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Abstract

Background

Early diagnosis of Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) is essen-

tial for timely treatment. Machine learning and multivariate pattern analysis (MVPA) for the

diagnosis of brain disorders are explicitly attracting attention in the neuroimaging commu-

nity. In this paper, we propose a voxel-wise discriminative framework applied to multi-mea-

sure resting-state fMRI (rs-fMRI) that integrates hybrid MVPA and extreme learning

machine (ELM) for the automated discrimination of AD and MCI from the cognitive normal

(CN) state.

Materials and methods

We used two rs-fMRI cohorts: the public Alzheimer’s disease Neuroimaging Initiative data-

base (ADNI2) and an in-house Alzheimer’s disease cohort from South Korea, both including

individuals with AD, MCI, and normal controls. After extracting three-dimensional (3-D) pat-

terns measuring regional coherence and functional connectivity during the resting state, we

performed univariate statistical t-tests to generate a 3-D mask that retained only voxels

showing significant changes. Given the initial univariate features, to enhance discriminative

patterns, we implemented MVPA feature reduction using support vector machine-recursive

feature elimination (SVM-RFE), and least absolute shrinkage and selection operator

(LASSO), in combination with the univariate t-test. Classifications were performed by an

ELM, and its efficiency was compared to linear and nonlinear (radial basis function) SVMs.
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Results

The maximal accuracies achieved by the method in the ADNI2 cohort were 98.86%

(p<0.001) and 98.57% (p<0.001) for AD and MCI vs. CN, respectively. In the in-house

cohort, the same accuracies were 98.70% (p<0.001) and 94.16% (p<0.001).

Conclusion

From a clinical perspective, combining extreme learning machine and hybrid MVPA applied

on concatenations of multiple rs-fMRI biomarkers can potentially assist the clinicians in AD

and MCI diagnosis.

Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is the main

cause of 60% to 70% of dementia cases in aging societies. It is characterized by cognitive

decline and short-term memory loss [1, 2]. Mild cognitive impairment (MCI) is referred to as

the prodromal stage of AD, and subjects with MCI are at high risk of developing AD [3].

Because AD/MCI are neurodegenerative diseases and progressively attack memory cells, the

development of early diagnostic tools is undoubtedly important.

In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) was shown

to be a powerful tool for analysing the spontaneous blood-oxygen-level-dependent (BOLD)

contrasts to map neural activity associated with a variety of brain functions. In order to map

the brain areas involved in a given cognitive function, the BOLD signal at the level of the indi-

vidual voxel is analyzed [4]. Statistical analysis is then performed on all voxels to show regions

whose BOLD signal shows significant effects. This approach is referred to as univariate t-test

analysis, which is performed independently on each voxel, and has been used in neuroimaging

research for decades [5, 6]. However, this approach can only show differences between group

averages, and is not sufficient to diagnose individual subjects. Therefore, recently, a machine

learning (ML) technique known as multivariate pattern analysis (MVPA) has been promis-

ingly applied to classify individual subjects using neuroimaging scans [7, 8]. Multivariate

methods such as support vector machine-recursive feature elimination (SVM-RFE) and least

absolute shrinkage and selection operator (LASSO) investigate the mutual relationships

between multiple voxels and spatial patterns. Thus, the combination of univariate t-test and

multivariate MVPA approaches is expected to enhance the prediction performance as com-

pared to each individual approach used alone.

Previous fMRI studies have indicated that the pathophysiology of AD/MCI can be associ-

ated with statistical changes, in the average sense, of regional spontaneous low-frequency

(<0.08 Hz) BOLD fluctuation coherence measured in the resting state and analysed using uni-

variate t-tests. The metrics used in these studies included regional homogeneity (ReHo) [9,

10], amplitude of low-frequency fluctuation (ALFF) [11–13], and fractional ALFF (fALFF), as

well as functional connectivity (FC) [14]. For example, He et. al., [10] showed that the poste-

rior cingulate cortex (PCC) and the precuneus (PCu) have the largest ReHo differences

between the AD and CN groups (p<0.05). The ALFF and fALFF studies using fMRI by Han

et al., [15] revealed that MCI patients had decreased fALFF values in PCC/PCu and hippocam-

pus, and increased fALFF values in several other regions, including occipital and temporal cor-

tices. Rs-fMRI FC, investigated by Li et al. [16], showed that the regions with high FC were

MVPA combined with ELM for Alzheimer’s dementia diagnosis using rs-fMRI spatial patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0212582 February 22, 2019 2 / 28

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0212582


mostly located in the default mode network (DMN), and mainly involved the bilateral PCu

and PCC [17]. These are all statistically significant findings at the group level. However, the

discriminative ability based on the above-mentioned biomarkers related to AD/MCI diseases

has not been evaluated. Since the discrimination task automatically classifies each subject into

one of the studied groups (AD/MCI vs. CN), it is considered a much more complex task than

the study of differences between groups [18, 19].

In neuroimaging studies, preprocessed brain scans commonly contain hundreds of thou-

sands of non-zero voxels which significantly outnumber the number of subjects (often less

than 1000). Thus, selection of an adequate subset of relevant training features/voxels is of

critical importance to obtain good generalization ability and reduce risks of overfitting

problems and computational complexity. A growing trend today is the design of ML-based

feature reduction techniques integrated with classification methods applied to neuroimag-

ing data for the voxel-based automated discrimination of patients with brain disorders,

including AD and MCI (see the reviews [18, 19]). Many studies demonstrated the relevance

of feature selection. Statistical hypothesis t-tests have broadly been used not only for group-

discrimination detection but also for feature selections with success. The technique relies

on an optimal threshold of significance (p-value) representing a subset of important fea-

tures from whole-brain features. Though, applications of t-tests in feature selection are

computational efficiency and easy to implement, this technique suffers from a significant

drawback by not considering interactions between multiple features or spatial patterns

which are the inherent multivariate nature of fMRI data. By contrast, MVPA methods do

evaluate the relationships between multiple patterns. However, the primary drawback of

whole-brain MVPA is its computationally demanding because of 3-D and high dimension-

ality of the data as well as the large number of images being analyzed [20–22]. Thus, to select

the most informative features, a univariate feature selection strategy should be performed

prior to MVPA in order to reduce the dimensionality sufficient for memory capacity,

computational efficiency and ensure high sensitivity to fine-grained spatial discriminative

patterns, while preserving the appealing properties of whole-brain fMRI analysis and multi-

variate nature of fMRI data [21, 22]. Practically, many previous studies have employed

hybrid combinations of filter-based t-test and MVPA techniques, i.e. wrapper-based

SVM-RFE, to diagnoze the brain disorders using neuroimaging data, e.g., ADHD [23–25],

MCI [26–28], Autism [29], AD [30, 31], or for high-dimensional gene selections [22, 32]

with success (accuracies>90%).

In this study, we propose a ML-based AD/MCI diagnosis framework combining MVPA

and extreme learning machines (ELM) applied to multi-measure rs-fMRI data. We first

extracted maps of 3-D regional coherence (ReHo, ALFF, and fALFF) and of resting-state FC

(rsFC) (degree centrality (DC), seed-based rsFC) of multiple individual subjects. We then

performed statistical univariate two-sample t-tests on whole-brain 3-D maps between two

pre-defined training groups, to generate an analysis mask that retained only an initial set of

relevant features (voxels) showing significant changes in any one of the measures, i.e. ReHo,

fALFF, rs-FC. Next, MVPA techniques such as the wrapper-based SVM-RFE proposed by

Guyon [20] and embedded-based LASSO were implemented to optimize the discriminative

performance. In this study we used ELM and competing methods, including linear and

non-linear SVM classifiers, to distinguish AD/MCI patients from the CN controls. We

hypothesized that a hybrid combination of univariate statistical t-test and MVPA

approaches applied on concatenation of multiple functional biomarkers could boost the

classification performance. Thus, the major contributions present in this study can be sum-

marized as follows:
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• We propose a voxel-wise ML-based discriminative framework integrating ELM classifier

and hybrid MVPA techniques for automated AD/MCI diagnosis using multi-measure rs-

fMRI.

• The proposed framework extracts a maximum amount of information from multiple rs-

fMRI biomarkers of a public Alzheimer’s disease Neuroimaging Initiative (ADNI2) and an

in-house AD cohort from South Korea and, therefore, achieves maximal classification accu-

racies as compared to all other previous studies.

• We demonstrate that, compared to conventional univariate statistical analysis t-test, the

hybrid combination of multivariate methods (univariate t-test + SVM-RFE and univariate t-

test + LASSO) increases the classification performance of the discriminative patterns.

• The effectiveness of the ELM classifier, superior to that of linear and radial basis function

(RBF)-based SVM classifiers, when combined with hybrid feature selection methods for AD/

MCI identifications based on multi-biomarker rs-fMRI is addressed for the first time in this

work.

• We showed that the highest classification accuracies are achieved when all patterns from

multiple regional coherence and functional connectivity biomarkers are concatenated. This

suggests that different brain regions suffer different functional losses due to AD/MCI.

Hence, classification framework should include the maximum amount of informative

changes to achieve best performance.

The remainder of this paper is organized as follows. Section 2 provides details on the data-

sets, subjects, preprocessing of rs-fMRI data, classification algorithms, univariate and MVPA

feature reduction techniques, and permutation test used for the validation of the results. Sec-

tion 3 presents the comparative results, while Section 4 is devoted to the discussion and con-

clusions of the article.

Materials and methods

We used two independent rs-fMRI datasets: the ADNI2 dataset, publicly available online and

an in-house dataset whose subjects were recruited from the Chosun University Hospital in

Gwangju, South Korea.

Subjects

ADNI2 cohort. We used a cohort of 33 (17 females) Alzheimer’s disease (AD) subjects, 31

(14 females) early Mild Cognitive Impairment (MCI) and 31 (17 females) Cognitive Normal

(CN) subjects from the ADNI2 database, which is publicly available on the web (www.adni.

loni.usc.edu). The mean ages of AD, MCI, and CN are 73.59 ± 5.18, 74.52 ± 5.18, and

74.66 ± 5.56. General criteria for categorizing AD, MCI, and CN are well explained on the

ADNI web site (http://adni.loni.ucla.edu). The subjects ranged in age from 56 to 89 years, and

functional assessments of AD/MCI patients, such as Mini-Mental State Examination (MMSE)

and Clinical Dementia Rating (CDR), were independently performed by the research institu-

tions. The general criteria were as follows: the CN subjects had MMSE scores between 24 and

30, a CDR of 0, and were non-depressed, non-MCI, and non-demented. MCI patients had

MMSE scores between 24 and 30, CDR scores between 0 and 1, no significant levels of

impairment in other cognitive domains, essentially preserved daily living activities, and

absence of dementia. The MMSE scores of AD patients were between 15 and 26, their CDR

scores were 0.5 or 1, and they met the National Institute of Neurological and Communicative

Disorders and Stroke and the Alzheimer’s disease and Related Disorders Association
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(NINCDS/ADRDA) criteria for probable AD. In this study, to minimize the effect of different

image sizes and resolutions, we selected images from subjects with the same image dimension

and resolution, and we used only the baseline fMRI scans.

In-house cohort. A total of 365 subjects were included the in-house dataset: 81 AD

subjects, 132 MCI subjects, and 152 CN subjects. This dataset was a part of a large cohort

enrolled at the National Dementia Research Center, Chosun University, Gwangju, South

Korea. All subjects provided written informed consent before the data collection. In case

of AD patients with the inability of consent, the next of kin of patients gave consent before

participation. Psychological tests or assessments were not used to determine whether sub-

jects were able to provide written informed consent. The consent procedure and data

acquisition were approved by the Institutional Review Board (IRB) of the Chosun Univer-

sity Hospital, Gwangju, South Korea (IRB number 2013-12-018). Briefly, subjects were

between 56 and 87 years of age, and the study partners were able to provide independent

functional evaluations. The MMSE and CDR scores, and the other clinical criteria for

inclusion in the three groups were the same as in the ADNI2 cohort. The demographics of

the participants from two cohorts are shown in Table 1 and subject IDs are provided in

supporting S1 Table.

Rs-fMRI data acquisition

ADNI2 cohort. ADNI2 subjects were scanned at different centres using 3.0 T Philips

Achieva scanners with the same scanning protocol and parameters: Repetition Time (TR)/

Echo Time (TE) = 3000/30 ms, flip angle = 80˚, acquisition matrix size = 64 × 64, 48 slices, 140

volumes, and a voxel thickness = 3.3 mm.

In-house cohort. The participants in the Chosun University Hospital were scanned with a

Siemens Skyra 3.0-Tesla scanner. A 2D EPI MR acquisition type was used with the following

parameters: TR/TE = 3000/30 ms, flip angle = 90˚, field of view (FOV) = 240 × 240 mm, acqui-

sition matrix size 64 × 64, 35 slices, 90 volumes, voxel size = 3.75 x 3.75 x 3.75, spacing between

slices = 4.8 mm, number of echoes = 1, imaging frequency = 123.206 Hz, slice acquisition

order = ascending (bottom-up), direction = ’Transverse > Coronal (2.6) > Sagittal (1.7)’, pixel

bandwidth = 3440, in-plane phase encoding direction = ‘ROW’, number of phase encoding

steps = 63, echo train length = 31, percent sampling = 100, percent phase field of view = 100,

variable flip angle flag = ‘N’, and specific absorption rate (SAR) = 0.0778.

Table 1. Demographic details of all participants of two cohorts in this study.

ADNI2 cohort CN (N = 31) MCI (N = 31) AD (N = 33)

Female/Male 17/14 14/17 17/16

Age years (Mean±STD) 74.66±5.56 (65–86) 74.52±4.97 (68–89) 73.59±5.18 (56–88)

MMSE score (Mean±STD) 29.29±1.48 (24–30) 27.67±1.8 (24–30) 21.54±3.32 (15–26)

CDR score (Mean±STD) 0±0 (0–0) 0.50±0.17 (0–0.5) 0.89±0.21 (0.5–1)

In-house cohort CN (N = 152) MCI (N = 132) AD (N = 81)

Female/Male 79/73 64/68 42/39

Age years (Mean±STD) 71.44±5.47 (60–85) 73.10±5.92 (59–87) 71.86±7.09 (56–83)

MMSE score (Mean±STD) 28.29±1.07 (24–30) 26.83±2.49 (24–30) 18.56±1.95 (14–24)

CDR score (Mean±STD) 0±0 (0–0) 0.47±0.36 (0–0.5) 0.91±0.26 (0.5–1)

Abbreviation: MMSE: Mini-Mental State Examination. CDR: Clinical Dementia Rating. N = number of subjects.

STD: standard deviation.

https://doi.org/10.1371/journal.pone.0212582.t001
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Preprocessing of rs-fMRI data

Preprocessing of rs-fMRI data was carried out using the Data Processing Assistant for Resting-

State fMRI (DPARSF; http://www.restfmri.net) [33] and the Statistical Parametric Mapping

platform (SPM8; http://www.fil.ion.ucl.ac.uk/spm). All Digital Imaging and Communications

in Medicine (DICOM) files were obtained from the scanners as described above, and con-

verted into the Neuroimaging informatics Technology initiative (NIfTI) file format. The first

10 time points for each participant were disregarded to allow for signal calibration and partici-

pants’ adaption to the scanning noise. Subsequently, functional images went through the fol-

lowing preprocessing steps: slice-timing correction was referred to the last slice; realignment

for head movement compensation was performed by applying a Friston 24-parameter model

(6 head motion parameters, 6 head motion parameters from the previous time point, and 12

corresponding squared items); individual structural images (T1-weighted MPRAGE) were co-

registered to the mean functional image after realignment; normalization the rs-fMRI to the

original space was performed with the Diffeomorphic Anatomical Registration Through Expo-

nentiated Lie algebra (DARTEL) toolbox [34] (resampling voxel size = 3 × 3 × 3 mm3); spatial

smoothing was performed with a 6-mm full-width at half-maximum (FWHM) Gaussian ker-

nel. Then, linear trend removal and temporal band-pass filtering (0.01 Hz < f < 0.08 Hz) were

performed on the time series of each voxel. Finally, we regressed out cerebrospinal and white

matter signals as well as six head-motion parameters to further reduce the effects of nuisance

signals and focus only on the gray matters signal. A mask image was created according to the

intersection of the subject-specific normalized T1 anatomical images. Only the voxels within

the mask were further analyzed. The mask image was also used for correcting for multiple

comparisons in later analyses.

Proposed framework

Fig 1 illustrates all the procedures and techniques proposed in this study. The first step of the

procedure is to extract the whole-brain 3-D measures from processed rs-fMRI images. The

measures are ReHo, fALFF, ALFF, Degree Centrality (DC), left hippocampus-based rsFC

(LeftHC-based rsFC), right hippocampus-based rsFC (RightHC-based rsFC), left post cingu-

late cortex-based rsFC (LeftPCC-based rsFC), right post cingulate cortex-based rsFC

(RightPCC-based rsFC), left precuneus-based rsFC (LeftPCu-based rsFC), and right precu-

neus-based rsFC (RightPCu-based rsFC). Due to the small size of the datasets, we used leave-

one-out (LOO-CV) and 10-fold cross-validation (10-fold CV) for the ADNI2 and the in-house

cohort, respectively, to validate the classification performance of the methods. In LOO-CV,

one sample was selected as testing data whereas the rest was used for training. In 10-fold CV,

90% of the data were used for training and the remaining 10% for testing. Given training 3-D

spatial maps, we then performed univariate statistical t-tests to obtain a 3-D mask which iden-

tified a set of ‘active’ voxels. We then implemented the MVPA techniques (SVM-RFE and

LASSO) on 1-D concatenated training features to select the most relevant features for training

the ELM and SVM classifiers. Finally, given the indices of the highest ranked features on the

training data, we extracted the testing data for classification.

Feature extraction

We describe here some biomarkers measured from rs-fMRI using the Resting-State fMRI Data

Analysis Toolkit (REST) toolbox [35]. The measures can be categorized into regional sponta-

neous measures (ReHo, ALFF, fALFF), and functional connectivity measures (DC, seed-based

rsFC), as described below.
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Regional homogeneity (ReHo). We used the ReHo measure to explore regional brain

activity during the resting state. The computation was performed on a voxel-wise basis by

Fig 1. Descriptions of the proposed framework in this study. Block (a) presents the 3-D feature measure extractions from preprocessed fMRI scans. Block (b)

describes the LOO-CV and 10-fold-CV cross validation for ADNI2 and in-house cohorts, respectively. Block (c) presents the multivariate feature reduction

techniques using LASSO and SVM-RFE. The combined univariate t-test and multivariate LASSO as well as SVM-RFE informative features are trained by ELM

and SVM classifiers as illustrated in block (d). Finally, the trained classifiers and testing features are used to evaluate the performance as in block (e).

https://doi.org/10.1371/journal.pone.0212582.g001

MVPA combined with ELM for Alzheimer’s dementia diagnosis using rs-fMRI spatial patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0212582 February 22, 2019 7 / 28

https://doi.org/10.1371/journal.pone.0212582.g001
https://doi.org/10.1371/journal.pone.0212582


calculating Kendall’s Coefficient of Concordance (KCC) [36] of fMRI time series of a given

voxel with those of its nearest neighbours. From all the voxels in the brain, an individual ReHo

map was obtained for each subject. A higher regional coherence within a cluster, consisting of

a voxel and its nearest neighbours, was represented by a larger ReHo value for the voxel. Sev-

eral recent studies in literature have shown the potential value of ReHo in clinical applications

[9, 10, 37].

Amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The

regional spontaneous activities can be examined by the ALFF measure and its improved ver-

sion, the fALFF measure. After preprocessing, the filtered time series was transformed to a fre-

quency domain using a fast Fourier transform (FFT), and the power spectrum was obtained.

The average square root of the power spectrum (amplitude) between the frequencies of 0.01

and 0.08 Hz was computed at each voxel to give the ALFF measure [11, 38]. The fALFF mea-

sure is a modified version of ALFF, defined as the ratio of the average amplitude in the low-fre-

quency range (0.01–0.08 Hz) to that of the entire frequency range (0–0.25 Hz) [33].

Degree centrality (DC). We used a commonly employed graph-based measure of net-

work organization, degree centrality (DC), to perform a full-brain exploration of the regions

that were influenced by AD and MCI. Within the study mask, individual network centrality

maps were generated in a voxel-wise fashion. First, the preprocessed functional runs were sub-

jected to voxel-based whole-brain correlation analysis. The time course of each voxel from

each participant that was within the gray matter mask was correlated with the time course of

every other voxel, to obtain a correlation matrix. An undirected adjacency matrix was then

obtained by thresholding the correlation at r> 0.25 [39, 40], and the DC was computed as the

sum of the weights of the significant weighted connections for each voxel. Finally, the individ-

ual-level voxel-wise DC was converted into a z-score map by subtracting the mean DC across

the entire brain and dividing by the standard deviation of the whole-brain DC.

Seed-based resting-state functional connectivity (rsFC). To examine the detailed rsFC

differences among the AD, MCI and CN groups at the regional level, we performed seed-

based rsFC analysis. Briefly, the mean time course within each seed was extracted by averaging

the time courses of all the voxels belonging to the seed. Subsequently, the mean time course

was used to compute the correlation coefficients with the time courses of all voxels. The result-

ing correlation coefficients were then converted to z-scores using Fisher’s r-to-z transform to

improve normality [16, 41]. In this study, we selected bilateral PCC, bilateral Hippocampus,

and bilateral Precuneus as the seeds. Table 2 provides detailed information about the seeds.

Feature concatenation. Combining multiple measures is a very effective approach for

boosting the performance of a machine learning setup [42], which has been used in many

research domains, including neuroimaging classification [43]. In this work, we investigated a

common feature concatenation that linked many feature measures of the same dataset. We

Table 2. Detailed information of the seeds for seed-based rsFC measures.

Seed Abbreviation in this study for seed-based rsFC ROI in 116-ROI AAL Coordination, mm

x y z

Left Post Cingulate Cortex (LeftPCC) LeftPCC-based rsFC 35 -6 -43 25

Right Post Cingulate Cortex (RightPCC) RightPCC-based rsFC 36 6 -42 22

Left Hippocampus (LeftHC) LeftHC-based rsFC 37 -26 -21 -10

Right Hippocampus (RightHC) RightHC-based rsFC 38 28 106 62

Left Precuneus (LeftPCu) LeftPCu-based rsFC 67 -8 -56 48

Right Precuneus (RightPCu) RightPCu-based rsFC 68 9 -56 44

https://doi.org/10.1371/journal.pone.0212582.t002
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believe that feature concatenation will enhance accuracy and enable the inference of indirect

or direct associations between multiple features extracted from the same fMRI data.

Feature reduction techniques

The number of predictor voxels obtained in our spatial maps was larger than the number of

subjects. Thus, a dimensionality reduction process was necessary in order to select the most

relevant features, discard redundant features and noise, and avoid numerical singularities and

overfitting problems, and thus enhance the classification performance. Importantly, feature

reduction was performed using the training data only. Once identified, the same brain regions

identified during training were used to assess the classifier predictive accuracy [44] on the test-

ing data. In this study, we used univariate t-test and MVPA approaches, including SVM-RFE

and LASSO, as voxel-wise feature reduction techniques. The univariate t-test is performed

voxel-wise to identify independent voxels, whereas the multivariate RFE and LASSO investi-

gate the mutual associations between multiple features and spatial patterns. We also used

hybrid combinations of univariate and MVPA approaches to outperform the individual

techniques.

Univariate two sample t-test. Many neuroimaging studies have shown abnormalities, at

the level of the average signal, in one or more brain features in a diseased group compared to a

control group using univariate statistical tests [19]. Recently, classification studies have used t-

tests to select informative features for machine learning in neuroimaging [8, 45]. The key

results of the analysis based on statistical tests are usually expressed by means of p-values. Sub-

sequently, the optimal p-value cutoff to select the relevant features is determined through a

cross-validation process, and the features thus selected are used in the subsequent machine

learning analysis. In this study, we applied t-test-based feature reductions techniques to

machine learning based diagnosis. Using t-tests on the training dataset, we generated an ana-

lytical mask that retained only the voxels presenting significant changes in any of the analytical

feature measures, i.e. ReHo, ALFF, fALFF, DC, rsFC, between any of the two groups at the

threshold p-values (p<0.05 with |t|>1.9715, p<0.01 with |t|> 2.599, and p<0.001 with |t|>

3.3381). The correction cluster size threshold p = 0.05 corresponding to corrected individual

voxel p-values was computed by Monte Carlo simulations with the program AlphaSim in

REST [35] (1000 iterations) to determine the cluster size. As a result, cluster sizes of 85 voxels

(2295 mm3), 18 voxels (486 mm3), 6 voxels (162 mm3) were found to correspond to corrected

individual voxel p-values of 0.05, 0.01, and 0.001, respectively. Fig 2 shows selected regions

resulted from univariate t-test applied to ReHo maps of one-fold training data, i.e., AD vs. CN

and MCI vs. CN (out of>62 different folds for ADNI2 cohort and 10 folds for in-house

cohort).

Support vector machine-recursive feature elimination (SVM-RFE). While the t-test is a

univariate procedure that does not take into account interactions between multiple features

and spatial patterns, support vector machine-recursive feature elimination (SVM-RFE) is a

multivariate wrapper-model-based feature reduction algorithm, which efficiently fits a model

and removes the weakest features until the specified informative number of features is reached.

The ranking criterion of SVM-RFE is closely related to the SVM model. In each iteration of

the RFE, an SVM model is trained. Then, the feature with smallest ranking criterion is

removed since it has the least effect on classification, while the remaining features are kept for

the SVM model in the next iteration. The sequential process is repeated until all the features

have been eliminated. Then, according to the order of elimination, the features are graded.

The later a feature is eliminated, the more significant it should be [46]. A detailed description

of the SVM-RFE algorithm can be found in a previous paper [20]. In this work, after the

MVPA combined with ELM for Alzheimer’s dementia diagnosis using rs-fMRI spatial patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0212582 February 22, 2019 9 / 28

https://doi.org/10.1371/journal.pone.0212582


application of SVM-RFE, the most important training features that maximize cross-validated

accuracy were kept for training the classifiers. Fig 3 illustrates the process of hybrid combina-

tion of univariate t-test and multivariate SVM-RFE as well as LASSO to select the most rele-

vant features.

Least absolute shrinkage and selection operator (LASSO). A good example of MVPA

feature reduction with error and regularization terms is LASSO, which has been successfully

applied in neuroimaging machine learning tasks to mitigate problems related to the so-called

curse-of-dimensionality. LASSO computes model coefficients γj by minimizing the following

function:

min
g0gj
ð

1

2n

Xn

i¼1

ðui � g0 � xTi gjÞ
2
þ l

Xq

j¼1

jgjjÞ

where xi is the voxel-wise feature input data, a vector of q values at observation i, and n is the

number of observations. ui is the response at observation i. Lambda (λ) is a non-negative user-

defined regularization parameter which controls the balance between limiting the number of

non-zero coefficients γj (sparsity) and high prediction accuracy. Interestingly, as λ approaches

1, the model becomes increasingly sparse, meaning it will produce few relevant features, while

as λ approaches 0, the model becomes less sparse and includes more relevant features [5]. The

parameter γ0 is a scalar. The function minimized by LASSO involves the l1 norm of γj [47–49].

In this paper, we chose the value of λ that minimized the cross validated mean squared error

(MSE), as shown in Fig 4. The hybrid combination of univariate t-test and multivariate LASSO

for selecting the most discriminative training features is shown in Fig 3.

Classification

In this study, three machine learning classification algorithms were used namely, ELM, linear

SVM, and non-linear SVM. We have compared the results of all the classifiers, and ELM

proves to be the most efficient algorithm both in terms of computation time and accuracy.

Brief description of each method is described as follows.

Fig 2. An example of one-fold univariate statistical two-sample t-test on ReHo maps between two training analytical groups, i.e., AD against CN (left

subfigure) and MCI against CN (right subfigure). The threshold was set to p-value<0.05 with cluster size of 85 voxels (2295 mm3), which corresponded to a

corrected p-value<0.05. The t-test maps are overlaid on the anatomical image. The hot and cold colours represent positive and negative changes.

https://doi.org/10.1371/journal.pone.0212582.g002
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ELM classifier. An ELM consists of an input layer, a hidden layer, and an output layer.

Whereas traditional feedforward neural networks require weights and biases for all layers to be

adjusted by gradient-based learning algorithms, ELM arbitrarily assigns input weights and hid-

den layer biases without iterative adjustment, and computes the output weights by solving a

single linear system [23]. Thus, ELM learns much faster than traditional neural networks and

is widely employed in various classification applications as an efficient learning algorithm [24].

In this work, the number of hidden nodes was set between 1 and 400, and we selected a sig-

moid activation function. A grid search method on training data was used to tune this parame-

ter for achieving maximum cross-validated validation accuracy. To minimize the random

Fig 3. Illustration of the hybrid combination of univariate t-test and MVPA feature reduction techniques (SVM-RFE and LASSO) on the 3-D cross-

validated fMRI measures.

https://doi.org/10.1371/journal.pone.0212582.g003
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effects due to the weight initializations, each value of the number of hidden nodes was used

100 times and the average performance was presented.

SVM classifier. Support vector machines (SVM) have recently become popular as super-

vised classifiers of fMRI data due to their high performance, their ability to deal with large

high-dimensional datasets, and their flexibility in modeling diverse sources of data [4]. In the

present study, we utilized a linear SVM and a non-linear SVM based on radial basis function

(RBF) kernels. In SVMs, the parameters that need to be tuned are the gamma value of the ker-

nel scale (γ) and the box constraint (C). We used a greedy search method on training data to

tune these parameters to maximize cross-validated test accuracy. In this study, the search scale

for selecting gamma values of kernel scale and box constraint were set to γ = [0.001, 0.01, 0.1,

1, 10, 100, 1000, 10000], and C = [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000], respectively.

Cross-validation, performance evaluation, and significant testing methods

Cross-validation. In this work, we used Leave-One-Out cross-validation (LOO-CV) for

the ADNI2 cohort and 10-fold cross-validation (CV) for the in-house cohort. In the LOO-CV,

N-1 subjects out of N were used for training, and the remaining one was left for testing, and

the procedure was repeated for all the N subjects. In 10-fold CV, the subjects were randomly

Fig 4. An example of cross-validated MSE of LASSO fit with a parameter lambda (λ).

https://doi.org/10.1371/journal.pone.0212582.g004
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divided into 10 equally sized subsets: each of these subsets (folds), containing 10% of the sub-

jects, was then used as testing set for a model trained on the remaining 90%. The mean perfor-

mance of all N test subjects in LOO-CV, or all the 10 folds in 10-fold CV was reported as the

final result.

Performance evaluation. To evaluate the performance of the classifiers, we reported

accuracy (ACC), sensitivity (SEN), specificity (SPEC), balanced accuracy (BAC), positive pre-

dictive value (PPV), and negative predictive value (NPV). TP, TN, FP, and FN indicate the

number of true positives, true negatives, false positives, and false negatives, respectively. In

terms of these numbers, ACC, SEN, SPEC, BAC, PPV, and NPV can be computed as follows:

Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)

Sensitivity (SEN) = TP/(TP + FN)

Specificity (SPEC) = TN/(TN + FP)

Balanced accuracy (BAC) = (SEN + SPEC)/2

Positive predictive value (PPV) = TP/(TP + FP)

Negative predictive value (NPV) = TN/(TN + FN)

Significant testing methods. To assess the statistical significance of the classifiers’ perfor-

mance, a permutation test was performed on the classification accuracies, by randomly per-

muting 1000 times the labels of the test data of each of the N (LOO-CV) or 10 (10-fold CV)

folds to get the probability of random successful classification. In general, the lower the p-

value of the permuted prediction rate against the prediction rate of the original data labels, the

higher the significance of the classifier performance.

Results

Classification results: Univariate t-test

ADNI2 cohort. Tables 3 and 4 summarize the classification performance in discriminat-

ing between AD and CN, and between MCI and CN, respectively, of all the competing meth-

ods on the ADNI2 cohort. In terms of the mean diagnosis accuracy, the ELM classifier with

concatenated features obtained a maximal accuracy of 89.92% (p-value<0.001) with a sensitiv-

ity of 86.51%, specificity of 84.17%, balanced accuracy of 84.58%, PPV of 94.00%, and NPV of

87.40% when discriminating between AD and CN; and a maximal accuracy of 85.81% (p-

value<0.001) with a sensitivity of 86.67%, specificity of 85.83%, balanced accuracy of 84.85%

%, PPV of 86.50% and NPV of 90.00% when discriminating between MCI and CN. The

concatenated measure outperformed all individual measures. In addition, the ELM outper-

formed the linear and RBF-based non-linear SVMs in terms of diagnosis accuracy in all mea-

sures, including concatenated ones.

In-house cohort. The experimental results on the in-house dataset are summarized in

Table 5 (AD against CN) and Table 6 (MCI against CN). Our proposed method with the ELM

classifier achieved very high mean accuracies for all types of measures (above 90% mean accu-

racy for AC against CN; around 80% mean accuracy for MCI against CN). Note that, in AD vs.

CN, the concatenation of all measures resulted in a maximal mean accuracy of 94.45% (p-

value<0.001) with a sensitivity of 83.67%, a specificity of 96.67%, a balance accuracy of

90.17%, a PPV of 95.67%, and a NPV of 91.07%; in MCI vs. CN, the maximal mean accuracy

was 87.20% (p-value<0.001), with a sensitivity of 78.85%, a specificity of 87.50%, a balance

accuracy of 81.69%, a PPV of 84.66%, and a NPV of 81.27%. Again, the performance of the

combined measures was superior to that of the individual measures. In addition, the mean
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accuracy of the ELM classifier was superior to that of the linear and non-linear SVMs, as can

be seen in the Tables 5 (AD vs. CN) and 6 (MCI vs. CN).

Table 3. Leave-One-Out cross-validation mean classification performance for AD versus CN of multi-measure features at p-value = 0.05 with ADNI2 cohort.

Feature Measure ELM SVM-RBF SVM-Linear

ACC Training

(%)

ACC Testing

(%)

p-

value

SEN Testing

(%)

SPEC

Testing (%)

BAC Testing

(%)

PPV Testing

(%)

NPV Testing

(%)

ACC Testing

(%)

ACC Testing

(%)

ReHo 89.57±4.10 84.29±1.23 0.001 85.00±1.10 83.33±1.57 84.17±1.76 88.00±2.74 88.56±1.61 66.43±5.49 71.43±3.65

fALFF 83.16±2.18 85.07±2.34 0.001 95.00±5.41 73.33±4.05 84.17±1.76 84.00±8.34 95.00±10.45 71.90±3.91 75.00±3.05

ALFF 85.30±5.29 85.71±1.14 0.001 97.50±3.91 70.00±5.41 83.75±1.32 82.00±6.32 97.50±7.91 75.38±1.67 76.62±7.90

Degree Centrality 87.63±1.05 87.15±1.53 0.001 90.00±2.92 80.00±7.21 85.00±2.15 88.33±10.56 90.00±12.91 70.24±6.04 73.57±4.78

LeftHC-based

rsFC

93.51±4.91 85.51±3.16 0.001 85.00±4.91 86.67±1.24 85.53±2.15 92.00±10.33 85.00±12.91 71.67±4.26 73.33±4.58

RightHC-based

rsFC

96.49±4.14 87.75±1.63 0.001 80.00±5.54 93.33±4.05 86.67±1.76 96.00±8.43 80.00±10.54 59.52±1.35 65.71±2.15

LeftPCC-based

rsFC

81.36±4.26 84.47±2.17 0.001 90.00±2.91 80.00±7.21 85.00±2.15 88.00±10.33 90.00±12.91 71.67±4.82 73.33±2.93

RightPCC-based

rsFC

83.33±1.12 81.75±3.35 0.001 85.00±5.31 86.67±1.29 85.83±2.15 92.00±10.33 85.00±12.91 71.19±1.92 71.19±1.92

LeftPCu-based

rsFC

94.04±6.76 83.49±2.08 0.001 82.50±2.04 90.00±6.10 86.25±2.01 94.00±6.96 82.50±12.43 64.05±3.11 70.48±6.66

RightPCu-based

rsFC

87.42±4.90 85.71±3.64 0.001 87.50±13.18 83.33±3.62 85.42±2.22 90.00±5.40 87.50±3.18 71.90±2.18 70.71±5.87

Concatenation 94.07±3.81 89.92±1.23 0.001 86.51±6.10 84.17±6.87 84.58±2.01 94.00±2.74 87.40±3.18 76.19±2.09 77.62±2.31

Abbreviation: ReHo = regional homogeneity; ALFF = amplitude of low-frequency fluctuation; fALFF = fractional amplitude of low-frequency fluctuation; LeftHC-based

rsFC = Left Hippocampus seed-based rsFC; RightHC-based rsFC = Right Hippocampus seed-based rsFC; LeftPCC-based rsFC = Left Post Cingulate Cortex seed-based

rsFC; RightPCC-based rsFC = Right Post Cingulate Cortex seed-based rsFC; LeftPCu-based rsFC = Left Precuneus seed-based rsFC. RightPCu-based rsFC = Right

Precuneus seed-based rsFC. The bold results indicate the maximal performances.

https://doi.org/10.1371/journal.pone.0212582.t003

Table 4. Leave-One-Out cross-validation mean classification performance for MCI against CN of multi-functional features at p-value = 0.05 with ADNI2 cohort.

Feature Measure ELM SVM-RBF SVM-Linear

ACC Training

(%)

ACC Testing

(%)

p-

value

SEN Testing

(%)

SPEC

Testing (%)

BAC Testing

(%)

PPV Testing

(%)

NPV Testing

(%)

ACC Testing

(%)

ACC Testing

(%)

ReHo 91.55±2.70 85.01±3.25 0.001 88.50±6.32 80.00±7.12 84.75±1.32 85.00±2.91 90.50±2.35 70.95±1.53 72.71±4.10

fALFF 80.90±4.08 81.95±5.12 0.001 85.68±2.71 80.00±2.17 82.34±1.75 85.50±2.57 90.50±2.35 68.10±9.70 65.00±6.91

ALFF 79.55±4.10 84.65±3.06 0.001 90.83±4.93 76.67±6.10 83.75±1.32 82.50±2.08 93.00±1.35 72.62±2.81 73.95±3.93

Degree Centrality 88.80±4.80 82.13±1.94 0.001 85.07±4.21 80.83±6.69 82.85±1.32 85.50±2.57 90.00±2.91 70.95±1.44 70.62±5.02

LeftHC-based

rsFC

83.58±5.22 82.04±4.26 0.001 87.00±6.10 77.50±5.74 82.25±1.32 83.00±1.83 92.50±2.08 70.95±1.04 65.00±4.98

RightHC-based

rsFC

88.96±2.75 80.47±5.13 0.001 73.33±4.05 89.33±4.26 81.33±0.00 93.50±5.69 80.50±1.39 64.52±5.13 64.52±5.89

LeftPCC-based

rsFC

88.27±7.63 84.02±3.35 0.001 77.50±5.74 90.83±4.93 84.17±1.76 92.50±2.08 82.50±1.84 67.62±3.15 60.95±7.97

RightPCC-based

rsFC

86.60±5.11 81.14±2.87 0.001 84.67±5.15 80.83±6.69 82.75±1.32 85.50±2.57 90.00±2.91 70.71±4.11 69.05±6.84

LeftPCu-based

rsFC

86.99±5.03 83.57±3.41 0.001 90.83±4.93 77.50±5.74 84.17±1.76 82.50±2.08 92.50±1.28 71.62±5.89 71.19±6.36

RightPCu-based

rsFC

87.88±4.25 82.75±4.36 0.001 83.17±6.87 83.17±6.87 83.17±1.75 87.50±3.18 87.50±3.18 72.82±7.43 69.29±9.97

Concatenation 87.54±2.77 85.81±3.53 0.001 86.67±2.71 85.83±6.69 84.85±1.32 86.50±2.57 90.00±2.91 76.62±5.07 77.69±5.26

https://doi.org/10.1371/journal.pone.0212582.t004
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Classification results: Group differences and classifications

To date, there are no guidelines available for the optimal user-defined threshold of significance

(p-values) to select the relevant features to be used in machine learning for the differentiation

of AD and MCI vs. CN [5, 44]. To investigate the effects of univariate statistical p-values, we

show in Table 7 the ELM classification performance at different p-values (p = 0.05, 001 and

0.001). Interestingly, the best performance was found with the least significant difference (p-

value = 0.05) for both datasets and both classification problems (AD vs. CN and MCI vs. CN).

Specifically, in the ADNI2 cohort, the maximal mean accuracy in AD vs. CN classification was

Table 5. 10-fold cross-validation mean classification performance for AD against CN of multi-functional features at p-value = 0.05 with In-house cohort.

Feature Measure ELM SVM-RBF SVM-Linear

ACC Training

(%)

ACC Testing

(%)

p-

value

SEN Testing

(%)

SPEC

Testing (%)

BAC Testing

(%)

PPV Testing

(%)

NPV Testing

(%)

ACC Testing

(%)

ACC Testing

(%)

ReHo 88.65±4.11 92.26±1.84 0.001 87.64±8.34 94.71±5.25 91.17±2.38 91.14±8.21 93.18±3.94 78.15±7.05 73.84±6.75

fALFF 91.60±3.59 89.76±3.56 0.001 85.69±11.91 92.08±6.05 88.89±4.67 86.68±8.94 92.67±5.94 66.47±9.00 62.16±10.38

ALFF 85.54±4.30 90.18±4.52 0.001 81.94±11.34 94.75±4.19 88.35±5.76 89.88±7.59 90.85±5.59 76.47±8.14 83.73±8.00

Degree Centrality 97.67±2.75 90.09±2.05 0.001 81.39±8.96 94.71±4.20 88.05±3.18 90.32±7.06 90.72±3.63 74.28±7.98 78.19±8.66

LeftHC-based

rsFC

93.09±3.37 90.09±2.90 0.001 86.53±6.65 92.00±6.13 89.26±2.41 86.58±8.89 92.92±3.29 64.38±7.78 64.78±11.60

RightHC-based

rsFC

91.09±3.86 85.72±3.52 0.001 71.25±3.24 93.38±4.45 82.31±5.48 86.15±8.02 86.46±5.88 59.24±9.63 59.66±7.35

LeftPCC-based

rsFC

94.37±3.62 87.68±2.28 0.001 80.00±2.20 92.08±5.17 86.04±4.07 86.20±8.19 89.64±5.75 65.60±6.22 62.63±7.26

RightPCC-based

rsFC

94.17±2.39 85.72±2.85 0.001 81.53±6.14 88.13±5.96 84.83±2.84 80.63±7.21 89.41±2.86 59.20±8.79 58.75±11.31

LeftPCu-based

rsFC

95.89±3.03 89.38±2.11 0.001 84.44±7.93 92.13±4.12 88.28±2.86 86.10±6.21 91.73±4.05 69.87±11.95 69.46±10.11

RightPCu-based

rsFC

93.67±2.03 90.49±2.68 0.001 84.03±10.06 94.00±4.92 89.01±3.76 89.49±8.06 91.92±4.98 71.25±9.35 69.11±12.56

Concatenation 95.50±4.88 94.45±2.06 0.001 83.67±8.78 96.67±5.67 90.17±2.59 95.67±9.02 91.07±3.90 75.24±1.13 80.34±7.26

https://doi.org/10.1371/journal.pone.0212582.t005

Table 6. 10-fold cross-validation mean classification performance for MCI against CN of multi-functional features at p-value = 0.05 with In-house cohort.

Feature Measure ELM SVM-RBF SVM-Linear

ACC Training

(%)

ACC Testing

(%)

p-

value

SEN Testing

(%)

SPEC

Testing (%)

BAC Testing

(%)

PPV Testing

(%)

NPV Testing

(%)

ACC Testing

(%)

ACC Testing

(%)

ReHo 82.10±1.66 81.76±2.69 0.001 75.38±2.43 87.58±7.99 81.48±2.89 85.84±6.78 81.30±5.77 60.18±4.58 60.89±4.97

fALFF 82.59±3.80 78.19±3.04 0.001 75.71±2.23 80.21±1.95 77.96±3.04 78.30±3.79 80.70±2.68 58.49±3.85 60.96±6.22

ALFF 87.51±3.87 84.51±2.98 0.001 81.92±3.68 86.83±4.35 84.38±3.18 84.81±4.85 85.22±6.27 74.70±2.08 77.14±7.79

Degree Centrality 81.11±2.42 82.41±3.15 0.001 77.25±3.69 86.88±5.96 82.06±2.96 84.10±5.97 81.51±2.34 67.62±3.69 68.66±3.06

LeftHC-based

rsFC

76.61±1.86 78.87±4.70 0.001 78.68±3.59 78.92±4.67 78.80±4.80 76.90±6.67 81.68±2.36 62.66±6.39 63.71±6.39

RightHC-based

rsFC

79.15±2.10 78.55±4.35 0.001 75.93±1.24 80.96±4.90 78.45±4.42 78.73±6.68 80.34±4.48 58.84±3.85 61.64±3.95

LeftPCC-based

rsFC

79.07±1.05 81.34±4.57 0.001 75.88±2.57 86.13±5.91 81.00±6.08 82.83±5.61 81.16±7.79 67.24±4.47 68.30±3.39

RightPCC-based

rsFC

78.67±1.85 79.97±4.50 0.001 75.77±1.27 83.50±5.68 79.63±4.78 80.48±4.45 80.62±4.78 63.69±5.52 63.71±4.57

LeftPCu-based

rsFC

80.17±5.09 79.91±3.45 0.001 74.12±6.80 84.75±6.77 79.44±3.29 81.98±8.22 79.33±3.24 60.92±6.67 61.61±6.49

RightPCu-based

rsFC

78.76±1.51 81.37±3.93 0.001 78.85±5.69 83.54±6.47 81.19±3.87 81.15±7.06 82.09±4.11 66.56±5.70 69.36±6.48

Concatenation 86.52±6.99 87.20±2.35 0.001 78.85±6.90 87.50±5.72 81.69±2.75 84.66±5.12 81.27±5.70 69.74±6.81 71.13±4.71

https://doi.org/10.1371/journal.pone.0212582.t006
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89.92% (p-value<0.001), with a sensitivity of 86.51%, specificity of 84.17%; while in classifying

MCI vs. CN, the maximal accuracy was 85.81% (p-value<0.001), with a sensitivity of 86.67%,

and a specificity of 85.83%. For the in-house cohort, we achieved, in AD vs. CN classification,

a maximal accuracy of 94.45% (p-value<0.001), a sensitivity of 83.67%, a specificity of 96.67%;

while for the MCI vs. CN classification the maximal accuracy was 87.20% (p-value<0.001),

with a sensitivity of 78.85%, and a specificity of 87.50%. Therefore we can conclude that a

highly significant group difference (p-value = 0.01, 0.001) does not necessarily result in a stron-

ger classification performance, and, conversely, that a high classification performance does not

necessarily mean that strong differences exist between the means of the groups.

Classification results: Hybrid combination of MVPA methods

In the previous section, we reported the results using only univariate t-tests, not combined with

MVPA methods, for discriminating AD and MCI from CN. In this section we will examine the

hybrid combinations of t-tests and multivariate techniques, including LASSO and SVM-RFE.

Table 8 presents the performance in AD and MCI discrimination using the ELM classifier with

only the univariate t-test (on concatenated features), and its combination with LASSO or

SVM-RFE. The results show that the ELM classifier combined with the hybrid feature optimization

framework outperformed the same classifier without feature optimization, in both cohorts and in

both AD and MCI discrimination (accuracies up to 98.86% for AD and 98.57% for MCI diagnosis

in the ADNI2 cohort; up to 98.70% for AD and 94.16% for MCI diagnosis in the in-house cohort).

In addition, the ELM performance with combined univariate t-test and SVM-RFE is clearly supe-

rior to that of combined univariate t-test and LASSO. Interestingly, the hybrid combinations of

univariate t-test with different threshold p-values and SVM-RFE resulted in similar accuracies.

These similar performances can be explained as follows: In this paper, we chose the highest ranked

features using grid search cross validation method on only training data, and SVM-RFE eliminated

the remaining, low-ranked features. Even though with different p-values, the number of highest

features are the same for the classifiers, and that resulted in equal performance.

Discussion

Comparison with previous studies

In recent years, many studies have been carried out to classify AD/MCI subjects using rs-

fMRI. Studies based on the use of a binary classification reported accuracies from about 75%

Table 7. The effects of significant p-values on the classification performances reported with ADNI2 and in-house cohorts.

ADNI2 cohort

Measure p-values AD against CN MCI against CN

ACC (%) Testing SEN (%) SPEC (%) ACC (%) Testing SEN (%) SPEC (%)

Concatenation 0.05 89.92±1.23 86.51±6.10 84.17±6.87 85.81±3.53 86.67±2.71 85.83±6.69

0.01 84.29±3.25 78.33±3.01 90.00±2.84 83.24±4.94 87.50±3.27 80.83±5.09

0.001 85.68±3.89 85.00±4.12 85.17±4.10 83.81±3.47 91.67±4.69 73.80±6.27

In-house cohort

Measure p-values AD against CN MCI against CN

ACC (%) Testing SEN (%) SPEC (%) ACC (%) Testing SEN (%) SPEC (%)

Concatenation 0.05 94.45±2.06 83.67±8.78 96.67±5.67 87.20±2.35 78.85±6.90 87.50±5.72

0.01 91.00±2.79 84.03±6.47 94.67±5.61 84.16±4.82 78.79±5.83 88.75±5.49

0.001 91.87±3.57 84.92±4.06 94.04±3.79 84.03±3.94 78.50±6.47 88.43±6.02

https://doi.org/10.1371/journal.pone.0212582.t007
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to about 95% [18, 19]. Table 9 summarizes the results of recently published studies using rs-

fMRI neuroimaging-based machine learning to discriminate AD and MCI from CN and com-

pares them with our results. It should be noted that our method outperformed the ones pro-

posed in [26, 50–52], which used the same MCI and CN subject selection from the ADNI2

cohort. Direct performance comparison with other studies would not be fair, because of the

different datasets, preprocessing pipelines, feature measures, and classifiers. Nevertheless, it is

noteworthy that the method we propose achieved the highest accuracy among all the methods

described in the classification of AD and MCI vs. CN using only rs-fMRI data.

Feature selection techniques on ADNI cohort

Recent years have shown wide applications of MVPA feature selection methods applied on

neuroimaging data sets from public ADNI cohorts. In Table 10, we summarize the results of

previous works that applied univariate and MVPA as well as their hybrid combinations for dis-

criminating the AD and MCI patients. In recent study [60], Kim et al. proposed multi-model

hierarchical ELM integrated with t-test and LASSO applied on ROI-based features for classifi-

cations of AD and MCI against CN. Volume and mean intensity extracted from 93 ROIs of

preprocessed MRI and FDG-PET images, respectively, as well as CSF values were used as fea-

tures. The maximal accuracies achieved by t-test method were 96.11% and 86.15% while

LASSO-based method achieved 96.03% and 86.17% for AD and MCI vs. CN, respectively. Sim-

ilar AD/MCI identification framework [61] used multiple-kernel SVM method to combine the

biomarkers of three modalities (MRI, FDG-PET, and CSF). Simple feature selection based on

Table 8. The effects of multivariate feature optimization methods (LASSO and SVM-RFE) on the ELM classification performances reported with ADNI2 and in-

house cohorts.

ADNI2 cohort

Measure Feature optimization methods AD against CN MCI against CN

ACC (%) Testing SEN (%) SPEC (%) ACC (%) Testing SEN (%) SPEC (%)

univariate t-test with p-value = 0.05 univariate t-test 89.92±1.23 86.51±6.10 84.17±6.87 85.81±3.53 86.67±2.71 85.83±6.69

univariate t-test + LASSO 96.14±7.71 98.33±4.61 93.67±5.83 90.48±5.46 90.83±2.92 90.52±3.93

univariate t-test + SVM-RFE 98.86±4.52 100.00±0.00 97.50±2.91 98.57±4.52 100.00±0.00 97.50±7.91

univariate t-test with p-value = 0.01 univariate t-test 84.29±3.25 78.33±3.01 90.00±2.84 83.24±4.94 87.50±3.27 80.83±5.09

univariate t-test + LASSO 94.05±7.72 94.17±2.45 93.33±4.05 85.71±3.97 81.67±5.99 90.00±2.50

univariate t-test + SVM-RFE 98.86±4.52 100.00±0.00 97.50±2.91 98.57±4.52 100.00±0.00 97.50±7.91

univariate t-test with p-value = 0.001 univariate t-test 85.68±3.89 85.00±4.12 85.17±4.10 83.81±3.47 91.67±4.69 73.80±6.27

univariate t-test + LASSO 89.05±2.86 84.17±3.06 93.33±2.08 93.57±3.38 97.50±1.97 90.00±1.61

univariate t-test + SVM-RFE 98.86±4.52 100.00±0.00 97.50±2.91 98.57±4.52 100.00±0.00 97.50±7.91

In-house cohort

Measure Feature optimization methods AD against CN MCI against CN

ACC (%) Testing SEN (%) SPEC (%) ACC (%) Testing SEN (%) SPEC (%)

univariate t-test with p-value = 0.05 univariate t-test 94.45±2.06 83.67±8.78 96.67±5.67 87.20±2.35 78.85±6.90 87.50±5.72

univariate t-test + LASSO 96.16±3.48 95.14±4.61 96.67±3.73 87.62±4.49 83.44±6.17 88.43±5.05

univariate t-test + SVM-RFE 98.70±2.25 99.50±7.91 97.33±3.44 94.16±5.67 92.69±3.17 95.63±4.39

univariate t-test with p-value = 0.01 univariate t-test 91.00±2.79 84.03±6.47 94.67±5.61 84.16±4.82 78.79±5.83 88.75±5.49

univariate t-test + LASSO 96.63±3.16 93.89±4.59 98.00±5.71 89.40±4.16 88.94±3.69 89.40±5.04

univariate t-test + SVM-RFE 98.70±2.25 99.50±7.91 97.33±3.44 94.16±5.67 92.69±3.17 95.63±4.39

univariate t-test with p-value = 0.001 univariate t-test 91.87±3.57 84.92±4.06 94.04±3.79 84.03±3.94 78.50±6.47 88.43±6.02

univariate t-test + LASSO 94.08±3.14 90.14±5.06 96.04±4.83 88.12±4.01 86.98±3.58 91.24±4.86

univariate t-test + SVM-RFE 98.70±2.25 99.50±7.91 97.33±3.44 94.16±5.67 92.69±3.17 95.63±4.39

https://doi.org/10.1371/journal.pone.0212582.t008
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t-test was implemented, leading to the highest classification accuracies of 93.2% and 76.4% for

respective AD and MCI diagnosis compared to using all features. Another study [62] used

LASSO-based feature selection on GM and WM volume maps to achieve maximal accuracies

of 85.7% and 81.1%. Hidalgo-Muñoz et al. [63] compared voxel-wise feature selections, i.e uni-

variate t-test and multivariate SVM-RFE for classification of AD patients from CN using seg-

mented GM and WM maps. Their obtained results have suggested that SVM-RFE selects

discriminant features more efficiently than t-test significance for classification purposes

(99.7% vs. 93.2%). Using rs-fMRI data, Khazaee et al. [56] computed functional brain net-

work-based features, and used univariate Fisher score for feature selection and SVM as the

classifier for AD classification, achieving up to a maximum accuracy of 97%. More recently,

other MVPA techniques, such as principal component analysis (PCA) and independent com-

ponent analysis (ICA), have been developed to keep informative features while disregarding

Table 9. Comparison of classification accuracy of AD/MCI subjects with state-of-the-art methods using rs-fMRI.

Modality Disorder Dataset Feature Measures Classifier Accuracy (%) Reference

rs-fMRI AD AD: 77, CN: 173 Seed-based FC, ALFF, ICA,

concatenation

AUC 85 De Vos et al., 2018

[53]

rs-fMRI AD AD: 12, CN: 12 ROI-based difference between

DMN and SN map

LDA 92 Zhou et al., 2010

[54]

rs-fMRI AD AD: 34, CN: 45 Graph measures naïve Bayes 93.3 Khazaee et al.,

2017 [3]

rs-fMRI AD AD: 15, CN: 16 Averaged voxel intensities of

selected resting-state network

Multivariate ROC 95 Wu et al., 2013

[55]

rs-fMRI AD AD: 20, CN: 20 Graph measure based on FC

analysis among ROIs

SVM 97 Khazaee et al.,

2015 [56]

rs-fMRI AD AD: 27, CN: 39 FC among selected AAL regions Bayesian Gaussian process

logistic regression

97 Challis et al., 2015

[57]

rs-fMRI AD AD: 33, CN: 31 (ADNI2) / AD:

81, CN: 152 (in-house)

Proposed methods ELM 98.86 (ADNI2) /

98.70 (in-house)

rs-fMRI MCI �MCI: 31, CN: 31 HMM+SDL SVM 62.90 Eavani et al., 2013

[50, 52]

rs-fMRI MCI �MCI: 31, CN: 31 gSR SVM 66.13 Wee et al., 2014

[26,52]

rs-fMRI MCI �MCI: 31, CN: 31 sDFN SVM 70.97 Leonardi et al.,

2013 [51, 52]

rs-fMRI MCI �MCI: 31, CN: 31 DAE+HMM SVM 72.58 Suk et al., 2016

[52]

rs-fMRI MCI MCI: 50, CN: 39 FC among selected AAL regions Bayesian Gaussian process

logistic regression

81 Challis et al., 2015

[57]

rs-fMRI MCI MCI: 12, CN: 25 Local connectivity and global

topological properties

Multiple kernel learning 91.9 Jie et al., 2014 [58]

rs-fMRI MCI MCI: 89, CN: 45 Graph measures naïve Bayes 93.3 Khazaee et al.,

2017 [3]

rs-fMRI MCI MCI: 29, CN: 21 N/A N/A 95.6 Beltrachini et al.,

2015 [59]

rs-fMRI MCI �MCI: 31, CN: 31 (ADNI2) /

MCI: 132, CN: 152 (in-house)

Proposed methods ELM 98.57 (ADNI2) /

94.16 (in-house)

Abbreviation: ICA = independent component analysis, AUC = area under the curve, DMN = default mode network, SN = salience network, LDA = linear discriminant

analysis, ROC = receiver operating characteristic, ROI = region of interest, AAL = automated anatomical labeling, HMM = hidden markov model, SDL = sparse

dictionary learning, gSR = group sparse representation, sDFN = sliding window-based dynamic functional network, DAE = deep auto encoder.
�

indicates the studies that used the same dataset.

https://doi.org/10.1371/journal.pone.0212582.t009
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uninformative sources of noises. Salvatore et al. used PCA method to reduce the dimensions

of WM and GM density maps [64]. The reduced density maps were used for SVM classifiers to

identify AD (accuracy = 76%) and MCI (accuracy = 72%) patients from CN. Similar predictive

Table 10. Comparison of classification performances of AD/MCI patients on ADNI cohort with hybrid MVPA feature selections.

Reference Modality Dataset

AD/MCI/

CN

Feature Measures Classifier Feature selection Accuracy (%)

AD vs.

CN

MCI vs.

CN

Salvatore et al., 2015

[64]

sMRI 137/76/162 sMRI: WM and GM density maps SVM PCA 76 72

Chu et al., 2011 [70] sMRI 131/261/

188

sMRI: voxel-wise GM SVM t-test 82.0 66.0

t-test+ROI 85.0 68.0

SVM-RFE 84.0 67.0

t-test+SVM-RFE 85.0 67.0

Casanova et al., 2011

[62]

sMRI 49/-/49 sMRI: voxel-wise GM and WM volume maps LASSO 85.7 -

Retico et al., 2015 [65] sMRI 200/400/

200

sMRI: voxel-wise GM maps SVM whole-brain;

t-test;

t-test+SVM-RFE

88.9

(AUC)

70.7

(AUC)

Dai et al., 2012 [31] sMRI

(OASIS data)

39/-/44 sMRI: cortical thickness SVM t-test+LLB;

Corr+LLB;

BSSWSS+LLB;

t-test+RFE;

Corr+RFE;

BSSWSS+RFE

90.4 -

Wee et al., 2013 [27] sMRI 198/200/

200

sMRI: correlation of regional mean cortical thickness SVM t-test+mRMR

+SVM-RFE

92.35 83.75

Zhang et al., 2011 [61] sMRI

+PET-CSF

51/99/52 sMRI: Volumetric features from sMRI and PET SVM t-test 93.2 76.4

Hidalgo-Muñoz et al.,

2014 [63]

sMRI 185/-/185 sMRI: voxel-based GM and WM SVM t-test 93.2 -

SVM-RFE 99.7 -

Wee et al., 2013 [26] rs-fMRI -/25/25 rs-fMRI: Pearson correlation-based FC SVM t-test+mRMR

+SVM-RFE

- 84.0

Jie et al., 2014 [28] fMRI

(non ADNI)

-/12/25 fMRI: topological similarity between connectivity

networks

SVM t-test+RFE - 91.9

Kim et al., 2018 [60] sMRI

+FDG-PET

51/99/52 sMRI: 93 ROI GM volume

FDG-PET: 93 ROI mean intensity

ELM t-test 96.11 86.15

LASSO 96.03 86.17

Beheshti et al., 2016

[67, 68]

sMRI 160/-/162 sMRI: voxel-wise GM SVM LASSO 88.70 -

t-test+Fisher

criterion

93.01 -

Lopez et al., 2010 [69] PET 53/114/52 Voxel-wise intensity SVM

ANN

PCA+LDA;

PCA+FDR

96.7 82.19

SPECT

(non ADNI)

50/-/41 89.5 -

Khazaee et al., 2015

[56]

rs-fMRI 20/-/20 Graph measure based on FC analysis among ROIs SVM Fisher score 97 -

Proposed method fMRI 34/31/31 fMRI: voxel-wise regional spontaneous and

functional connectivity measures

ELM

SVM

t-test+ SVM-RFE 98.86 98.57

81/132/

152

(non

ADNI)

t-test+LASSO 98.70 94.16

Abbreviation: PCA = principal component analysis, AUC = area under the curve, GM = gray matter, WM = white matter, mRMR = minimum redundancy and

maximum relevance, LDA = linear discriminant analysis, LLB = local-learning-based feature selection, BSSWSS = between-group sum of squares (BSS) to within group

sum of squares (WSS), Corr = correlation, FDR = Fisher discriminant ratio, ANN = artificial neural network.

https://doi.org/10.1371/journal.pone.0212582.t010
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improvements due to a single MVPA feature selection or their hybrid combinations were

obtained in unimodal rs-fMRI studies [26, 27], sMRI [60, 63, 65], PET [60, 66] and multi-

model sMRI+PET [60, 66].

The hybrid combinations of feature selection methods were demonstrated to diagnose the

AD and MCI diseases with success. In studies [26, 27], Wee et al. combined two filter-based

methods (t-test and minimum redundancy and maximum relevance-mRMR) and wrapper-

based SVM-RFE methods to select the most discriminative functional connectivity extracted

from rs-fMRI images. They reported maximum accuracies of 92.35% and 84% for identifica-

tions of AD and MCI patients from healthy controls. In other studies [67, 68], a new hybrid

voxel-wise feature selection approach that combines t-test with Fisher criterion-based genetic

algorithm was proposed predict AD patients from CNs using segmented GM images. They

reported that the hybrid method’s performance (accuracy: 93.01%) is superior to those with

PCA-based feature selection method (88.70%) and with no feature selection (accuracy:

87.63%). In addition, combinations of PCA with LDA and FDR (Fisher discriminant ratio) as

feature selection methods outperform the whole-brain vovel-wise approach as they achieved

AD classification accuracy results of up to 96.7% and 89.5% for PET and SPECT images,

respectively [69].

By contrast, some studies have reported that feature selection without utilizing prior knowl-

edge did not increase classification accuracy. Chu et al. [70] compared four common feature

selection methods: 1) pre-selected ROIs based on pre-knowledge, 2) univariate t-test, 3) RFE,

and 4) t-test constrained by ROIs, extracted from segmented GM maps from T1 MRI scans of

three patient groups (AD, MCI, CN). Surprisingly, the results showed that: 1) the predictive

accuracies with either univariate t-test or RFE were no better than those achieved using the

whole brain data, 2) the hybrid method (t-test + ROI) that used the ROI as spatially constrain

and t-test as the ranking of features did show significant improvements of classification accu-

racy in AD vs. CN and MCI vs. CN. Similarly, voxel-wise hybrid combinations of t-test and

SVM-RFE applied to whole-brain GM maps were not significantly improved the AD- and

MCI-diagnosis performances as compared to whole-GM approach [65].

Hybrid combinations of feature selection methods have also been used for AD and MCI

classifications using other cohorts rather than standard ADNI data sets. Typically, Jie et al.

[28] combined t-test and RFE to select the most topological features extracted from fMRI

scans for MCI discrimination from CN subjects. They reported a maximal accuracy of 91.9%.

Other study [31] utilized a hybrid feature selection approach that combines three filter- and

two wrapper-based methods, and compared the performance of six different combinations of

them. They reported the best accuracy of 90.4% using the proposed hybrid approach with

SVM classifier in LOO-CV for AD patients diagnosis taken from Open Access Series of Imag-

ing Studies (OASIS) database (http://www.oasis-brains.org/).

The benefits of MVPA feature reduction methods

It is known that the performance of pattern recognition methods such as SVM and ELM

decreases with the increase of non-informative features [19]. Machine learning techniques

take advantage of the multivariate nature of the fMRI data and are able to identify maximally

discriminative spatial patterns [58]. In the present work, we have examined and assessed an

approach for fMRI pattern discrimination analysis based on ELM and hybrid combinations of

multi-voxels, including univariate and MVPA feature reductions. Our results show that the

conventional univariate t-test, as used alone, can be used with a classifier for identification of

AD/MCI patients. In addition, as shown in Table 7, a very low p-value cut-off does not guaran-

tee a strongly informative feature, while a larger p-value does not necessarily indicate an
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irrelevant feature. Thus, by discarding voxels based only on the results of statistical tests sensi-

tive to group means, could lead to loss of discriminative ability. Therefore, additional MVPA

methods should be used in combination with the univariate group-level t-test.

We also demonstrated that the hybrid combination of multi-voxel methods (t-test

+ SVM-RFE and t-test + LASSO) increases the discriminative power of the patterns (Table 8).

In our studies, we searched for the most relevant discriminative patterns using SVM-RFE,

which iteratively eliminates the lowest-ranked patterns based on multivariate information clas-

sified by RBF-based SVM; and LASSO, which chooses the sparse features that contribute the

most to the accuracy of the model during training. It is worth noting that because of the lesser

sensitivity of the univariate method, the wisest setting for combining univariate and multivari-

ate is to use larger p-value thresholds (thus preventing the exclusion of potentially relevant

voxels), and then remove irrelevant voxels based on multivariate ranking functions.

Clinical significance of the results

The regions showing significant changes in a univariate t-test play an important role in achiev-

ing highly accurate differential diagnosis when used in combination with MVPA feature

reduction methods. The following discussion of the significant regions may have clinical

relevance.

We showed that the highest discrimination patterns were achieved when all information

from regional coherence and functional connectivity measures were combined. This may

imply that different parts of the brain undergo different functional failures as a consequence of

AD/MCI. Therefore, classification methods should include the maximum amount of informa-

tive change to achieve optimal discrimination.

One important finding of the current study is that the significant regional features depend

on the dataset: Therefore we cannot label any regional feature as a global biomarker of AD or

MCI. Our binary classification results between folds indicated that the significant features are

subject to change when the cross-validation subgroups of AD and MCI subjects are changed.

Therefore, no specific regional feature would be an appropriate global biomarker for AD and

MCI diagnosis. For instance, Figs 5 and 6 present an example of the statistical group-level dif-

ferences between AD and CN, and between MCI and CN, for all measures of a CV fold.

Regions with significant changes were mostly located in the DMN (mainly involving in the

prefrontal cortex, the PCu, and the PCC).

Limitations and future perspectives

Notwithstanding the discriminative power of the framework we presented for AD and MCI,

this work has several limitations that we now describe. First, the limited sample size of the in-

house cohort (81 AD, 132 MCI, and 152 CN), but especially of the ADNI2 one (33 AD, 31

MCI, and 31 CN), prevented the algorithm from learning during the training phase. Therefore

these small datasets certainly do not adequately represent the patient population, so that the

generalization of our results to other groups is not guaranteed.

A second limitation has to do with model complexity, as our proposed voxel-wise method

may require more computation and resources than methods based on regions-of-interest

(ROIs). However, the computation and resource burden only occur in the training phase,

Fig 5. Univariate t-statistical difference maps between AD and CN groups of ten measures extracted from in-house

cohort. Voxels with p-value<0.05 and cluster size of 85 voxels (2295 mm3) corresponding to a corrected p-value<0.05 were

used to identify the significant clusters. Hot and cold colours indicate AD-related measures increases and decreases,

respectively.

https://doi.org/10.1371/journal.pone.0212582.g005
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Fig 6. Univariate t-statistical difference maps between MCI and CN groups of ten measures extracted from in-

house cohort. Voxels with p-value<0.05 and cluster size of 85 voxels (2295 mm3) corresponding to a corrected p-

value<0.05 were used to identify the significant clusters. Hot and cold colours indicate MCI-related measures

increases and decreases, respectively.

https://doi.org/10.1371/journal.pone.0212582.g006
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which can be implemented offline, whereas the computation for testing consists of simple

functions. Thus, from the clinical perspective, we believe such limitation is acceptable when

considering the better accuracies obtained.

Third, our multi-measure classification framework only considers functional MRI data.

However, it is expected that combining as many modalities as possible would be advantageous

for the discrimination of AD and MCI from CN [71]. Accordingly, in future studies, we plan

to develop a multi-modal classification framework combining multiple data sources, including

structural MRI and PET data.

Conclusion

In conclusion, we proved the possibility of using rs-fMRI scans for AD/MCI prediction in

individual subjects. Using a standard Alzheimer’s disease Neuroimaging Initiative cohort and

an in-house AD cohort from South Korea, the proposed framework extracts the maximum

amount of information changes due to AD/MCI from concatenations of multiple rs-fMRI bio-

markers which lead to maximal classification accuracies as compared to all other recent

researches. The combination of t-test-based univariate, and RFE-based multivariate feature

selection techniques performed on the concatenated measure extracted from rs-fMRI data

provided the best discriminative performance when the features thus selected were used by the

ELM classifier, superior to that of linear and non-linear SVM classifiers. These results may

direct future studies using rs-fMRI scans for the classification of patients with preclinical AD

or MCI.
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