New 1,2,3-Triazole-genipin Analogues and Their Anti-Alzheimer's Activity

Patamawadee Silalai, Suwichada Jaipea, Jiraporn Tocharus, Anan Athipornchai, Apichart Suksamrarn, and Rungnapha Saeeng*

Cite This: ACS Omega 2022, 7, 24302-24316

Read Online

| ACCESS I LIll Metrics \& More | \| 国 Article Recommendations | © Supporting Information |
| :--- | :--- | :--- | :--- |

Abstract

A novel series of 1,2,3-triazole-genipin analogues were designed, synthesized, and evaluated for neuroprotective activity, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) inhibitory activity. The genipin analogues bearing bromoethyl- and diphenylhydroxy-triazole showed in vitro neuroprotective properties against $\mathrm{H}_{2} \mathrm{O}_{2}$ toxicity along with potent inhibitory activity on BuChE with IC_{50} values of 31.77 and $54.33 \mu \mathrm{M}$, respectively, compared with galantamine $\left(\mathrm{IC}_{50}=34.05 \mu \mathrm{M}\right)$. The molecular docking studies of these genipin analogues showed good binding energy and interact well with the key amino acids of BuChE via hydrogen-bonding and hydrophobic interactions. Triazole genipins might be promising lead compounds as anti-Alzheimer's agents.

1. INTRODUCTION

Alzheimer's disease (AD) is the most common form of neurodegenerative disorder and the most prevalent cause of dementia, making it one of the major public health problems. ${ }^{1}$ A report by the World Health Organization (WHO) showed that about 50 million people are affected by dementia worldwide, and it is projected to affect around 115.4 million people worldwide by $2050 .{ }^{2}$ Nowadays, four common drugs for the treatment of Alzheimer's disease have been approved by the European and United States regulatory authorities including tacrine, ${ }^{3}$ memantine, ${ }^{4}$ galantamine, ${ }^{5}$ and donepezil ${ }^{6}$ (Figure 1). The therapeutic drugs on the market are not widely available since their efficacy is limited by diverse unpleasant

Tacrine

Memantine

Galantamine

Figure 1. Examples of drugs used for Alzheimer's disease (AD) available on the market.
side effects. Thus, there is an urgent need for the development of effective anti-Alzheimer's agents with low side effects.

AD is a multifactorial disease commonly featuring neuronal cell death and loss of cholinergic neurons due to a decrease in acetylcholine availability at neuronal synapses. ${ }^{7}$ From a physiological point of view, the activity of acetylcholine in the synapses can be diminished by the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). ${ }^{8}$ Therefore, one efficient approach to cure AD is to restore the level of acetylcholine using AChE and BuChE inhibitors. ${ }^{9}$ In normal healthy brains, AChE plays an important role and BuChE is supportive in the hydrolysis of acetylcholine. ${ }^{10}$ As AD progresses, the level of AChE in the brain declines by approximately 50% of normal values whereas BuChE progressively increases to 120% of normal levels. Thus, the BuChE activity progressively increases as the graveness of dementia increases but AChE activity diminishes. Therefore, BuChE was examined as a key target for the treatment of AD. ${ }^{11,12}$ Hence, BuChE inhibitors with neuroprotection potential may have a special therapeutic effect on $\mathrm{AD} .{ }^{13,14}$

Gardenia jasminoides Ellis is a flowering plant belonging to the gardenia genus in the Rubiaceae family. The fruits are used as a therapeutic herb that is rich in biological activity, such as

[^0]
inflammation, jaundice, and hepatic disorders. ${ }^{15}$ Generally, this herb is used in herbal medicines or functional food supplements displaying therapeutic effects on central nervous system (CNS) diseases, including dementia, cerebral stroke, and antioxidants with nonharmful and nontoxic side effects. ${ }^{16}$ Geniposide, the main component in the fruit, belongs to the class of iridoid glycoside and can be hydrolyzed into genipin 1 by intestinal bacteria after ingestion (Figure 2). ${ }^{17}$

Figure 2. Chemical structures of geniposide, genipin 1, and derivatives.

Pharmacokinetic studies have suggested that genipin is the main active compound and showed promising bioactivities as a strong neuroprotection agent by inhibiting high-level lactate dehydrogenase (LDH) in the blood, which causes amyloid- β $(\mathrm{A} \beta)$ peptide toxicity in cultured neuronal cells. ${ }^{18}$ Recently, Huang et al. ${ }^{19}$ reported that piperazine-genipin analogues are dual $\mathrm{AChE} / \mathrm{A} \beta_{1-42}$ aggregation inhibitors, which repair the neuronal cell damage from amyloid $-\beta$ ($\mathrm{A} \beta$) peptide toxicity by 22.3\% (Figure 2). These results led us to design and modify the structure of genipin to explore the potential of its derivatives as candidates for the treatment of AD .
$1,2,3$-Triazole is a five-membered heterocyclic compound containing two carbon and three nitrogen atoms. 1,2,3Triazole is found in abundance in medicinal compounds. ${ }^{20,21}$ The triazole ring displays bond acceptor properties capable of forming significant interactions with biomolecular targets through H-bonding, $\pi-\pi$ stacking, and dipole interactions. These scaffolds are commonly synthesized through $\mathrm{Cu}(\mathrm{I})-$ catalyzed Huisgen 1,3-dipolar cycloaddition between alkynes and azides (CuAAC) by the concept of click. ${ }^{22-26}$ Previously, some triazole derivatives were synthesized as potent and highly selective BuChE inhibitors and neuroprotective agents (Figure 3). ${ }^{27-30}$

Considering the work on genipin and 1,2,3-triazole mentioned above, the linking of these two units might lead to hybrids with higher neuroprotective activity than the parent genipin. Therefore, in this work, a new series of 1,2,3-triazolegenipin analogues were designed and synthesized and were focused on the biological evaluation as selective BuChE inhibitors with neuroprotective properties. The molecular docking studies were also explored for further understanding of enzyme inhibition (Figure 4).

2. RESULTS AND DISCUSSION

2.1. Chemistry. The synthetic route for modification of genipin to $1,2,3$-triazole-genipin analogues $\mathbf{8 a}$ and $\mathbf{8 b}$ is depicted in Scheme 1. The target compounds were synthesized via six- or seven-step reactions. Initially, genipin 1 was silylated

$\mathrm{R}=\mathrm{H}$; recovery of cell viability $=20.8 \%$ at $1.0 \mu \mathrm{M}$ $R=C H O$; recovery of cell viability $=14.3 \%$ at $1.0 \mu \mathrm{M}$ neuroprotective Sooknual P. et al. (2020) $)^{27}$

Anti-BChE
Najafi Z et al. (2017) ${ }^{29}$

Figure 3. Some examples of 1,2,3-triazole used as inhibitors of butyrylcholinesterase (BuChE) and neuroprotective agents.

Figure 4. Design of novel 1,2,3-triazole-genipin analogues.
to protect the hydroxy at $\mathrm{C}-10$ by stirring in tertbutyldimethylsilyl chloride (TBSCl) in pyridine for 10 min to obtain 2. Compound 2 was further reacted with imidazole and acetic anhydride $\left(\mathrm{Ac}_{2} \mathrm{O}\right)$ or tert-butyldiphenylsilyl chloride (TBDPSCl) for conversion of the hydroxy of the hemiacetal to acetyl or silyl ether giving compounds 3a or 3b, respectively. Subsequently, deprotection of tert-butyldimethylsilyl (TBS)ether at the $\mathrm{C}-10$ position of genipin was achieved by dropwise addition of $\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O}(9: 1)$ at $0^{\circ} \mathrm{C}$ and stirring for 6 h to obtain a crude product $\mathbf{4 a}$ or $\mathbf{4 b}$. Mesylation of the resulting hydroxy group afforded the corresponding mesyl derivatives. No further chromatography purification was necessary for the four steps. Azidation of mesylate group to desired azido precursor 6a yielded 72% in five steps. Desilylation of the TBDPS group at C-1 of $\mathbf{6 b}$ was carried out using tetra- n butylammonium fluoride (TBAF) to obtain the hemiacetal analogue $7 \mathbf{b}$ in 43% yield in six steps. The azide-alkyne Huisgen cycloaddition reaction was performed in the final step

Scheme 1. Synthesis of the 10-Triazolylgenipin Analogues 8 a and $8 \mathrm{~b}^{a}$

${ }^{a}$ Reaction conditions: (a) TBSCl, pyridine, 10 min ; (b) $\mathrm{Ac}_{2} \mathrm{O}$ or TBDPSCl, imidazole, dichloromethane (DCM), 1 h ; (c) HCOOH/ $\mathrm{H}_{2} \mathrm{O}$ (9:1), tetrahydrofuran (THF), $0{ }^{\circ} \mathrm{C}$ to room temperature (rt), 6 h ; (d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}$; (e) NaN_{3}, dimethylformamide (DMF), 0.5 h ; (f) TBAF, DCM, 0.5 h ; (g) alkyne, $\mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$, rt.
by mixing $\mathbf{6 a}$ or $7 \mathbf{b}$ with various alkynes using copper iodide to promote reaction to give a series of C-10 triazole analogues 8a or $\mathbf{8 b}$.

As shown in Scheme 2, the reactions of different alkynes with azido genipin $\mathbf{6 a}$ and $7 \mathbf{b}$ were explored. Genipin analogues $8 \mathbf{a}$ and $\mathbf{8 b}$ bearing phenyl, benzyl ether, benzylamine, and aliphatic, phthalimide, and alicyclic substituted triazoles with different carbon chain lengths were successfully obtained in good to excellent yields. It was observed that phenyl-substituted, benzyl ether, and benzylamine afforded the corresponding products ($\mathbf{8 a - 1} \mathbf{- 8 a - 8}$) in moderate to excellent yields ($52-99 \%$). Different substituents on the aromatic ring $\left(-\mathrm{OCH}_{3},-\mathrm{F}\right)$ in compounds $\mathbf{8 a - 2}$ and $\mathbf{8 a}-\mathbf{3}$ did not affect the yields in this transformation. A series of aliphatic chains bearing bromine 8a-9, hydroxy group $8 a-10$ and $8 a-11$, silyl group ($8 \mathrm{a}-12-8 \mathrm{a}-15$), trityl $8 \mathrm{a}-16$, and long-chain aliphatic chains (8a-17-8a-19) were reacted smoothly, affording the desired products in good to excellent yields (66-92\%). Moreover, the reaction proceeded in good to excellent yields with alkynyl-phthalimides and hydroxy alicyclic alkyne (8a-20-8a-26).

For a series of hemiacetal triazole genipin analogues $\mathbf{8 b}$, phenyl-substituted with the electron-withdrawing group fluorine 8b-3 were more favorable for conversions than the electron-donating group methoxy $\mathbf{8 b} \mathbf{- 2}$. Triazoles bearing diphenyl or aliphatic chains provided the desired genipin analogues ($\mathbf{8 b}-4-8 \mathbf{b}-6$) in $46-78 \%$ yields. Additionally, the reaction of the long-chain aliphatic substituted triazole delivered the corresponding products ($8 \mathbf{b}-7-8 \mathbf{b}-9$) in
moderate yields. The triazole substituted with phthalimide gave products $\mathbf{8 b}-10$ and $\mathbf{8 b}-11$ in 68 and 80% yields, respectively.

Finally, hydroxy alicyclic reacted smoothly to furnish corresponding triazole products $\mathbf{8 b}-\mathbf{1 2}$ and $\mathbf{8 b}-13$ in excellent yields.

Based on the above experimental results, the hemiacetal products $\mathbf{8 b}$ gave products with lower yields and stability than acetoxy-substituted analogues 8a.
2.2. Biological Evaluations. 2.2.1. Neuroprotective Effects of 1,2,3-Triazole-genipin Analogues on the $\mathrm{H}_{2} \mathrm{O}_{2}$ Induced Decrease in Cell Viability. The protective effect of 1,2,3-triazole-genipin analogues on the $\mathrm{H}_{2} \mathrm{O}_{2}$-induced cell viability was studied. As shown in Table $1,250 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ significantly reduced cell viability ($43.0 \pm 0.9 \%$). During treatment with our synthetic compounds, 14 analogues exhibited significant neuroprotective activity with a level up to 70% of cell viability at $0.075 \mu \mathrm{M}$ and some analogues showed better activity than the parent genipin 1 (78.0\%). In the series of acetoxy analogues $8 \mathbf{a}$, compound $8 \mathbf{a}-2$ with substituted p-methoxy and 8a-3 with p-fluoro substituent on aryltriazole exhibited neuroprotective activity with 72.5 and 70.9% cell viability at $0.075 \mu \mathrm{M}$, respectively. Both the electron-withdrawing and electron-donating groups on aryltriazole showed similar results. Triazole genipin analogue 8a-5 with benzyl ether (79.7% of cell viability) and $3,4-\mathrm{OCH}_{3} \mathbf{8 a}-7$ (78.1% of cell viability) showed better cell viabilities than the analogues $4-\mathrm{OCH}_{3} \mathbf{8 a - 6}$ (62.7% of cell viability) and benzylamine 8a-8 (50.8% of cell viability). When the benzyl ether substituent (8a-5-8a-8) was replaced by an alkyl chain (8a-9-8a-19), the neuroprotective activity was significantly increased. Substituents such as Br and OH aryltriazoles on compounds $8 \mathbf{a}-10,8 \mathrm{a}-11$, and $\mathbf{8 a - 1 4}$ showed superior neuroprotective activity, while compounds 8a-20-8a-24 containing substituted phthalimide displayed moderate neuroprotective activity. The exception was $\mathbf{8 a - 2 0}$, which showed remarkable cell viability of up to 78.5% at $0.075 \mu \mathrm{M}$. Furthermore, hydroxy-hexacyclic compound 8a-26 showed better activity than the pentacyclic compound $\mathbf{8 a - 2 5}$ at 0.075 $\mu \mathrm{M}$, which indicated the effect of substituted groups on the neuroprotective activity.

For the series of hemiacetal triazole genipin analogues $\mathbf{8 b}$, compounds bearing electron-donating $4-\mathrm{OCH}_{3}$ aryl (compound $\mathbf{8 b}-\mathbf{2}, \mathbf{7 8 . 6 \%}$) exhibited remarkably higher neuroprotective activity than the electron-withdrawing p-fluoroaryl (compound $\mathbf{8 b}-\mathbf{3}, 59.9 \%$) at the same concentration of $0.6 \mu \mathrm{M}$. When the concentration was reduced to $0.075-0.3 \mu \mathrm{M}$, the cell viability decreased. The activity results of $\mathbf{8 a - 2}$ and $\mathbf{8 b} \mathbf{- 2}$ demonstrated that a substituted group at the $\mathrm{C}-1$ position showed a significant difference between the neuroprotective potencies. In addition, at a concentration of $0.15 \mu \mathrm{M}$, compound $\mathbf{8 b}-\mathbf{4}$ exhibited significant neuroprotective effects and the cell viability was up to 80.9%. When the concentration was reduced to $0.075 \mu \mathrm{M}$, the cell viability decreased to 73.0%. Therefore, a concentration of $0.15 \mu \mathrm{M}$ was suitable for treatment by the synthetic compounds. For the replacement of long-chain aliphatic ether groups on triazole with different carbon chain lengths, both $\mathbf{8 b}-\mathbf{7}$ and $\mathbf{8 b} \mathbf{- 8}$ decreased the cell viability compared with an aromatic substituted triazole ($\mathbf{8 b} \mathbf{- 2}$ and $\mathbf{8 b} \mathbf{- 4}$). On replacing alkyl with phthalimide, compounds $\mathbf{8 b}-10$ and $\mathbf{8 b}-11$ exhibited strong neuroprotective activities of 77.2 and 75.5%, respectively. Moreover, compounds $\mathbf{8 b} \mathbf{- 1 2}$ and $\mathbf{8 b}-13$ bearing a hydroxyl cyclic group increased cell viability

Scheme 2. Scope of Alkyne for Synthesis of the 1,2,3-Triazole-genipin Analogues 8a and $\mathbf{8 b}{ }^{\boldsymbol{a}}$

8a-1; $R^{1}=A c, R^{2}=H, 2 h, 52 \%$
8a-2; $R^{1}=A c, R^{2}=4-\mathrm{OCH}_{3}, 24 \mathrm{~h}, 75 \%$
$R^{2}=4-F, 4 h, 78 \%$

8b-2; $R^{1}=H, R^{2}=4-\mathrm{OCH}_{3}, 23 \mathrm{~h}, 45 \%$
8b-3; $R^{1}=H, R^{2}=4-F, 4 h, 78 \%$

8a-8; 0.5 h, 99\%

8a-17; $n=6, R^{1}=A c, 1 h, 90 \%$
8a-18; $n=8, R^{1}=A c, 3 h, 89 \%$
8b-7; $n=6, R^{1}=H, 1 h, 55 \%$
8b-8; $n=8, R^{1}=H, 2 h, 53 \%$

$8 \mathrm{a}-19 ; \mathrm{R}^{1}=\mathrm{Ac}, 10 \mathrm{~min}, 66 \%$ 8b-9; $\mathbf{R}^{1}=\mathrm{H}, 2 \mathrm{~h}, 69 \%$

$$
\begin{aligned}
& \text { 8a-9; } n=1, R^{1}=A c, 10 \mathrm{~min}, R^{2}=O T r, 84 \% \\
& \text { 8a-10; } n=2, R^{1}=A c, R^{2}=B r, 0.5 h, 75 \% \\
& 8 \mathrm{a}-11 ; \mathrm{n}=2, \mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{OH}, 0.5 \mathrm{~h}, 81 \% \\
& 8 \mathrm{a}-12 ; \mathrm{n}=2, \mathrm{R}^{1}=A c, R^{2}=\text { OTBDPS, } 10 \mathrm{~min}, 80 \% \\
& \text { 8a-13; } n=2, R^{1}=A c, R^{2}=O T B S, 45 \mathrm{~min}, 76 \% \\
& \text { 8a-14; } n=3, R^{1}=A c, R^{2}=O H, 0.5 h, 72 \% \\
& \text { 8a-15; } n=3, R^{1}=A c, R^{2}=\text { OTBDPS, } 1.5 h, 72 \% \\
& \text { 8a-16; } n=3, R^{1}=A c, R^{2}=\text { OTIPS, } 3 h, 92 \% \\
& 8 \mathrm{~b}-5 ; \mathrm{n}=1, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\text { OTBDPS, } 10 \mathrm{~min}, 78 \% \\
& \text { 8b-6; } n=3, R^{1}=H, R^{2}=\text { OTBDPS, } 3 h, 46 \%
\end{aligned}
$$

8a-20; $R^{1}=A c, 6 h, 57 \%$
8b-10; $\mathrm{R}^{1}=\mathrm{H}, 8 \mathrm{~h}, 68 \%$

${ }^{a}$ Reaction conditions: $\mathbf{6 a}(0.3413 \mathrm{mmol})$ or $7 \mathbf{b}(0.3980 \mathrm{mmol}), \mathrm{CuI}(20 \mathrm{~mol} \%), \mathrm{Et} 3 \mathrm{~N}(0.5$ equiv $)$, and alkyne (1.5 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ at $\mathrm{rt}(10 \mathrm{~min}$ to 24 h$) . \%$ is yields of isolated products after purification by column chromatography.
with percentages of 79.9 and 77.3%, respectively, at $0.15 \mu \mathrm{M}$, which might be due to its favorable conformation that allows these scaffolds to fit within the active site of the enzyme.

The overall results indicated that some 1,2,3-triazole-genipin analogues (8a-5, 8a-7, 8a-10, 8a-11, 8a-14, 8a-20, 8b-2, 8b-4, $\mathbf{8 b}-\mathbf{1 2}$, and $\mathbf{8 b}-13$) at concentrations of $0.075-0.6 \mu \mathrm{M}$ significantly improved the cell viability rate of $\mathrm{H}_{2} \mathrm{O}_{2}$-treated neuronal cells by up to 78% (Figure 5). Compound 8a-11 showed the highest protective capability (83.5% of cell
viability) at $0.075 \mu \mathrm{M}$ recovering the neuronal cell damage from $\mathrm{H}_{2} \mathrm{O}_{2}$ toxicity with 40.5%. Compounds $\mathbf{8 a} \mathbf{- 1 0}$ and $\mathbf{8 b}-4$ displayed similar protective ability (80.9% of cell viability) recovering the neuronal cell damage by $\mathrm{H}_{2} \mathrm{O}_{2}$ toxicity with 37.9%. These three analogues evidenced the most significant protection in reducing $\mathrm{H}_{2} \mathrm{O}_{2}$-induced neurotoxicity in neuroblastoma cells.
2.2.2. Cholinesterase Inhibition Assay. The inhibitory activity of the newly synthesized 1,2,3-triazole-genipin

Table 1. Neuroprotective Effects of 1,2,3-Triazole-genipin Analogues

cell viability (\%) ${ }^{\text {a }}$ /recovery of cell viability (\%) ${ }^{b}$				
compounds	$0.075 \mu \mathrm{M}$	$0.15 \mu \mathrm{M}$	$0.3 \mu \mathrm{M}$	$0.6 \mu \mathrm{M}$
control	100			
$\mathrm{H}_{2} \mathrm{O}_{2}(250 \mu \mathrm{M})$	43.0 ± 0.9			
genipin 1	78.0 ± 0.5 (35.0)	71.4 ± 0.5 (28.4)	$57.8 \pm 0.7(14.8)$	64.4 ± 0.5 (21.4)
8a-1	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$
8a-2	72.5 ± 0.6 (29.5)	66.6 ± 0.7 (23.6)	60.1 ± 1.0 (17.1)	54.2 ± 0.8 (11.2)
8a-3	70.9 ± 1.5 (27.9)	64.9 ± 1.2 (21.9)	58.6 ± 0.9 (15.6)	52.3 ± 0.9 (9.3)
8a-4	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$
8a-5	79.7 ± 0.4 (36.7)	73.0 ± 0.2 (30.0)	67.1 ± 0.2 (24.1)	60.6 ± 0.4 (17.6)
8a-6	62.7 ± 0.3 (19.7)	65.9 ± 0.7 (22.9)	67.6 ± 0.5 (24.6)	$69.5 \pm 0.2(26.5)$
8a-7	78.1 ± 0.4 (35.1)	71.7 ± 0.06 (28.7)	65.3 ± 0.21 (22.3)	59.0 ± 0.21 (16.0)
8a-8	50.8 ± 0.9 (7.8)	50.8 ± 0.6 (7.8)	52.9 ± 0.5 (9.9)	51.2 ± 0.8 (8.2)
8a-9	NA^{c}	NA^{c}	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$
8a-10	$80.9 \pm 0.4(37.9)^{d}$	74.8 ± 0.6 (31.8)	68.9 ± 0.5 (25.9)	61.9 ± 0.2 (18.9)
8a-11	$83.5 \pm 2.5(40.5)^{d}$	77.1 ± 2.1 (34.1)	71.2 ± 2.8 (28.2)	65.3 ± 0.29 (22.3)
8a-12	49.6 ± 0.6 (6.6)	48.5 ± 0.8 (5.5)	47.8 ± 0.3 (4.8)	53.2 ± 0.5 (10.2)
8a-13	74.2 ± 0.4 (31.2)	68.6 ± 0.15 (25.6)	62.8 ± 0.2 (19.8)	56.6 ± 0.2 (13.6)
8a-14	78.8 ± 0.4 (35.8)	72.7 ± 0.4 (29.7)	66.6 ± 0.1 (23.6)	60.8 ± 0.8 (17.8)
8a-15	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$
8a-16	NA ${ }^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$
8a-17	56.1 ± 0.5 (13.1)	62.5 ± 0.4 (19.5)	68.1 ± 0.1 (25.1)	74.4 ± 0.6 (31.4)
8a-18	52.1 ± 0.5 (9.1)	58.2 ± 0.3 (15.2)	60.8 ± 0.6 (17.8)	61.2 ± 0.8 (18.2)
8a-19	57.1 ± 0.3 (14.1)	63.2 ± 0.3 (20.2)	69.2 ± 0.4 (26.2)	75.3 ± 0.5 (32.3)
8a-20	78.5 ± 0.4 (35.5)	71.6 ± 0.1 (28.6)	66.4 ± 0.1 (23.4)	60.1 ± 0.1 (17.1)
8a-21	53.5 ± 0.6 (10.5)	54.2 ± 1.1 (11.2)	56.8 ± 1.3 (13.8)	58.2 ± 1.7 (15.2)
8a-22	53.2 ± 2.5 (10.2)	54.9 ± 2.7 (11.9)	60.8 ± 1.6 (17.8)	65.5 ± 2.7 (22.5)
8a-23	50.9 ± 0.4 (7.9)	52.9 ± 0.7 (9.9)	61.6 ± 0.5 (18.6)	66.1 ± 0.8 (23.1)
8a-24	50.7 ± 0.5 (7.7)	51.7 ± 0.7 (8.7)	60.5 ± 0.7 (17.5)	65.9 ± 1.1 (22.9)
8a-25	52.3 ± 0.8 (9.3)	58.1 ± 1.1 (15.1)	$60.2 \pm 1.2(17.2)$	63.4 ± 0.2 (20.4)
8a-26	75.1 ± 0.9 (32.1)	69.2 ± 1.1 (26.2)	63.3 ± 1.0 (20.3)	$57.1 \pm 1.2(14.1)$
8b-1	NA ${ }^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$
8b-2	54.9 ± 2.5 (11.9)	63.0 ± 2.6 (20.0)	75.2 ± 2.3 (32.2)	78.6 ± 1.9 (35.6)
8b-3	50.9 ± 1.2 (7.9)	52.6 ± 1.6 (9.6)	55.9 ± 1.1 (12.9)	59.9 ± 0.7 (16.9)
8b-4	73.0 ± 3.1 (30.0)	80.9 ± 3.0 (37.9) ${ }^{d}$	72.7 ± 2.6 (29.7)	69.2 ± 1.7 (26.2)
8b-5	$\mathrm{NA}^{\text {c }}$	NA^{c}	NA^{c}	$\mathrm{NA}^{\text {c }}$
8b-6	NA^{c}	NA^{c}	NA^{c}	NA^{c}
8b-7	51.6 ± 1.4 (8.6)	53.2 ± 1.7 (10.2)	53.7 ± 2.5 (10.7)	65.9 ± 1.1 (22.9)
8b-8	52.1 ± 0.5 (9.1)	58.2 ± 0.3 (15.2)	60.8 ± 0.6 (17.8)	61.2 ± 0.8 (18.2)
8b-9	$\mathrm{NA}^{\text {c }}$	$\mathrm{NA}^{\text {c }}$	NA^{c}	$\mathrm{NA}^{\text {c }}$
8b-10	52.0 ± 1.8 (9.0)	70.9 ± 1.3 (27.9)	73.6 ± 1.6 (30.6)	77.2 ± 1.8 (34.2)
8b-11	70.1 ± 1.5 (27.1)	72.7 ± 1.5 (29.7)	75.5 ± 0.1 (32.5)	72.2 ± 0.9 (29.2)
8b-12	75.0 ± 2.5 (32.0)	78.3 ± 1.8 (35.3)	78.2 ± 0.9 (35.2)	77.2 ± 0.9 (34.2)
8b-13	72.5 ± 2.5 (29.5)	79.9 ± 0.5 (36.9)	79.2 ± 1.0 (36.2)	74.1 ± 1.7 (31.1)

${ }^{a}$ Cell viability (\%): the cell viability in control was taken as 100%; all data were expressed as mean \pm standard deviation (SD) ($n=3$). ${ }^{b}$ Recovery of cell viability (\%): the difference value between the cell viability of compound-treated cells and that of $\mathrm{H}_{2} \mathrm{O}_{2}$-treated cells. ${ }^{c} \mathrm{NA}$: not active. ${ }^{d}$ Bold values highlight the most potent activity.
analogues ($\mathbf{8 a}$ and $\mathbf{8 b}$) was evaluated against electric eelderived AChE (eeAChE) and equine serum-derived BuChE (eqBuChE) ${ }^{31}$ and compared with galantamine, a reference drug with IC_{50} values 12.7 and $34 \mu \mathrm{M}$, respectively. As shown in Table 2, the results of inhibitory activity for butyrylcholinesterase (BuChE) were superior to acetylcholinesterase (AChE). All synthetic analogues demonstrated inhibition of AChE less than 50%, and hence further IC_{50} measurement was not carried out. Almost all synthesized compounds gave higher inhibitory activities against BuChE than the natural product geniposide and genipin 1 indicating that the introduction of the triazole ring greatly influenced the inhibitory behavior of genipin.

The series of acetoxy analogues $\mathbf{8 a}$ with a diverse range of substituents on the triazole ring resulting in different activities were indicated by both the $\%$ inhibition of BuChE and IC_{50} values. Genipin analogue 8a-1 bearing phenyl triazole exhibited moderate inhibitory activity against BuChE, and replacement with 4-OMe and 4-F aryltriazole (8a-2 and 8a-3) resulted in the loss of activity.

Di- and triphenyl, benzyl ether, and benzylamine triazole genipin 8a-4-8a-9 showed no improved activity compared to phenyl triazole genipin 8a-1-8a-3. When triazoles were substituted with an alkyl chain ($\mathbf{8 a - 1 0} \mathbf{- 8 a} \mathbf{- 1 9}$), they exhibited low to high inhibitory activity. Surprisingly, genipin analogue 8a-10 with a bromoethyltriazole scaffold exhibited the most

Figure 5. Neuroprotective effect of 1,2,3-triazole-genipin analogues on survival of $\mathrm{H}_{2} \mathrm{O}_{2}$-treated neurons, Compounds $\mathbf{1 , 8} \mathbf{8 a - 5}, \mathbf{8 a - 7}, \mathbf{8 a - 1 0}, \mathbf{8 a - 1 1}$, $\mathbf{8 a}-14, \mathbf{8} \mathbf{a}-\mathbf{2 0}, \mathbf{8 b}-\mathbf{2}, \mathbf{8 b}-\mathbf{4}, \mathbf{8 b}-12$, and $\mathbf{8 b}-13$ significantly exhibited the neuroprotective effect with $>78 \%$ cell viability.
potent inhibitory activity with an IC_{50} value of $31.8 \mu \mathrm{M}$ better than galantamine (IC_{50} value: $34.1 \mu \mathrm{M}$). In contrast, triazolgenipin containing long-chain aliphatic groups showed lower activity than the compound comprising a bromoethyl group (8a-10). Furthermore, the replacement of the long-chain alkyl group with phthalimide scaffolds (8a-21-8a-23) leads to significant improvement in BuChE inhibitory potencies and exhibited IC_{50} values of 273.9, 203.4, and $418.5 \mu \mathrm{M}$, respectively. Hydroxy-cyclic compounds such as 8a-25 and 8a-26 showed no significant change in inhibitory activity.
The series of hemiacetal triazole genipin analogues $\mathbf{8 b}$ exhibited promising inhibitory potential against BuChE. The behavior of phenyl substitution in the triazole ring ($\mathbf{8 b} \mathbf{- 1}-\mathbf{8 b}$ 4) showed relatively more than 50% inhibitory potential against BuChE. Among all investigated compounds, the diphenylhydroxy analogue $\mathbf{8 b}-\mathbf{4}$ displayed the most potent inhibitory potential against BuChE with an IC_{50} of $54.3 \mu \mathrm{M}$. While alkyl-chain-substituted compounds $\mathbf{8 b}-5-\mathbf{8 b}-\mathbf{9}$ and the hydroxy-cyclic analogues $\mathbf{8 b}-\mathbf{1 2}$ and $\mathbf{8 b}-\mathbf{1 3}$ showed less inhibitory activities. Changing to phthalimide groups at triazoles ($\mathbf{8 b} \mathbf{- 1 0}$ and $\mathbf{8 b}-\mathbf{1 1}$) increased the inhibitory activity but less than compound $\mathbf{8 b}-\mathbf{4}$. Triazole genipin $\mathbf{8 a - 1 0}$ with a bromoethyl group showed the best BuChE inhibitory activity $\left(\mathrm{IC}_{50}=31.8 \mu \mathrm{M}\right)$ and selectivity toward BuChE, surpassing that of the control galantamine ($\mathrm{IC}_{50}=34.1 \mu \mathrm{M}$), while 8b-4 with a diphenylhydroxy group showed comparable activity to galantamine.

Compared with the report of neuroprotective activity of piperazine-genipin analogues (Figure 2) by Huang et al., ${ }^{19}$ triazole genipin analogues $\mathbf{8 a - 1 1}$ in this work showed neuroprotective capability (83.5% of cell viability at 0.075 $\mu \mathrm{M})$ higher than piperazine analogues in the previous report (22.29% at $32 \mu \mathrm{M}$). Moreover, triazole genipin analogues showed selective BuChE activity better than galantamine while piperazine analogues exhibited inhibitory potential against antiAChE.
2.2.3. Kinetic Study for the Inhibition of BuChE. To gain further insights into the inhibitory mechanism of 1,2,3-triazolegenipin analogues, the kinetic behavior of the most active compounds 8a-10 and 8b-4 was investigated using Ellman's
method reference. The inhibition model and inhibition constant K_{i} were obtained from plots between $1 /$ velocity versus 1 /substrate produced with five different concentrations of the substrate butylthiocholine iodide ($0.3125,0.625,1.25$, 2.5 , and 5.0 mM). The results showed that the plots of $1 / v$ versus $1 /[\mathrm{S}]$ gave straight lines with different slopes but the same x-intercept points. This graphical presentation of Lineweaver-Burk plots indicated that the selected compounds were a noncompetitive enzyme inhibitor and the inhibition constants (KI, KIS) are nearly identical. The inhibition constants (KI, KIS) for compounds $\mathbf{8 a - 1 0}$ and $\mathbf{8 b - 4}$ were estimated to be 0.03 and 0.1 mM , respectively (Figure 6).
2.2.4. Docking Study of BuChE. The molecular docking simulation study of the most potent compounds $\mathbf{8 a} \mathbf{- 1 0}$ and $\mathbf{8 b}$ 4 was performed to understand the inhibition mechanism within the active site of the target enzymes BuChE (PDB code: 4BDS) using AutoDock 4.2 software.

Analog 8a-10 showed a good fit in the pocket site of the enzyme by interaction with important amino acid residues and exhibited a binding free energy of $-9.77 \mathrm{kcal} / \mathrm{mol}$ with BuChE (Table 3). Molecular docking of $\mathbf{8 a - 1 0}$ showed three hydrogen bonds of the ester unit at the C4-position of the iridoid moiety with the residues His 438 (catalytic subsite) and Ser198 of the CAS along with the interaction of the acetoxy group at the C1position. The carbonyl group of acetoxy formed three hydrogen bonds with the $\operatorname{Trp} 82$ (a key residue in the CAS of BuChE), Trp430, and Tyr440 moieties. Furthermore, the triazole group also formed a hydrogen-bond interaction with the Tyr332 and showed remarkable ionic interaction with Asp70 residue in the PAS region (Figure 7). These interaction behaviors indicated the potential of 8a-10 to inhibit BuChE. The molecular docking studies of $\mathbf{8 b} \mathbf{- 4}$ also showed preferential interaction with the active site of BuChE with a binding energy of $-9.74 \mathrm{kcal} / \mathrm{mol}$ (Table 3). The iridoid core of $\mathbf{8 b} \mathbf{- 4}$ is mostly surrounded by residues of the CAS pocket while diphenyl moiety is oriented toward the PAS pocket. The carbonyl group of the iridoid formed a hydrogen-bond interaction with the Trp82, a key residue in the CAS of BuChE. Meanwhile, the diphenylhydroxy group of $\mathbf{8 b} \mathbf{- 4}$ showed the same binding orientation within the active site of

Table 2. ChE Inhibitory Activity of 1,2,3-Triazole-genipin Analogues ${ }^{a}$

compounds	AChE inhibitory activity		BuChE inhibitory activity	
	inhibition (\%) ${ }^{\text {b }}$	$\mathrm{IC}_{50}(\mu \mathrm{M} \pm \mathrm{SD})^{b}$	inhibition (\%) ${ }^{b}$	$\mathrm{IC}_{50}(\mu \mathrm{M} \pm \mathrm{SD})^{b}$
geniposide	0.73 ± 0.11	NA^{c}	2.09 ± 0.18	NA ${ }^{c}$
genipin 1	4.94 ± 0.05	NA^{c}	2.42 ± 0.18	NA^{c}
8a-1	1.31 ± 0.08	NA^{c}	47.75 ± 0.29	NA ${ }^{\text {c }}$
8a-2	9.28 ± 0.14	NA^{c}	34.97 ± 0.26	$\mathrm{NA}^{\text {c }}$
8a-3	7.89 ± 0.05	NA^{c}	33.37 ± 0.18	$\mathrm{NA}^{\text {c }}$
8a-4	20.89 ± 0.22	$\mathrm{NA}^{\text {c }}$	27.14 ± 0.09	NA^{c}
8a-5	0.30 ± 0.31	NA ${ }^{\text {c }}$	39.26 ± 0.18	NA ${ }^{\text {c }}$
8a-6	6.03 ± 0.15	$\mathrm{NA}^{\text {c }}$	42.91 ± 0.20	NA ${ }^{\text {c }}$
8a-7	20.35 ± 0.06	$\mathrm{NA}^{\text {c }}$	35.99 ± 0.29	NA ${ }^{\text {c }}$
8a-8	36.60 ± 0.42	$\mathrm{NA}^{\text {c }}$	41.96 ± 0.12	NA ${ }^{\text {c }}$
8a-9	9.39 ± 0.11	$\mathrm{NA}^{\text {c }}$	1.21 ± 0.18	$\mathrm{NA}^{\text {c }}$
8a-10	9.27 ± 0.19	$\mathrm{NA}^{\text {c }}$	97.34 ± 0.18	31.77 ± 0.17
8a-11	0.26 ± 0.15	$\mathrm{NA}^{\text {c }}$	35.48 ± 0.59	$\mathrm{NA}^{\text {c }}$
8a-12	1.16 ± 0.14	$\mathrm{NA}^{\text {c }}$	1.79 ± 0.17	NA ${ }^{\text {c }}$
8a-13	0.43 ± 0.19	$\mathrm{NA}^{\text {c }}$	9.03 ± 0.30	NA ${ }^{\text {c }}$
8a-14	1.33 ± 0.08	$\mathrm{NA}^{\text {c }}$	27.54 ± 0.20	$\mathrm{NA}^{\text {c }}$
8a-15	0.28 ± 0.21	$\mathrm{NA}^{\text {c }}$	22.32 ± 0.52	NA ${ }^{\text {c }}$
8a-16	8.00 ± 0.79	$\mathrm{NA}^{\text {c }}$	10.70 ± 0.15	$\mathrm{NA}^{\text {c }}$
8a-17	8.12 ± 0.22	$\mathrm{NA}^{\text {c }}$	37.35 ± 0.61	NA ${ }^{\text {c }}$
8a-18	12.11 ± 0.30	$\mathrm{NA}^{\text {c }}$	23.68 ± 0.17	NA ${ }^{\text {c }}$
8a-19	44.70 ± 0.19	NA^{c}	25.56 ± 0.05	NA ${ }^{\text {c }}$
8a-20	5.52 ± 0.32	$\mathrm{NA}^{\text {c }}$	27.29 ± 0.17	$\mathrm{NA}^{\text {c }}$
8a-21	6.62 ± 0.36	$\mathrm{NA}^{\text {c }}$	78.64 ± 0.10	274 ± 3.9
8a-22	19.46 ± 0.20	$\mathrm{NA}^{\text {c }}$	99.85 ± 0.13	203 ± 1.7
8a-23	0.13 ± 0.29	NA^{c}	71.55 ± 0.22	419 ± 4.4
8a-24	0.88 ± 0.30	$\mathrm{NA}^{\text {c }}$	47.55 ± 0.13	$\mathrm{NA}^{\text {c }}$
8a-25	0.62 ± 0.24	$\mathrm{NA}^{\text {c }}$	40.70 ± 0.23	$\mathrm{NA}^{\text {c }}$
8a-26	0.48 ± 0.17	$\mathrm{NA}^{\text {c }}$	42.73 ± 0.18	$\mathrm{NA}^{\text {c }}$
8b-1	8.19 ± 0.11	NA^{c}	67.51 ± 0.16	537 ± 2.0
8b-2	4.41 ± 0.03	NA^{c}	98.69 ± 0.24	109.1 ± 0.61
8b-3	7.53 ± 0.18	$\mathrm{NA}^{\text {c }}$	84.64 ± 0.12	281 ± 2.7
8b-4	11.11 ± 0.88	NA^{c}	99.72 ± 0.18	54.3 ± 0.34
8b-5	2.30 ± 0.14	NA^{c}	24.94 ± 0.23	NA ${ }^{\text {c }}$
8b-6	16.44 ± 0.25	NA^{c}	35.42 ± 0.20	NA^{c}
8b-7	1.70 ± 0.09	$\mathrm{NA}^{\text {c }}$	42.57 ± 0.16	NA ${ }^{\text {c }}$
8b-8	0.49 ± 0.22	NA^{c}	25.04 ± 0.23	NA^{c}
8b-9	2.73 ± 0.43	$\mathrm{NA}^{\text {c }}$	31.51 ± 0.14	NA ${ }^{\text {c }}$
8b-10	1.06 ± 0.18	$\mathrm{NA}^{\text {c }}$	42.30 ± 0.64	$\mathrm{NA}^{\text {c }}$
$8 \mathrm{~b}-11$	0.51 ± 0.09	$\mathrm{NA}^{\text {c }}$	81.22 ± 0.38	289. ± 1.0
8b-12	0.97 ± 0.13	$\mathrm{NA}^{\text {c }}$	27.26 ± 0.27	$\mathrm{NA}^{\text {c }}$
8b-13	6.14 ± 0.12	$\mathrm{NA}^{\text {c }}$	32.03 ± 0.74	NA ${ }^{\text {c }}$
galantamine	98.52 ± 0.12	12.67 ± 0.07	96.21 ± 0.18	34.05 ± 0.32

${ }^{a}$ The most potent compound is given in bold. ${ }^{b}$ Inhibition $\%$ and IC_{50} values represent the concentration of inhibitor required to decrease enzyme activity by 50% and are the mean of three independent experiments, each performed in triplicate ($\mathrm{SD}=$ standard deviation). ${ }^{c} \mathrm{NA}=$ no activity. Compounds defined as "no activity" means that the percent inhibition is less than 50% at a concentration of 10.0 mM in the assay conditions. AChE from electric eel., BuChE from horse serum.
the target enzyme via two $\pi-\pi$ interactions with Tyr332 (a key residue in the PAS of BuChE) (Figure 8). Furthermore, hydrogen bonds and a $\pi-\pi$ interaction between the triazole moiety and His438, Ser198, and Phe 329 of the CAS were also observed (Figure 8). The modification of introducing a substituted triazole to genipin led to analogues 8a-10 and $\mathbf{8 b}-4$, which increased the potential interaction of the molecule with $\operatorname{Trp} 82$ and Tyr 332 , the important active site of BuChE .

3. CONCLUSIONS

In summary, a novel series of 1,2,3-triazole-genipin analogues 8 were successfully designed and synthesized as efficient
multitarget agents for the treatment of AD . Among the synthesized compounds, analogues $8 \mathrm{a}-10$ and $\mathbf{8 b}-4$ were found as the most active inhibitors with IC_{50} values of 31.8 and 54.3 $\mu \mathrm{M}$, respectively. These two analogues also showed inhibitory activity of BuChE selectively over AChE and showed better activity than the standard drug galantamine. Moreover, compounds $\mathbf{8 a - 1 0}$ and $\mathbf{8 b}-\mathbf{4}$ were able to rescue the cells from the toxicity induced by $\mathrm{H}_{2} \mathrm{O}_{2}$. Molecular docking studies of these two compounds confirmed their preferable binding with BuChE and showed interactions with key amino acid residues. Therefore, 1,2,3-triazole-genipin analogues 8a-10 and

Figure 6. Lineweaver-Burk plot for the inhibition of BuChE by compounds $\mathbf{8 a} \mathbf{- 1 0}$ and $\mathbf{8 b} \mathbf{- 4}$ at different concentrations of substrate.

Table 3. Molecular Docking Analysis of BuChE with 1,2,3-Triazole-genipin Analogues 8a-10 and 8b-4 ${ }^{a}$

compounds	binding energy (kcal/mol)	intermolecular hydrogen bonding		intermolecular $\pi-\pi$ interaction
		amino acid interaction	distance (Å)	
8a-10	-9.77	Trp82	2.10	Asp70
		Ser198	1.92	
		Ser198	2.01	
		Tyr332	2.98	
		Trp430	2.22	
		His438	2.03	
		Tyr440	1.84	
8b-4	-9.74	Trp82	2.34	$\begin{aligned} & \text { Tyr332, Trp231, } \\ & \text { Phe329 } \end{aligned}$
		Tyr440	2.11	
		Trp430	2.25	
		Ser198	2.06	
		Ser198	2.66	

${ }^{a}$ The binding energies were evaluated using AutoDock 4.2 software.
$\mathbf{8 b}-\mathbf{4}$ have the potential for the treatment of neurodegenerative diseases.

4. EXPERIMENTAL SECTION

All chemicals were purchased from commercial sources and used without further purification. Proton NMR spectra were
recorded using a BRUKER AVANC (400 MHz) spectrometer. All spectra were recorded in CDCl_{3} solvent, and chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane ($\delta 0.00$), $\mathrm{CDCl}_{3}(\delta 7.26)$ as internal standard. Carbon NMR spectra were recorded on a BRUKER AVANC (100 MHz) spectrometer. All spectra were recorded in CDCl_{3} solvent, and chemical shifts are reported as δ values in parts per million (ppm) relative to $\mathrm{CDCl}_{3}(\delta 77.0)$ as the internal standard. High-resolution mass spectra (HRMS) were recorded at Naresuan University. Analytical thin-layer chromatography (TLC) was conducted on precoated TLC plates; silica gel 60F-254 [E. Merck, Darmstadt, Germany]. Silica gel columns for open-column chromatography utilized silica gel 60 PF254 [E. Merck, Darmstadt, Germany]. Melting points were measured using a melting point apparatus (Griffin) and are uncorrected. Genipin as a starting material (CAS No. 6902-77-8) was purchased from commercial sources and used without further purification.
4.1. Synthesis of Compound 2. To a rapidly stirring solution of genipin $1(2.00 \mathrm{~g}, 8.850 \mathrm{mmol})$ in pyridine (10.0 mL) was added tert-butyldimethylsilyl chloride ($2.00 \mathrm{~g}, 13.275$ mmol) at room temperature. The reaction mixture was stirred at room temperature for 10 min . After TLC showed that the reaction was complete, the mixture was diluted with EtOAc (30 mL), quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and then extracted with EtOAc. The mixture was quenched with $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ to remove the pyridine and extracted with

Figure 7. Proposed binding mode of compound $\mathbf{8 a - 1 0}$ in the active site of BuChE (PDB code: 4BDS).

Figure 8. Proposed binding mode of compound $\mathbf{8 b}-\mathbf{4}$ in the active site of BuChE (PDB code: 4BDS). (A) The protein structure is shown as a ribbon, and 1,2,3-triazole-genipin $\mathbf{8 b}-\mathbf{4}$ is shown as a stick model. (B) Two-dimensional (2D) interaction molecular docking diagrams. Hydrogen bonds and $\pi-\pi$ interactions are shown as green and pink dotted lines, respectively.

EtOAc and washed with brine, the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed by rotary evaporation to obtain the crude product of compound 2.
4.2. Synthesis of Compound 3. To a solution of crude product compound $2(8.85 \mathrm{mmol})$ in DCM (20 mL), imidazole ($1.8 \mathrm{~g}, 26.55 \mathrm{mmol}$) was added and stirred for 10 min , then acetic anhydride ($2.5 \mathrm{~mL}, 26.55 \mathrm{mmol}$) or tertbutyldiphenylsilyl chloride ($6.9 \mathrm{~mL}, 26.55 \mathrm{mmol}$) was added to the mixture, and stirred at room temperature for further 1 h . After TLC indicated that the reaction was complete, the reaction mixture was diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and quenched with cold-saturated NaHCO_{3}, extracted with DCM and washed with brine, then dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anhydrous, and concentrated in vacuo to obtain crude product $3 a$ and $3 b$.
4.3. Synthesis of Compound 4. To a stirred solution of compound $\mathbf{3 a}$ or $\mathbf{3 b}(8.85 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added $\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O}(9: 1)(40 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$ and stirred for 6 h . After TLC showed that the reaction was complete, the reaction mixture was diluted with EtOAc (30 mL) and quenched with cold-saturated NaHCO_{3} and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to obtain a crude product of compound $\mathbf{4 a}$ or $\mathbf{4 b}$.
4.4. Synthesis of Compounds 5 and 6. To a solution of crude products $\mathbf{4 a}$ and $\mathbf{4 b}(8.85 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{~mL})$, $\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL}, 13.28 \mathrm{mmol})$ was added and stirred for 30 min . Then, methanesulfonyl chloride ($1.0 \mathrm{~mL}, 13.28 \mathrm{mmol}$) was added to the reaction mixture at $0^{\circ} \mathrm{C}$ and stirred at room temperature for 24 h . After TLC showed that the reaction was complete, the reaction mixture was diluted with DCM (30 mL) and cold-saturated NaHCO_{3}. The reaction mixture was extracted with DCM, washed with water, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo to obtain the mesylate crude product $(\mathbf{5 a}, \mathbf{5 b})$. The mesylate of crude product ($\mathbf{5 a}, \mathbf{5 b}$) was dissolved in DMF $(30 \mathrm{~mL})$, and NaN_{3} ($0.863 \mathrm{~g}, 13.28 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at room temperature, and stirring was continued for 30
min. After TLC showed that the reaction was complete, the reaction mixture was diluted with EtOAc (30 mL) and quenched with cooled water. The reaction mixture was extracted with EtOAc , washed with brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo to obtain the crude product of $\mathbf{6 a}$ and $\mathbf{6 b}$. The crude product $\mathbf{6 a}$ was purified by column chromatography ($10 \% \mathrm{EtOAc} / n$-hexane) to afford 6a in 72% in five steps.
4.5. Synthesis of Compound 7b. To a stirred solution of compound 6b (8.85 mmol) in DCM (30 mL), TBAF (2.5 g , 9.735 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . After TLC showed that the reaction was complete, the reaction mixture was diluted with DCM (30 mL) and quenched with cold-saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted with DCM, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, followed by drying over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anhydrous, and concentrated in vacuo to obtain crude product and purified by column chromatography (10% EtOAc / n-hexane) to afford compound $7 \mathbf{b}$ in 43% in six steps.
4.6. General Procedure for the Preparation of 1,2,3-Triazole-genipin Analogues (8a), (8b). To the solution of compound $6 \mathbf{a}$ ($100 \mathrm{mg}, 0.3413 \mathrm{mmol}$) or compound $7 \mathbf{b}$ (100 $\mathrm{mg}, 0.3980 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ were added $\mathrm{CuI}(20$ $\mathrm{mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (0.5 equiv), and alkyne (1.5 equiv). After TLC indicated that the reaction was complete, the reaction mixture was diluted with $\mathrm{EtOAc}(2 \mathrm{~mL})$, quenched with cooled water, and extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The reaction mixture was diluted with water $(15 \mathrm{~mL}$) and extracted with EtOAc (3 $\times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The resulting crude product was purified by column chromatography to obtain 1,2,3-triazole-genipin analogues $\mathbf{8 a}$ and $\mathbf{8 b}$.
4.6.1. 10-[4'-Phenyl-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-1. 52% yield as a yellow oil; IR (film) 2950, 1760, 1705, 1634, 1436, 1179, $764 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.81(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right)$, $7.50-7.29(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-\mathrm{Ar}), 5.92(1 \mathrm{H}$, brs, H-7), $5.88(1 \mathrm{H}$, d, $J=7.6 \mathrm{~Hz}, \mathrm{H}-1), 5.09(2 \mathrm{H}, \mathrm{brs}, \mathrm{H}-10), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.27(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.94(1 \mathrm{H}, \mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}$, H-6a), $2.72(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-9), 2.29-2.14(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}$,
$\left.\mathrm{CH}_{3}-\mathrm{Ac}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.10, 166.91, 151.54, 148.06, 135.86, 134.55, 130.29, 128.75 (2C), 128.16, 125.61 (2C), 119.21, 110.97, 91.59, 51.29, 49.59, 44.90, 38.55, 35.05, 20.90; HRMS (m / z) : calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 418.1379, found 418.1373.
4.6.2. 10-[4'-(4-Methoxypheny)l-1H-1,2,3-triazole-1-yl]-1acetoxygenipin $8 a-2.75 \%$ yield as a yellow solid, mp : $110-$ $112{ }^{\circ} \mathrm{C}$; IR (film) 2970, 1739, 1712, 1626, 1499, 1216, 764 cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, H-Ar), 7.66 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$), 7.45 (1 H , brs, H-3), 6.95 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.93(1 \mathrm{H}$, brs, H-7), $5.89(1 \mathrm{H}, \mathrm{d}, J=7.6, \mathrm{~Hz}$, $\mathrm{H}-1), 5.08(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.28(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.95(1 \mathrm{H}, \mathrm{dd}, J=16.4$, $7.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.73(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.29-2.17(4 \mathrm{H}$, m, H-6b, $\mathrm{CH}_{3}-\mathrm{Ac}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.95$, 166.77, 159.42, 151.37, 147.68, 135.80, 134.25, 126.75(2C), 122.90, 118.44, 114.01(2C), 110.86, $91.43,55.04,51.13,49.36$, 44.77, 38.39, 34.85, 20.74; HRMS (m / z) : calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$448.1485, found 448.1486 .
4.6.3. 10-[4'-(4-Fluorophenyl)-1H-1,2,3-triazole-1-yl]-1acetoxygenipin $8 a-3.78 \%$ yield as a yellow solid, mp : $110-$ $113^{\circ} \mathrm{C}$; IR (film) 2970, 1738, 1700, 1633, 1499, 1229, 1155, 1047, $823 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-7.76$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.71\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.44$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 7.11 $(2 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.94(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-7), 5.89(1 \mathrm{H}, \mathrm{d}, J=$ 7.6, H-1), 5.09 (2 H, brs, H-10), $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.28$ $(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.95(1 \mathrm{H}, \mathrm{dd}, J=17.2,8.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a})$, $2.72(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.29-2.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\right.$ $\mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.01,166.81,162.68$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 151.42,147.04,135.72,134.53$, $127.30\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 127.22\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}, \mathrm{C}-\right.$ F), 126.50, 119.06, 115.73, 115.52, 110.91, 91.45, 51.21, 49.50 44.85, 38.45, 34.90, 20.80; HRMS (m / z) : calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 436.1285$, found 436.1284.
4.6.4. 10-[4'-(6', 6^{\prime}-Diphenyl-6'-hydroxymethyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-4. 99% yield as a yellow oil; IR (film) 3300, 2949, 1759, 1704, 1634, 1447, 1180, 1083, $759,699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(1 \mathrm{H}, \mathrm{brs}$, H-3), $7.38-7.27$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.12 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$), 5.85 $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-1), 5.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 5.01(2 \mathrm{H}, \mathrm{brs}, \mathrm{H}-$ 10), $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.25(1 \mathrm{H}, \mathrm{q}, J=$ $8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.92$ ($1 \mathrm{H}, \mathrm{dd}, J=18.2,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.71(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.27-2.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{OAc}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.95,166.84,154.23,151.40$, $145.58,145.53,135.53,134.15,127.82$ (4C), 127.28 (2C), 127.02 (3C), 126.99, 122.39, 110.94, 91.35, 76.49, 51.21, 49.35, 45.06, 38.38, 34.65, 20.76; HRMS (m / z) : calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$474.2030, found 474.2036. [M+Na] 496.2788, found 496.2786.
4.6.5. 10-[4'-(Benzyloxymethyl)-1H-1,2,3-triazole-1-yl]-1acetoxygenipin $8 a-5.86 \%$ yield as a yellow oil; IR (film) 2927, 1754, 1705, 1634, 1436, 1179, 1080, $767 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.43(1 \mathrm{H}, \mathrm{brs}$, H-3), 7.35-7.27 (5H, m, H-Ar) 5.88-5.83 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-7, \mathrm{H}-1$), $5.02(2 \mathrm{H}$, brs, $\mathrm{H}-10), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.91(1 \mathrm{H}$, dd, $J=16.0,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.67(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9)$, 2.26-2.14 (4H, m, H-6b, $\left.\mathrm{CH}_{3}-\mathrm{Ac}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.02,166.89,151.50,145.55,137.63,135.71$, 134.51, 128.30 (2С), 127.77 (2С), 127.67, 122.17, 110.95, 91.57, 72.49, 63.58, 51.27, 49.45, 44.82, 38.49, 34.98, 20.88; HRMS (m / z) : calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$462.1641, found 462.1640.
4.6.6. 10-[4'-(4-Methoxybenzyloxymethyl)-1H-1,2,3-tria-zole-1-yl]-1-acetoxygenipin 8a-6. 82% yield as a colorless oil; IR (film) 2970, 1755, 1706, 1612, 1513, 1179, $1080 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52\left(1 \mathrm{H}\right.$, brs, $\left.\mathrm{H}-5^{\prime}\right), 7.44$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 5.87(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-7), 5.84(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-$ 1), $5.03(2 \mathrm{H}, \mathrm{brs}, \mathrm{H}-10), 4.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.53(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.25(1 \mathrm{H}$, $\mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.92(1 \mathrm{H}, \mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.68$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.28-2.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.01, 166.87, 159.19, $151.48,145.61,135.72,134.46,129.69,129.43$ (2C), 122.15, 113.69 (2C), 110.95, 91.55, 72.12, 63.23, 55.12, 51.25, 49.41, 44.81, 38.48, 34.95, 20.86; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$492.1747, found 492.1745 .
4.6.7. 10-[4'-(3,4-Dimethoxybenzyloxymethyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-7. 72% yield as a colorless oil; IR (film) 2948, 1758, 1705, 1634, 1515, 1179, 1080, 766 cm^{-1}; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-5^{\prime}\right)$, 7.43 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $6.93-6.79$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $5.90-5.80(2 \mathrm{H}$, m, H-7, H-1), 5.03 (2 H, brs, H-10), 4.64 (2 H, brs, CH_{2}), 4.53 $\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{CH}_{2}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.25(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.91(1 \mathrm{H}, \mathrm{dd}, J$ $=17.2,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.68(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.27-2.14$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.03, 166.89, 151.50, 148.92, 148.64, 145.54, 135.72, 134.56, 130.15, 122.20, 120.51, 111.25, 110.96, 110.84, 91.57, 72.45, 63.25, 55.81, 55.76, 51.30, 49.47, 44.85, 38.51, 35.00, 20.90; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$522.1852, found 522.1851.
4.6.8. 10-[4'-(N-Methyl-N-benzylamine)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-8. 99% yield as a yellow oil; IR (film) 2970, 1753, 1708, 1634, 1436, 1282, 1179, 1081, 740 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(1 \mathrm{H}$, brs, H-5'), $7.44(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.40-7.33$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $7.32-7.20(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-\mathrm{Ar}), 5.88-5.83$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-1$), 5.04 (2 H, brs, H-10), $3.76-3.68\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{CH}_{2}\right), 3.56\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{CH}_{2}\right), 3.26$ $(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.93(1 \mathrm{H}, \mathrm{dd}, J=16.0,7.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a})$, $2.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.30-2.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\right.$ Ac), $2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.09, 166.96, 151.56, 145.40, 138.01, 135.87, 134.36, 129.07 (2C), 128.25 (2C), 127.17, 122.50, 111.02, 91.60, 61.23, 51.88, 51.34, 49.54, 44.95, 41.95, 38.55, 35.00, 20.96; HRMS (m / z) : calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$453.2138, found 453.2144.
4.6.9. 10-[4'-(7'-Bromoethyl)-1H-1,2,3-triazole-1-yl]-1acetoxygenipin $8 a-9.75 \%$ yield as a yellow oil; IR (film) 2951, 1755, 1705, 1634, 1436, 1180, 1082, 731, $557 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46\left(1 \mathrm{H}\right.$, brs, $\left.\mathrm{H}-5^{\prime}\right), 7.45(1 \mathrm{H}$, brs, H-3), $5.87(1 \mathrm{H}$, brs, H-7), $5.85(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1)$, $5.04(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.66(2 \mathrm{H}, \mathrm{t}, J=6.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}-\mathrm{Br}\right), 3.33-3.22\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{H}-5\right), 2.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=16.4,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.68(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.28-2.16$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 168.89, 166.76, 151.35, 144.91, 135.75, 134.10, 121.46, 110.86, 91.41, 51.16, 49.33, 44.78, 38.37, 34.80, 31.37, 29.13, 20.78; HRMS (m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$448.0484, found 448.0490 .
4.6.10. 10-[4'-(7'-Hydroxyethyl)-1H-1,2,3-triazole-1-yl]-1acetoxygenipin $8 a-10.81 \%$ yield as a yellow oil; IR (film) 3383, 2970, 1753, 1705, 1634, 1436, 1365, 1282, 1179, 1081, $751 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(1 \mathrm{H}$, brs, $\mathrm{H}-$ 5^{\prime}), $7.39(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.92(1 \mathrm{H}$, brs, H-7), $5.83(1 \mathrm{H}, \mathrm{d}, J=7.6$
$\mathrm{Hz}, \mathrm{H}-1), 5.03(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.95\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.27(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.99-2.87$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}, \mathrm{CH}_{2}\right), 2.72(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.30-2.14$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.05, 166.81, 151.34, 146.05, 135.54, 134.40, 121.94, 110.86, 91.33, 61.17, 51.16, 49.36, 44.89, 38.33, 34.66, 28.63, 20.74; HRMS (m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$386.1328, found 386.1314 .
4.6.11. 10-[4'-(7'-Hydroxypropyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-11. 72% yield as a yellow oil; IR (film) 3383, 2948, 1755, 1705, 1634, 1436, 1365, 1217, 1179, 1081, $751 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(1 \mathrm{H}$, brs, H-5'), $7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.86(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-7), 5.84(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}, \mathrm{H}-1), 5.01(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.74-3.69(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{3}, \mathrm{CH}_{2}\right), 3.26(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.92(1 \mathrm{H}, \mathrm{dd}, J=$ $17.2,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.83\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.68(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.27-2.16\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 1.98-$ $1.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.02$, 166.86, 151.40, 147.74, 135.78, 134.13, 120.74, 110.89, 91.40, 61.21, 51.19, 49.25, 44.86, 38.36, 34.77, 31.78, 21.77, 20.77; HRMS (m / z) : calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$400.1485, found 400.1498 .
4.6.12. 10-[4'-(tert-Butyldiphenylsilyoxylpropyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-12. 76\% yield as a yellow oil; IR (film) 2932, 1759, 1709, 1634, 1428, 1282, 1180, 1085, 1052, 701, $504 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-$ 7.60 (4H, m, H-Ar), 7.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$), $7.43-7.33(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 3, H-Ar), 7.16 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{Ar}$), $5.84(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1)$, $5.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 4.97$ (2 H, brs, H-10), $3.78-3.68$ ($5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{3}, \mathrm{CH}_{2}\right), 3.24(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.91(1 \mathrm{H}, \mathrm{dd}, J=$ $17.2,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.84\left(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67(1 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.25-2.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 2.00-$ $1.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.10, 166.99, $151.58,148.18,136.11,135.49$ (4C), 134.11 (2C), 133.83, 129.52 (2C), 127.57 (4C), 120.46, 111.04, 91.66, 62.93, 51.33, 49.38, 44.95, 38.56, 35.08, 31.95, 26.81 (3C), 22.04, 20.94, 19.17; HRMS (m / z) : calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 616.2843, found 616.2853.
4.6.13. 10-[4'-(Triisopropysilyoxylpropyl)-1H-1,2,3-tria-zole-1-yl]-1-acetoxygenipin 8a-13. 92\% yield as a yellow oil; IR (film) 2943, 2865, 1763, 1709, 1634, 1436, 1282, 1180, 1084, 1052, $767 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$), $7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.88-5.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-$ 1), $5.00(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.77-3.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{CH}_{2}\right)$, $3.26(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.92(1 \mathrm{H}, \mathrm{dd}, J=16.4,7.2 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{a}), 2.82\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, H-9), 2.25-2.16 (4H, m, H-6b, CH $\left.\mathrm{CH}_{3}-\mathrm{Ac}\right), 1.98-1.87(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.08-1.01\left(21 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}, \mathrm{Si}-\mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.92,166.82,151.43,148.14,136.07$, 133.97, 120.38, 110.90, 91.55, 62.21, 51.16, 49.24, 44.80, $38.43,34.97,32.20,21.85,20.78,17.81$ (6C), 11.77 (3C); HRMS (m / z) : calcd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 534.2999$, found 534.3010.
4.6.14. 10-[4'-(tert-Butyldiphenylsilyoxylethyl)-1H-1,2,3-triazole-1-yll-1-acetoxygenipin 8a-14. 80% yield as a yellow oil; IR (film) 2931, 1760, 1709, 1634, 1428, 1180, 1082, 701, $502 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.55(4 \mathrm{H}, \mathrm{m}$, H-Ar), 7.46-7.32 (8H, m, H-5', H-3, H-Ar), 5.85-5.81 (2 H , $\mathrm{m}, \mathrm{H}-1, \mathrm{H}-7), 4.99(2 \mathrm{H}, \mathrm{brs}, \mathrm{H}-10), 3.93(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.19(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.99$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.87(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a})$, $2.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.23-2.11\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\right.$

Ac), $1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 168.93, 166.79, 151.43, 145.53, 135.96 (4C), 135.25, 134.15, 133.32, 129.51, 127.51 (4C), 121.51, 110.88, 91.58, 62.79, 60.15, 51.16, 49.24, 44.66, 38.40, 34.96, 29.10, 26.62 (3C), 20.79, 18.99, 13.99; HRMS (m / z) : calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}$602.2686, found 602.2690 .
4.6.15. 10-[4'-(tert-Butylsilyoxylethyl)-1H-1,2,3-triazole-1-yll-1-acetoxygenipin $8 a-15.80 \%$ yield as a yellow oil; IR (film) 2952, 1737, 1709, 1634, 1436, 1180, 1083, $834 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.36(1 \mathrm{H}$, s, H-3), 5.87-5.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-1$), 4.99 (2 H , brs, H-10), $3.85\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24(1 \mathrm{H}$, $\mathrm{q}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.97-2.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}, \mathrm{CH}_{2}\right), 2.66(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.25-2.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 0.84$ $\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right) 0.01\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta 168.90,166.80,151.42,145.57,135.98,134.06$, 122.47, 110.86, 91.53, 61.96, 51.16, 49.21, 44.70, 38.39, 34.93, 29.25 (2C), 25.63 (3C), 20.77, -5.61 (2C); HRMS (m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$478.2373, found 478.2380.
4.6.16. 10-[4'-(Triphenyloxylmethyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-16. 84\% yield as a colorless oil; IR (film) 2950, 1763, 1706, 1634, 1448, 1436, 1284, 1220, 1182, 1087, $704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.34$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}, \mathrm{H}-3, \mathrm{H}-\mathrm{Ar}$), $7.30-7.13$ ($9 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 5.855.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-1$), 4.97 (2 H, brs, H-10), 4.26 ($2 \mathrm{H}, \mathrm{brs}$, $\left.\mathrm{CH}_{2}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.20(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.87$ $(1 \mathrm{H}, \mathrm{dd}, J=16.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.63(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-$ 9), 2.25-2.08 (4H, m, H-6b, CH -Ac); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.13,167.03,151.64,146.49,143.70$ (2C), 135.94, 134.43, 128.64 (6C), 127.91 (6C), 127.14 (4C), 121.65, 111.10, 91.71, 87.37, 58.74, 51.38, 49.56, 45.01, 38.63, 35.11, 20.99; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$ 614.2267, found 614.2276 .
4.6.17. 10-[4'-(Octyloxymethyl)-1H-1,2,3-triazole-1-yl]-1acetoxygenipin $8 a-17.90 \%$ yield as a yellow oil; IR (film) 2927, 2856, 1738, 1711, 1634, 1436, 1282, 1217, 1180, 1083 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.45$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $5.88(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-7), 5.85(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-$ 1), $5.04(2 \mathrm{H}$, brs, $\mathrm{H}-10), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.73(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.52\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.26(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}$, H-5), $2.93(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.69(1 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}, \mathrm{H}-9)$, 2.28-2.10 (4H, m, H-6b, $\left.\mathrm{CH}_{3}-\mathrm{Ac}\right), 1.57-1.54$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.36-1.20\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.02$, 166.89, 151.51, 145.88, 135.76, 134.49, 122.03, 110.95, 91.60, 70.89, 64.24, 51.28, 49.54, 44.84, 38.51, 35.01, 31.66, 29.49, 29.27, 29.08, 25.97, 22.49, 20.91, 13.94; HRMS (m / z) : $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$434.2666, found 434.2660.
4.6.18. 10-[4'-(Dodecyloxymethyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin $8 a-18.89 \%$ yield as a yellow oil; IR (film) 2914, 2850, 1742, 1698, 1647, 1446, 1380, 1235, $1081 \mathrm{~cm}^{-1}$; NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.44(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-3), 5.87(1 \mathrm{H}$, brs, H-7), $5.85(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1), 5.03$ $(2 \mathrm{H}$, brs, $\mathrm{H}-10), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.26(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.93$ $(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.69(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9)$, 2.27-2.15 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}$), $1.62-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.36-1.20\left(18 \mathrm{H}, \mathrm{s}, 9 \times \mathrm{CH}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.97,166.85,151.47$, 145.87, 135.77, 134.40, 121.99, 110.93, 91.57, 76.98, 70.85, 64.18, 51.23, 49.44, 44.81, 38.48, 34.98, 31.74, 29.48, 29.45 (2C), 29.42, 29.31, 29.17, 25.95, 22.51, 20.85, 13.94 HRMS $(m / z): \mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$518.3230, found 518.3238.
4.6.19. 10-[4'-((Undec-10-enyloxy)methy)-1H-1,2,3-tria-zole-1-yl]-1-acetoxygenipin 8a-19. 66% yield as a white solid, mp: $52-56^{\circ} \mathrm{C}$; IR (film) 2923, 2849, 1779, 1698, 1633, 1436, 1180, 1086, $1050 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.45$ (1 H, brs, H-3), $5.88(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 5.85$ ($1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1$) $5.83-5.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$-alkene), 5.04 (2 H , brs, $\mathrm{H}-10$), $5.02-4.89$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}$-alkene), 4.62 ($2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.26$ $(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.93(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a})$, $2.69(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-9), 2.27-2.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\right.$ Ac), $2.08-1.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.66-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.41-1.23 (12H, m, $\left.6 \times \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.88,166.77,151.40,145.80$, 138.92, 135.75, 134.30, 121.96, 113.90, 110.89, 91.51, 70.75, 64.13, 51.16, 49.36, 44.78, 38.43, 34.91, 33.55, 29.41, 29.27, 29.19 (2C), 28.87, 28.68, 25.88, 20.78; HRMS (m / z): calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ [M $+\mathrm{Na}]^{+} 524.2737$, found 524.2740 .
4.6.20. 10-[4'-(((Dioxoisoindolin-2-yl)oxy)methyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-20. 66\% yield as a white solid, mp: 76.6-78.6 ${ }^{\circ} \mathrm{C}$; IR (film) 2970, 1728, 1633, 1436, 1365, 1217, 1083, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.86\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.80-7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.46$ (1 H, brs, H-3), $5.92(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 5.84(1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1)$, $5.40-5.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.04(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.74(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.30(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.96(1 \mathrm{H}, \mathrm{dd}, J=16.4$, $8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.68(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.30-2.14(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.09$, $166.95,163.31$ (2C), 151.53, 141.86, 135.61, 134.58 (2C), 134.40 (2C), 128.63, 124.48, 123.42 (2C), 111.04, 91.65, 70.09, 51.31, 49.70, 44.60, 38.57, 35.00, 20.91; HRMS (m / z) : calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$517.1335, found 517.1331.
4.6.21. 10-[4'-((1,3-Dioxoisoindolin-2-yl)methyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-21. 99\% yield as a white solid, mp: 68.0-72.0 ${ }^{\circ} \mathrm{C}$; IR (film) 2927, 1738, 1709, 1634, 1428, 1366, 1179, 1082, $713 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.87-7.81(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.74-7.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ Ar), $7.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.41(1 \mathrm{H}$, brs, H-3), $5.86(1 \mathrm{H}$, brs, H7), $5.80(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1), 5.03-4.95(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$, $\left.\mathrm{CH}_{2}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.91$ ($1 \mathrm{H}, \mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.66(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9)$, 2.25-2.11 (4H, m, H-6b, $\left.\mathrm{CH}_{3}-\mathrm{Ac}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 168.99,167.50$ (2C), 166.86, 151.45, 142.91, $135.55,134.61$ (2C), 133.97 (2C), 131.86, 123.28 (2C), 122.60, 110.90, 91.52, 51.24, 49.46, 44.83, 38.47, 34.89, 32.88, 20.81; HRMS (m / z) : calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ 501.1386, found 501.1385.
4.6.22. 10-[4'-((1,3-Dioxoisoindolin-2-yl)ethyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-22. 99\% yield as a yellow solid, mp: 61.6-64.6 ${ }^{\circ} \mathrm{C}$; IR (film) 2970, 1738, 1634, 1366, 1217, 1084, $718 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-$ 7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $7.74-7.66$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $\left.5^{\prime}\right), 7.40(1 \mathrm{H}$, brs, H-3), $5.84(1 \mathrm{H}$, brs, H-7), $5.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{H}-1), 4.99(2 \mathrm{H}, \mathrm{brs}, \mathrm{H}-10), 4.01(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.24(1 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 3.16$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.91(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a})$, $2.60(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.26-2.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\right.$ $\mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.08, 168.01 (2C), $166.95,151.52,144.56,135.90,134.22$ (2C), 133.86 (2C), 131.83, 123.12 (2С), 121.15, 110.97, 91.66, 51.29, 49.46, 44.59, 38.52, 37.30, 35.01, 24.73, 20.89; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$515.1543, found 515.1541.
4.6.23. 10-[4'-((1,3-Dioxoisoindolin-2-yl)propyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-23. 77% yield as a brown
solid, mp : $130-135{ }^{\circ} \mathrm{C}$; IR (film) 2925, 1738, 1707, 1628, 1432, 1364, 1176, 1079, $723 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.85-7.79(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.74-7.67(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ Ar), 7.43 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}, \mathrm{H}-3$), 5.86 (1 H, brs, H-7), 5.82 ($1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}, \mathrm{H}-1), 5.00(2 \mathrm{H}, \mathrm{brs}, \mathrm{H}-10), 3.75-3.68(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{3}, \mathrm{CH}_{2}\right), 3.26(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.92(1 \mathrm{H}, \mathrm{dd}, J=$ $16.8,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.76\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67(1 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.26-2.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 2.11-$ $2.028\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.02$, 168.22 (2C), 166.89, 151.46, 146.98, 135.92, 134.22 (2C), 133.82 (2C), 131.88, 123.02 (2C), 120.87, 110.93, 91.61, 51.21, 49.34, 44.78, 38.47, 36.97, 34.97, 27.89, 22.76, 20.85; HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$529.1699, found 529.1699.
4.6.24. 10-[4'-((1,3-Dioxoisoindolin-2-yl)butyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-24. 60% yield as a brown oil; IR (film) 2943, 1761, 1703, 1634, 1365, 1179, 1081, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.79$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $7.74-7.67$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $7.44\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right)$, $7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.85(1 \mathrm{H}$, brs, H-7), $5.83(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, $\mathrm{H}-1), 5.00(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.75-3.68\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{CH}_{2}\right)$, $3.27(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.92(1 \mathrm{H}, \mathrm{dd}, J=17.2,8.8 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{a}), 2.76\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, H-9), 2.26-2.14 (4H, m, H-6b, CH $\left.\mathrm{C}_{3}-\mathrm{Ac}\right), 1.60-1.80(4 \mathrm{H}, \mathrm{m}$, CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.12,168.32$ (2C), $166.99,151.56,147.82,136.00,134.30$ (2C), 133.84 (2C), 132.07, 123.09 (2C), 120.56, 111.01, 91.69, 51.32, 49.40, 44.88, 38.54, 37.47, 35.06, 27.88, 26.46, 24.97, 20.94; HRMS (m / z) : calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$521.2036, found 521.2034.
4.6.25. 10-[4'-(1-Hydroxycyclohexyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-25. 99\% yield; IR (film) 2937, 1759, 1706, 1635, 1265, 1181, 1086, $731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3)$, $5.89(1 \mathrm{H}$, brs, H-7), $5.84(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1), 5.03(2 \mathrm{H}$, brs, H-10), $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.27(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5)$, $2.94(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.70(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, H-9), 2.27-2.16 (4H, m, H-6b), 2.03-1.50 ($10 \mathrm{H}, \mathrm{m}, 5 \times$ CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.10, 166.93, 155.93, 151.51, 135.78, 134.67, 119.27, 110.96, 91.56, 69.44, 51.29, 49.44, 45.03, 38.53, 37.94 (2C), 34.96, 25.22, 21.84 (2C), 20.89; HRMS (m / z) : calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 418.1978, found 418.1970.
4.6.26. 10-[4'-(1-Hydroxycyclopentyl)-1H-1,2,3-triazole-1-yl]-1-acetoxygenipin 8a-26. 99% yield as a white oil; IR (film) 3418, 2951, 1737, 1706, 1634, 1436, 1217, 1179, 1081 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.42$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.89(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-7), 5.82(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-$ 1), $5.01(2 \mathrm{H}$, brs, $\mathrm{H}-10), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.25(1 \mathrm{H}, \mathrm{q}, J=$ $7.6 \mathrm{~Hz}, \mathrm{H}-5), 2.91(1 \mathrm{H}, \mathrm{dd}, J=16.4,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.69(1 \mathrm{H}$, $\mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H}-9), 2.26-2.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}, \mathrm{CH}_{3}-\mathrm{Ac}\right), 2.11-$ $1.88\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.15, 166.95, 151.51, 134.78, 134.33, 127.74, 119.19, 110.94, 91.57, 78.94, 51.31, 49.43, 44.82, 41.10, 38.51, 34.96, 33.02, 23.47, 22.96, 20.89; HRMS (m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ [M $+\mathrm{Na}]^{+} 426.1641$, found 426.1644 .
4.6.27. 10-[4'-Phenyl-1H-1,2,3-triazole-1-yl]genipin 8b-1. 67\% yield as a yellow oil; IR (film) 2921, 1697, 1637, 1437, 1179, 1079, $766 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{Ar}), 7.80(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.50(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 3), $7.46-7.31$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}, \mathrm{H}-5^{\prime}$), 5.86 (1 H, brs, H-7), 5.32 ($1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz} \mathrm{H}-10 \mathrm{a}$), $5.24(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz} \mathrm{H}-10 \mathrm{~b})$, $5.15(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1), 4.88(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{OH})$,
$3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.15(1 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.92(1 \mathrm{H}$, dd, $J=16.8,7.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.43(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9)$, 2.15-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.75, 152.74, 147.76, 137.82, 132.35, 130.07, 128.84 (2C), 128.33, 125.71 (2C), 120.41, 110.31, 96.37, 51.24, 50.51, 47.22, 39.07, 36.11; HRMS (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ [M $+\mathrm{Na}]^{+}$376.1273, found 376.1276.
4.6.28. 10-[4'-(4-Methoxypheny)l-1H-1,2,3-triazole-1-yl]genipin $8 b-2.45 \%$ yield as a yellow solid, mp : $148.6-150.6$ ${ }^{\circ} \mathrm{C}$; IR (film) 2923, 1699, 1629, 1499, 1106, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77-7.70(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}, \mathrm{H}-\mathrm{H}-$ 5^{\prime}), 7.51 (1 H, brs, H-3), 6.95 ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$), 5.87 (1 H, brs, H-7), 5.32 ($1 \mathrm{H}, \mathrm{d}, J=15.6, \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}), 5.21(1 \mathrm{H}, \mathrm{d}$, $J=15.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}), 4.98(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-1), 4.87(1 \mathrm{H}$, $\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{OH}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.15(1 \mathrm{H}, \mathrm{q}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5), 2.92(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.8 \mathrm{~Hz}$, H-6a), $2.42(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.15-2.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $6 \mathrm{~b})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.78, 159.69, 152.79, 147.59, 137.93, 132.23, 127.04 (2C), 122.74, 119.66, 114.24 (2C), 110.26, 96.39, 55.27, 51.23, 50.47, 47.21, 39.06, 36.12; HRMS (m / z) : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$384.1559, found 384.1568.
4.6.29. 10-[4'-(4-Fluorophenyl)-1H-1,2,3-triazole-1-yl]genipin $8 b-3$. 78% yield as a yellow solid, mp : $156.6-159.6$ ${ }^{\circ} \mathrm{C}$; IR (film) 2923, 1705, 1628, 1497, 1226, 1105, $768 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.74$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{Ar}$), 7.50 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $7.11\left(2 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}, \mathrm{H}-5^{\prime}\right), 5.88(1 \mathrm{H}$, brs, H-7), $5.33(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}), 5.23(1 \mathrm{H}, \mathrm{d}, J=$ $16.0 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}), 4.88(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}-1), 4.80(1 \mathrm{H}$, brs, $\mathrm{OH}), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.16(1 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.94$ $(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.42(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, \mathrm{H}-9)$, 2.16-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.69, $162.72\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 152.64,146.97$, 137.71, 132.59, 127.47 (d, $J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}, 2 \mathrm{C}-\mathrm{F}$), 126.32 120.09, 115.96, 115.74, 110.38, 96.35, 51.28, 50.52, 47.17, 39.08, 36.12; HRMS (m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{4}$; $[\mathrm{M}+$ $\mathrm{Na}]^{+}$394.1179, found 394.1184.
4.6.30. 10-[4'-(6', 6^{\prime}-Diphenyl-6'-hydroxymethyl)-1H-1,2,3-triazole-1-yl]genipin $8 b-4$. 64% yield as a white solid, mp: 76.6-80.6 ${ }^{\circ} \mathrm{C}$; IR (film) 3384, 2924, 1700, 1626, 1446, $1103,697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(1 \mathrm{H}, \mathrm{s}$, H-3), $7.35-7.22$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.15 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$), 5.77 $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 5.23(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}), 5.09(1 \mathrm{H}, \mathrm{d}, J$ $=15.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}), 4.99(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{OH}), 4.81-4.73$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 3.92-3.85(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.10(1 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.89(1 \mathrm{H}, \mathrm{dd}, J=16.4,8.0 \mathrm{~Hz}$, H-6a), $2.34(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, \mathrm{H}-9), 2.11-1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $6 \mathrm{~b})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.71, 153.85, 152.59, 145.47, 145.41, 137.72, 132.05, 127.96 (4C), 127.48, 127.45 (2C), 127.08 (3C) 123.50, 110.14, 96.17, 76.53, 51.19, 50.34, 47.09, 38.84, 35.98; HRMS (m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$ [M $+\mathrm{H}]^{+} 460.1872$, found 460.1871 .
4.6.31. 10-[4'-(tert-Butyldiphenylsilyoxylpropyl)-1H-1,2,3-triazole-1-yl]genipin $86-5.76 \%$ yield as a yellow oil; IR (film) 2928, 2854, 1702, 1632, 1440, 1107, 703, $504 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.55(1 \mathrm{H}, \mathrm{s}$, H-3), 7.50-7.35 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), $7.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 5.79(1 \mathrm{H}$, brs, H-7), $5.52(1 \mathrm{H}$, brs, OH), $5.25(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-$ 10a), 5.16 ($1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}$), $4.88(1 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}, \mathrm{H}-1), 3.80-3.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{CH}_{2}\right), 3.17(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.95(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.88(2 \mathrm{H}$, $\left.\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.40(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-9), 2.17-2.05$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 2.05-1.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.20-1.00(9 \mathrm{H}, \mathrm{m}$,
$\mathrm{CH}_{3} \times 3$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.73,152.78$, $147.85,138.15,135.50$ (4C), 133.80, 131.69, 129.42 (3C), 127.60 (4C), 121.55, 110.27, 96.31, 62.88, 51.18, 50.21, 47.23, 39.03, 36.10, 31.90, 26.83 (3C), 21.91, 19.18; HRMS (m / z): calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 596.2557$, found 596.2554.
4.6.32. 10-[4'-(tert-Butyldiphenylsilyoxylpropyl)-1H-1,2,3-triazole-1-yl]genipin $86-6.78 \%$ yield as a colorless oil; IR (film) 2931, 1698, 1628, 1428, 1103, 701, $503 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(4 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.49$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$), $7.45-7.31(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}, \mathrm{H}-3), 5.74(1 \mathrm{H}, \mathrm{brs}$, H-7), 5.32-5.08 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{OH}$), $4.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $4.85-4.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.11(1 \mathrm{H}, \mathrm{q}, J=$ $8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.91(1 \mathrm{H}, \mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.31(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.12-2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 1.20-1.00(9 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{3} \times 3$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.74,152.76,148.07,137.99,135.48$ (4C), 133.05, 131.83, 129.81 (3C), 127.73 (4C), 122.40, 110.24, 96.29, 58.40, 51.19, 50.34, 47.16, 39.03, 36.08, 26.74 (3C), 19.14. HRMS (m / z) : calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$ 568.2244, found 568.2245.
4.6.33. 10-[4'-(Octyloxymethyl)-1H-1,2,3-triazole-1-yl]genipin $8 b-7.55 \%$ yield as a yellow oil; IR (film) 2926, 1708, 1628, 1436, 1083, $793 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.62\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.50(1 \mathrm{H}$, brs, H-3), $5.80(1 \mathrm{H}$, brs, H-7), $5.27-5.18(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{OH}), 4.88-4.80(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.51(2 \mathrm{H}, \mathrm{t}, J=$ $\left.6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.14(1 \mathrm{H}, \mathrm{q}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5), 2.91(1 \mathrm{H}, \mathrm{dd}, J=$ $16.8,8.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.38(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9), 2.13-2.05$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 1.63-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.35-1.20(10 \mathrm{H}, \mathrm{m}$, $\left.5 \times \mathrm{CH}_{2}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 167.85,152.84,145.26,138.08,132.05,123.43$, 110.24, 96.35, 71.08, 64.02, 51.17, 50.29, 47.13, 39.13, 36.10, 31.76, 29.54, 29.37, 29.18, 26.04, 22.59, 14.04; HRMS (m / z): $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 420.2498$, found 420.2502 .
4.6.34. 10-[4'-(Dodecyloxymethyl)-1H-1,2,3-triazole-1-yl]genipin $8 b-8.53 \%$ yield as a brown oil; IR (film) 2922, 2853, 1738, 1712, 1629, 1436, $1102 \mathrm{~cm}^{-1}$; NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.61\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.49(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.79(1 \mathrm{H}, \mathrm{brs}$, $\mathrm{H}-7), 5.27(1 \mathrm{H}$, brs, OH$), 5.25(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a})$, $5.18(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}), 4.83(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-$ 1), $4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.50(2 \mathrm{H}, \mathrm{t}, J=6.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 3.13(1 \mathrm{H}, \mathrm{q}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5), 2.90(1 \mathrm{H}, \mathrm{dd}, J=$ $16.4,8.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.39(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-9), 2.11-2.04$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 1.62-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.37-1.19(18 \mathrm{H}, \mathrm{s}$, $\left.9 \times \mathrm{CH}_{2}\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 167.72,152.71,145.30,137.90,132.12,123.23$, 110.21, 96.26, 70.99, 64.00, 51.18, 47.07, 38.94, 36.03, 31.80, 29.55, 29.52 (4C), 29.49, 29.38, 29.24, 25.98, 22.57, 14.00; HRMS $(m / z): \mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$476.3124, found 476.3120 .
4.6.35. 10-[4'-((Undec-10-enyloxy)methy)-1H-1,2,3-tria-zole-1-yllgenipin 8b-9. 69% yield as a brown oil; IR (film) 2925, 2854, 1706, 1629, 1437, 1083, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.48(1 \mathrm{H}$, brs, $\mathrm{H}-3)$, $5.85-5.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$-alkene), $5.73(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 5.22-5.14$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 5.01-4.81(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{CH} \times 2), 4.60(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.50\left(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.14$ $(1 \mathrm{H}, \mathrm{q}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5), 2.88(1 \mathrm{H}, \mathrm{dd}, J=16.4 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, \mathrm{H}-$ 6a), $2.41(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.10-1.97\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{H}-\right.$ 6 b), $1.62-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.40-1.19\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.69,152.68,145.17$, 139.02, 137.91, 131.92, 123.20, 113.97, 110.13, 96.21, 70.89, 63.92, 51.13, 50.31, 46.98, 38.94, 35.96, 33.63, 29.52, 29.42,
29.35, 29.27, 28.94, 28.74, 25.91; HRMS (m / z) : calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 482.2631$, found 482.2630 .
4.6.36. 10-[4'-(((Dioxoisoindolin-2-yl)oxy)methyl)-1H-1,2,3-triazole-1-yl] 8b-10. 68% yield as a white solid, mp : $57.6-61.6^{\circ} \mathrm{C}$; IR (film) 2923, 2853, 1729, 1627, 1437, 1081, $699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right)$, 7.76-7.68 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}$), 7.53 (1 H, brs, H-3), 5.98 (1 H, s, H7), $5.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.30-5.14(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 4.82-4.68$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{OH}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.18(1 \mathrm{H}, \mathrm{q}, J=8.8$ Hz, H-5), 2.96 ($1 \mathrm{H}, \mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.28(1 \mathrm{H}, \mathrm{t}, J$ $=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.16-2.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.69,163.47$ (2C), 152.59, 141.23, 137.45, 134.47 (2C), 132.82, 128.46, 125.65, 123.44 (2C), 110.18, 96.24, 69.90, 51.16, 50.40, 47.08, 39.01, 35.93, 29.52; HRMS (m / z) : calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$453.1410, found 453.141
4.6.37. 10-[4'-((1,3-Dioxoisoindolin-2-yl)methyl)-1H-1,2,3-triazole-1-yl] 8b-11. 80% yield as a white oil; IR (film) 2949, 1711, 1626, 1394, 1084, $712 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.83-7.75(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.74\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right)$, $7.71-7.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{Ar}), 7.41$ ($1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-3$), 6.26 ($1 \mathrm{H}, \mathrm{brs}$, $\mathrm{OH}), 5.69(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-7), 5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.10-4.94(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-10), 4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-1), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.08(1 \mathrm{H}, \mathrm{q}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.83(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}$, H-6a), 2.38 ($1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-9$), $2.08-2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $6 \mathrm{~b})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.80,167.73$ (2C), 152.74, 142.65, 137.70, 134.17, 132.46 (2C), 131.97, 123.56, 123.51 (2C), 110.31, 96.34, 51.28, 50.45, 47.21, 39.09, 36.07, 32.95, 29.69; HRMS (m / z) : calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 437.1456, found 437.1468.
4.6.38. 10-[4'-(1-Hydroxycyclohexyl)-1H-1,2,3-triazole-1yllgenipin $86-12$. 97% yield as a white solid, mp: 128.6$132.6^{\circ} \mathrm{C}$; IR (film) 3511, 2929, 2855, 1738, 1697, 1444, 1084 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.46$ $(1 \mathrm{H}$, brs, $\mathrm{H}-3), 6.59(1 \mathrm{H}$, brs, OH), $5.75(1 \mathrm{H}$, brs, H-7), $5.40-5.10(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 4.82(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-1), 3.69$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.13(1 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5), 2.87(1 \mathrm{H}, \mathrm{dd}, J$ $=15.6,8.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.41(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.09-2.04$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 2.00-1.30\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.80,155.23,152.72,138.03,132.11$, 120.80, 110.11, 96.26, 69.42, 51.18, 50.24, 47.13, 38.94, 37.72, 37.68, 36.02, 29.54, 25.20, 21.82. HRMS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$376.1872, found 376.1877.
4.6.39. 10-[4'-(1-Hydroxycyclopentyl)-1H-1,2,3-triazole-1yllgenipin $86-13.92 \%$ yield as a white solid, mp: 128.6-132.6 ${ }^{\circ} \mathrm{C}$; IR (film) 3310, 2924, 2854, 1737, 1708, 1628, 1438, 1106 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 7.50$ (1 H, brs, H-3), $5.84(1 \mathrm{H}$, brs, H-7), $5.70(1 \mathrm{H}$, brs, OH), 5.24 $(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{a}), 5.14(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b})$, 4.88-4.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.16(1 \mathrm{H}, \mathrm{q}, J=$ $8.4 \mathrm{~Hz}, \mathrm{H}-5), 2.91(1 \mathrm{H}, \mathrm{dd}, J=16.8,8.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 2.85-2.69$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.40(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-9), 2.14-1.78(9 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-6 \mathrm{~b}, 4 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.79$, 154.20, 152.72, 137.87, 132.72, 120.67, 110.38, 96.41, 78.91, 51.20, 50.26, 47.27, 41.12(2C), 39.07, 36.17, 23.49(2C); HRMS (m / z) : calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$384.1535, found 384.1543.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c01593.

Experimental details and protocols on protein expression and purification, inhibition and binding studies, and Xray crystallography (PDF)

AUTHOR INFORMATION

Corresponding Author

Rungnapha Saeeng - Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand; The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand; © orcid.org/0000-0003-24372231; Email: rungnaph@buu.ac.th

Authors

Patamawadee Silalai - Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
Suwichada Jaipea - Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
Jiraporn Tocharus - Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
Anan Athipornchai - Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
Apichart Suksamrarn - Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand; © orcid.org/0000-0001-8919-3555

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c01593

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND). R.S. and P.S. are grateful for support through the Postdoctoral Fellowship Award from Burapha University. The authors thank Assistant Prof. Suchaya Pongsai, Faculty of Science, Burapha University, for helpful discussions on docking simulation techniques. Special thanks go to Dr Ron Beckett, Faculty of Science, Burapha University, for his comments and English correction.

ABBREVIATIONS

AD , Alzheimer's disease; AChE, acetylcholinesterase; BuChE, butyrylcholinesterase; TBSCl, tert-butyldimethylsilyl chloride; $\mathrm{Ac}_{2} \mathrm{O}$, acetic anhydride; TBDPSCl, tert-butyldiphenylsilyl chloride; DCM, dichloromethane; THF, tetrahydrofuran; MsCl , methanesulfonyl chloride; $\mathrm{Et}_{3} \mathrm{~N}$, triethylamine; NaN_{3}, sodium azide; DMF, dimethylformamide; TBAF, tetra- n butylammonium fluoride; CuI, copper(I)iodide; $\mathrm{CH}_{3} \mathrm{CN}$, acetonitrile; rt, room temperature; $\mathrm{H}_{2} \mathrm{O}_{2}$, hydrogen peroxide; NA, not active

REFERENCES

(1) Ulrich, J. D.; Holtzman, D. M. TREM2 Function in Alzheimer's Disease and Neurodegeneration. ACS Chem. Neurosci. 2016, 7, 420427.
(2) WHO, Dementia, 2018. http://www.who.int/news-room/factsheets/detail/Dementia, https://www.alz.co.uk/research/ WorldAlzheimerReport2016.pdf.
(3) Romero, A.; Cacabelos, R.; Oset-Gasque, M. J.; Samadi, A.; Marco-Contelles, J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer's disease. Bioorg. Med. Chem. Lett. 2013, 23, 1916-1922.
(4) Guo, J.; Wang, Z.; Liu, R.; Huang, Y.; Zhang, N.; Zhang, R. Memantine, Donepezil, or Combination Therapy-What is the best therapy for Alzheimer's Disease? A Network Meta-Analysis. Brain Behav. 2020, 10, No. e01831.
(5) Marques, L. A.; Maada, I.; de Kanter, F. J.; Lingeman, H.; Irth, H.; Niessen, W. M.; Giera, M. Stability-indicating study of the antiAlzheimer's drug galantamine hydrobromide. J. Pharm. Biomed. Anal. 2011, 55, 85-92.
(6) Akinyemi, A. J.; Oboh, G.; Oyeleye, S. I.; Ogunsuyi, O. Antiamnestic Effect of Curcumin in Combination with Donepezil, an Anticholinesterase Drug: Involvement of Cholinergic System. Neurotoxic. Res. 2017, 31, 560-569.
(7) Gorman, A. M. Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J. Cell. Mol. Med. 2008, 12, 2263-2280.
(8) Bartorelli, L.; Giraldi, C.; Saccardo, M.; Cammarata, S.; Bottini, G.; Fasanaro, A. M.; Trequattrini, A. Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer's disease. Curr. Med. Res. Opin. 2005, 21, 1809-1817.
(9) Załuski, D.; Kuzniewski, R. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species. Oxid. Med. Cell. Longevity 2016, 2016, No. 4135135.
(10) Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011, 221, 334-340.
(11) Kamal, M. A.; Klein, P.; Luo, W.; Li, Y.; Holloway, H. W.; Tweedie, D.; Greig, N. H. Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine. Neurochem. Res. 2008, 33, 745753.
(12) Marucci, G.; Buccioni, M.; Ben, D. D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology 2021, 190, No. 108352.
(13) Darras, F. H.; Kling, B.; Heilmann, J.; Decker, M. Neuroprotective Tri- and Tetracyclic BChE Inhibitors Releasing Reversible Inhibitors upon Carbamate Transfer. ACS Med. Chem. Lett. 2012, 3, 914-919.
(14) Greig, N. H.; Lahiri, D. K.; Sambamurti, K. Butyrylcholinesterase: an important new target in Alzheimer's disease therapy. Int. Psychogeriatr. 2002, 14, 77-91.
(15) Yang, L.; Peng, K.; Zhao, S.; Chen, L.; Qiu, F. Monoterpenoids from the fruit of Gardenia jasminoides Ellis (Rubiaceae). Biochem. Syst. Ecol. 2013, 50, 435-437.
(16) Lelono, R.A.A.; Tachibana, S.; Itoh, K. Isolation of antifungal compounds from Gardenia jasminoides. Pak. J. Biol. Sci. 2009, 12, 949-956.
(17) Peng, S.-x. M. J.-h. The Role of Genipin and Geniposide in Liver Diseases: A Review Altern. Integr. Med. 201302 DOI: 10.4172/ 2327-5162.1000117.
(18) Yamazaki, M.; Sakura, N.; Chiba, K.; Mohri, T. Prevention of the Neurotoxicity of the Amyloid β Protein by Genipin. Biol. Pharm. Bull. 2001, 24, 1454-1455.
(19) Huang, W.; Wang, Y.; Li, J.; Zhang, Y.; Ma, X.; Zhu, P.; Zhang, Y. Design, synthesis, and evaluation of genipin derivatives for the treatment of Alzheimer's Disease. Chem. Biol. Drug Des. 2019, 93, 110-122.
(20) Kumar, S.; Khokra, S. L.; Yadav, A. Triazole analogues as potential pharmacological agents: a brief review. Future J. Pharm. Sci. 2021, 7, No. 106.
(21) Baraniak, D.; Boryski, J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021, 9, No. 628.
(22) Wang, Z. X.; Qin, H. L. Regioselective synthesis of 1,2,3triazole derivatives via 1,3-dipolar cycloaddition reactions in water. Chem. Commun. 2003, 19, 2450-2451.
(23) Moorman, R. M.; Collier, M. B.; Frohock, B. H.; Womble, M. D.; Chalker, J. M. Halide inhibition of the copper-catalysed azidealkyne cycloaddition. Org. Biomol. Chem. 2015, 13, 1974-1978.
(24) Silalai, P.; Sirion, U.; Piyachaturawat, P.; Chairoungdua, A.; Suksen, K.; Saeeng, R. Design, Synthesis and Evaluations of New 10-Triazolyl-1-methoxygenipin Analogues for Their Cytotoxicity to Cancer Cells. ChemistrySelect 2020, 5, 9540-9546.
(25) Takasu, K.; Azuma, T.; Enkhtaivan, I.; Takemoto, Y. Synthesis and properties of chiral thioureas bearing an additional function at a remote position tethered by a 1,5 -disubstituted triazole. Molecules 2010, 15, 8327-8348.
(26) Camberlein, V.; Kraupner, N.; Bou Karroum, N.; Lipka, E.; Deprez-Poulain, R.; Deprez, B.; Bosc, D. Multi-component reaction for the preparation of 1,5-disubstituted 1,2,3-triazoles by in-situ generation of azides and nickel-catalyzed azide-alkyne cycloaddition. Tetrahedron Lett. 2021, 73, No. 153131.
(27) Sooknual, P.; Pingaew, R.; Phopin, K.; Ruankham, W.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and neuroprotective effects of novel chalcone-triazole hybrids. Bioorg. Chem. 2020, 105, No. 104384.
(28) Li, J. C.; Zhang, J.; Rodrigues, M. C.; Ding, D. J.; Longo, J. P.; Azevedo, R. B.; Muehlmann, L. A.; Jiang, C. S. Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorg. Med. Chem. Lett. 2016, 26, 3881-3885.
(29) Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F. H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem. 2017, 125, 1200-1212.
(30) Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargere, D.; Laprevote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorg. Chem. 2018, 80, 189-194.
(31) Rayatzadeh, A.; Saeedi, M.; Mahdavi, M.; Rezaei, Z.; Sabourian, R.; Mosslemin, M. H.; Akbarzadeh, T.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of novel oxoisoindoline derivatives as acetylcholinesterase inhibitors. Monatsh. Chem.-Chem. Mon. 2015, 146, 637-643.

[^0]: Received: March 16, 2022
 Accepted: June 14, 2022
 Published: July 6, 2022

