levels of Inflammatory Mediators and 

Downregulates NF-κB/MAPK Signaling Pathway in DOX-Induced Testicular Injury in Rats 

The expression levels of iNOS, COX-2, p-NF-κB, p-IκB, and p-p38 in the testes of 

rats treated with DOX alone were significantly (p < 0.05) increased compared to those in 

normal control rats. α-Bisabolol treatment considerably (p < 0.05) reduced the increased 

testicular expression levels of iNOS, COX-2, p-NF-κB, p-IκB, and p-p38 compared to 

those in rats treated with DOX alone (Figure 5). 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of α-bisabolol on NF-κB/MAPK signaling in the testis. (A) Representative images of 

Western blot analysis for COX-2, iNOS, p-NF-κB-P65, p-IκBα, IκBα, p-p38, and p38. (B) Densito-

metric analysis of testicular protein expression levels of COX-2, iNOS, p-NF-κB-P65, p-IκBα, IκBα, 

p-p38, and p38 assessed by immunoblotting analysis. Columns not sharing a common symbol (*, **) 

differ significantly from each other (* p < 0.05 vs. normal control, ** p < 0.05 vs. DOX control), CON-

Control, BSL-α-Bisabolol, DOX-Doxorubicin, BSL + DOX- α-Bisabolol + Doxorubicin. 

3.6.α-Bisabolol Attenuates ER-Stress-Mediated Testicular Apoptosis in DOX-Induced Testicular 

Injury in Rats 

DOX injection caused a significant (p < 0.05) rise in the rats’ testicular protein ex-

pression levels of GRP-78, Bax, cleaved caspase-9, cleaved caspase-3, and cytochrome-C 

and significant (p < 0.05) decline in Bcl2 and Bcl-xL expression levels compared to those 

of normal control rats. Meanwhile, the administration of α-bisabolol to DOX-injected rats 

significantly (p < 0.05) downregulated the testicular protein expression levels of GRP-78, 

Bax, cleaved caspase-9, cleaved caspase-3, and cytochrome-C and significantly (p < 0.05) 

increased the expression levels of testicular Bcl2 and Bcl-xL in comparison with those of 

rats treated with DOX alone. The results have clearly revealed that α-bisabolol protects 

the testis by efficiently modulating ER-stress-mediated testicular apoptosis in DOX-in-

jected rats (Figure 6). 

  

iNOS 

COX-2 

p-NF-κB 

t-IκB 

p-IκB 

P38 

p-P38 

GAPDH 

DOX 

BSL 

(A) (B) 

*

**

0

0.2

0.4

iNOS

iN
O

S
/G

A
P

D
H

CON BSL

DOX BSL + DOX

*

**

0

0.5

1

COX-2

C
O

X
-2

/G
A

P
D

H

CON BSL

DOX BSL + DOX

*
**

0

2

4

p-NF-κBp
-N

F
-κ

B
/G

A
P

D
H

CON BSL

DOX BSL + DOX

*

**

0

2

4

IκB

p
-I
κ

B
/t

-I
κ

B

CON BSL

DOX BSL + DOX

*

**

0

1

2

P38

p
-P

3
8

/t
-P

3
8

CON BSL

DOX BSL + DOX

Figure 5. Effect of α-bisabolol on NF-κB/MAPK signaling in the testis. (A) Representative images of
Western blot analysis for COX-2, iNOS, p-NF-κB-P65, p-IκBα, IκBα, p-p38, and p38. (B) Densitometric
analysis of testicular protein expression levels of COX-2, iNOS, p-NF-κB-P65, p-IκBα, IκBα, p-p38,
and p38 assessed by immunoblotting analysis. Columns not sharing a common symbol (*, **) differ
significantly from each other (* p < 0.05 vs. normal control, ** p < 0.05 vs. DOX control), CON-Control,
BSL-α-Bisabolol, DOX-Doxorubicin, BSL + DOX-α-Bisabolol + Doxorubicin.

3.6. α-Bisabolol Attenuates ER-Stress-Mediated Testicular Apoptosis in DOX-Induced Testicular
Injury in Rats

DOX injection caused a significant (p < 0.05) rise in the rats’ testicular protein expres-
sion levels of GRP-78, Bax, cleaved caspase-9, cleaved caspase-3, and cytochrome-C and
significant (p < 0.05) decline in Bcl2 and Bcl-xL expression levels compared to those of
normal control rats. Meanwhile, the administration of α-bisabolol to DOX-injected rats
significantly (p < 0.05) downregulated the testicular protein expression levels of GRP-78,
Bax, cleaved caspase-9, cleaved caspase-3, and cytochrome-C and significantly (p < 0.05)
increased the expression levels of testicular Bcl2 and Bcl-xL in comparison with those of
rats treated with DOX alone. The results have clearly revealed that α-bisabolol protects the
testis by efficiently modulating ER-stress-mediated testicular apoptosis in DOX-injected
rats (Figure 6).
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Figure 6. Effect of α-bisabolol on ER-stress-mediated intrinsic pathway of apoptosis in the testis.
(A) Representative images of Western immunoblot analysis for Bax, Bcl2, Bcl-xL, procaspase-3, active
caspase-3, procaspase-9, active caspase-9, cytochrome-C, IRE-1, and p-IRE-1 (B). Densitometric
analysis of testicular protein expression levels of GRP-78, Bax, Bcl2, Bcl-xL, active caspase-3, active
caspase-9, cytochrome-C, IRE-1, and p-IRE-1. Columns not sharing a common symbol (*,**) differ
significantly from each other (* p < 0.05 vs. normal control, ** p < 0.05 vs. DOX control), CON-Control,
BSL-α-Bisabolol, DOX-Doxorubicin, BSL + DOX-α-Bisabolol + Doxorubicin.

4. Discussion

Testicular dysfunction associated with extensive gonadal damage is one of the serious
side effects of cytotoxic cancer chemotherapy [31]. Among many chemotherapeutic agents,
DOX, a well-known chemotherapeutic agent, has been associated with perturbed testicular
functions and spermatogenesis [32]. Histopathological alterations and changes in testicular
weight are some of the sensitive parameters used to detect toxicity in male reproductive
systems. It is well documented that DOX exposure seriously affects testicular morphology,
and it has a significant effect of testicular weight loss [33]. This is ascribed to spermatogenic
damage in the testis and a considerable decrease in sperm count with parenchymal atrophy
in the seminiferous tubules [34]. Histologically, DOX injections showed reduced size,
irregularity, and a number of seminiferous tubules with reduced seminiferous epithelial
layers [33]. Changes in the testicular architecture observed in our study might be explained
by the direct and indirect effects of DOX, as DOX triggers lipid peroxidation and culminates
in disrupting testicular structure and function [34]. α-Bisabolol has been reported to show
negative effects in triggering reproductive or developmental toxicity in rats [35].
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In recent years, significant attention has been given to natural products, mainly phyto-
chemicals of plant origin which are widely distributed in edible plants and plant-based
foods and are a source of novel molecules with health-promoting and medicinal benefits,
particularly in improving the reproductive system. The occurrence of oxidative stress
and inflammation complementing each other plays an important role in DOX-induced
testicular injury, as reported previously [34]. DOX induces testicular oxidative stress, DNA
damage, and apoptosis, which decrease sperm quality and motility and finally result in
sexual dysfunction [36]. Additionally, the ring structure present in DOX enhances the
non-enzymatic and enzymatic single-electron redox cycle associated with the generation
of ROS from molecular oxygen [37]. DOX-induced free radical production depletes the
antioxidant defense systems (GSH, catalase, and SOD), triggering the oxidation of proteins
and lipids [38].

Additionally, NADPH oxidases are widely regarded as being a dominant source of
ROS by regulating redox signaling [39]. NOX2 and NOX4 are the primary sources of ROS
production in many tissues suffering the deleterious effects of oxidative stress [40]. In
general, NOX enzymes are widely expressed in many organs, including the testis [41].
NOX2 and NOX4 are pro-oxidants, and they are structurally very active in accelerating the
production of nitric oxide (NO) and superoxide radicals. Very high expression levels of
these NADPH oxidases were reported in DOX-induced testicular damage in mice [42]. An
enhanced generation of ROS has been associated with the DOX-induced cytotoxic effect on
cancerous cells. In our study, improved activity and expression of SOD, catalase, and GSH
along with a reduction in NOX2, NOX4, and NADPH oxidase following treatment with
α-bisabolol demonstrate the attenuation of oxidative stress triggered by DOX.

One of the significant endogenous antioxidant defense systems that remove increased
ROS accumulation involves the activation of the Nrf2 signaling pathway [43]. Nrf2 is a
transcriptional factor that integrates the involvement of stress-mediated signaling at cellular
levels. Nrf2 downregulation was reported to promote oxidative stress via increasing ROS-
mediated lipid peroxidation and decreasing antioxidant enzyme activities [44]. DOX has
been reported to cause perturbation of Nrf2, which regulates the expression of genes
involved in anti-inflammatory and antioxidant processes and enzymes involved in fatty
acid oxidation, mitochondrial respiration, and mitochondrial biogenesis. Mitochondria play
an important role in the ROS-mediated apoptotic process, and DOX triggers mitochondrial
impairment followed by an efflux of intracellular ROS. α-Bisabolol treatment revealed
remarkable improvement in the antioxidant defense mechanisms, namely upregulation
of Nrf2 and increased expression of antioxidant enzymes concomitant with a reduction
in the lipid peroxidation product MDA in response to DOX-induced oxidative injury and
associated sequelae. In addition, its impact in upregulating the testicular Nrf2 protein
expression levels clearly revealed the ability of α-bisabolol in invoking Nrf2 signaling along
with maintaining antioxidant defense systems which are responsible for the decreased
oxidative stress parameters observed in our study.

In addition to oxidative stress, DOX has been well known to trigger the release of
pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the induction of inflammatory
enzymes (iNOS and COX). The findings of the present study also showed that DOX triggers
inflammation, as evidenced by the induction of pro-inflammatory cytokines and enzymes
with a concomitant loss in antioxidant defense enzymes and lipid peroxidation. However,
α-bisabolol has been found to reduce the release of cytokines from the inflammatory cells,
along with downregulating the inflammatory enzyme mediators and attenuating NF-κB,
in agreement with previous numerous reports wherein DOX-induced testicular toxicity
was attenuated by constituents of natural origin [45].

The transcriptional activator NF-κB regulates various inflammatory factors and plays a
significant role in the pathophysiology of the DOX-induced inflammatory cascade in organ
injuries [46–48]. NF-κB activation influenced by ROS overproduction is mainly responsible
for the changes in the inflammatory cascades via the mediation of pro-inflammatory
cytokines and mediators (TNF-α, IL-1β, IL-6, COX-2, and iNOS) [49]. NF-κB activation
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is inevitable during the prevailing dominance of pro-inflammatory mediators, and this
positive feedback mechanism is predicted to augment pro-inflammatory signals which
aggravate tissue injuries [50]. DOX dictates the activation and phosphorylation of NF-
κB which is closely associated with IκK, which actively triggers IκB phosphorylation
and degradation [51,52]. NF-κB phosphorylation is triggered by IκK and IκB activation
under the environment of oxidative stress and inflammation which results in irreversible
inflammatory assault [53].

MAPK signaling molecules are one of the major regulators of cellular proliferation,
differentiation, inflammatory mediators, and apoptosis [54]. MAPK p38 kinases are partic-
ularly responsible for inflammatory stimulation induced by DOX injection [55]. MAPK sig-
naling has also been implicated in the activation of the Nrf2 signaling pathway which is usu-
ally mediated by the phosphorylation of Nrf2 or through the nuclear translocation of Nrf2.
Interestingly, treatment with α-bisabolol exhibited a robust resistance against DOX-induced
testicular damage, as evidenced by reduced domination of pro-inflammatory cytokines,
mediators, and NF-κB and MAPK signaling proteins resulting from the activation of Nrf2
defense systems, which revealed its potent antioxidant and anti-inflammatory effect.

Apoptotic cell death triggered by DOX involves mitochondrial dysfunction, as evi-
denced by the upregulation of the pro-apoptotic protein Bax, the downregulation of the
antiapoptotic protein Bcl-2, the enhanced release of cytochrome-C into the cytosol, and the
cleavage of caspase-3 and -9. MAPK has the potential to activate NF-κB, which further
stimulates downstream genes, mainly those regulating pro-inflammatory responses, and
results in pathological conditions. Ultimately, an excess amount of free radical production
triggers cytokine production and activates MAPK and NF-κB transcription factors and
apoptosis [13]. Upon activation, p38 MAPK induces cytosolic cytochrome-C release from
the mitochondria, which further triggers the mitochondrial apoptotic pathway [56,57].

Additionally, ROS overproduction possesses a bidirectional relationship with oxida-
tive and endoplasmic reticulum (ER) stress, which causes a buildup of unfolded proteins
in the ER [16]. ER functions are seriously affected by various factors, including oxidative
stress, Ca2+ leakage, iron imbalance, hypoxia, protein overload, and hypoxia, which trig-
gers ER stress resulting in the accumulation of misfolded/unfolded proteins and finally
apoptosis [58]. GRP-78, a crucial ER molecular chaperone, was considerably upregulated
along with the mitochondrial pathway of apoptosis in the testicular tissue of DOX-treated
rats, as reported in a previous study [10]. Secondly, p-IRE-1, a downstream target of IRE-1
signaling, was significantly increased, indicating IRE1 signaling activation by DOX. Lastly,
JNK, which is a downstream target of the IRE-1 signaling pathway, was upregulated, which
is similar to previous findings [59]. The p38 MAPK signaling pathway is linked with the
activation of ER stress, as reported earlier [60–62]. In the event of ER stress, phosphory-
lation of p38 MAPK results in perturbations of cellular homeostasis [63]. In the present
study, treatment with oral doses of α-bisabolol appears to inhibit p38 MAPK signaling and
ER-stress-mediated apoptosis by downregulating the IRE-1-JNK signaling pathway.

The findings of the present study also displayed similar changes in the expression
of apoptotic markers in the testes of DOX-induced rats. The occurrence of apoptosis in
the testis can be ascribed to the free radical-dominated activation of NF-κB and MAPK
signaling proteins directly associated with the onset and progression of DOX-induced
testicular damage. α-Bisabolol effectively invokes Nrf2-mediated antioxidant defense
mechanisms and defends the testis from the alarming apoptotic signals by reducing the
crosstalk between ER stress/apoptotic signals and MAPK and NF-κB signaling proteins
in DOX-triggered testicular toxicity in rats. The positive outcomes of molecular and
biochemical parameters observed following treatment with α-bisabolol are reconfirmed
with histopathological observations in DOX-induced testicular injury in rats. The study
findings evidently reveal the antioxidant, anti-inflammatory, membrane-stabilizing, and
anti-apoptotic potential of α-bisabolol.
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5. Conclusions

In conclusion, it appears that α-bisabolol treatment exerts protection against DOX-
induced testicular toxicity and that the underlying mechanism is attenuation of oxidative
stress, inflammation, and apoptosis, which are mediated by its potent antioxidant, anti-
inflammatory, antiapoptotic and membrane-stabilizing properties. These effects are as-
cribed to its ability to neutralize the free radicals generated during the metabolism of DOX
and its advantageous modulation of the NF-κB and MAPK signaling pathways as well as
the ER-stress-mediated mitochondrial pathway of apoptosis. Based on the observations of
the present study, α-bisabolol could be suggested for use as an agent or adjuvant with the
chemotherapeutic drugs to attenuate their deleterious effects on many organs, including
the testis, during DOX chemotherapy and thus improve the morbidity in cancer survivors.
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